]> git.proxmox.com Git - qemu.git/blob - hw/arm_gic.c
arm: add dummy gic security registers
[qemu.git] / hw / arm_gic.c
1 /*
2 * ARM Generic/Distributed Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* This file contains implementation code for the RealView EB interrupt
11 controller, MPCore distributed interrupt controller and ARMv7-M
12 Nested Vectored Interrupt Controller. */
13
14 //#define DEBUG_GIC
15
16 #ifdef DEBUG_GIC
17 #define DPRINTF(fmt, ...) \
18 do { printf("arm_gic: " fmt , ## __VA_ARGS__); } while (0)
19 #else
20 #define DPRINTF(fmt, ...) do {} while(0)
21 #endif
22
23 #ifdef NVIC
24 static const uint8_t gic_id[] =
25 { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 };
26 /* The NVIC has 16 internal vectors. However these are not exposed
27 through the normal GIC interface. */
28 #define GIC_BASE_IRQ 32
29 #else
30 static const uint8_t gic_id[] =
31 { 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
32 #define GIC_BASE_IRQ 0
33 #endif
34
35 #define FROM_SYSBUSGIC(type, dev) \
36 DO_UPCAST(type, gic, FROM_SYSBUS(gic_state, dev))
37
38 typedef struct gic_irq_state
39 {
40 /* The enable bits are only banked for per-cpu interrupts. */
41 unsigned enabled:NCPU;
42 unsigned pending:NCPU;
43 unsigned active:NCPU;
44 unsigned level:NCPU;
45 unsigned model:1; /* 0 = N:N, 1 = 1:N */
46 unsigned trigger:1; /* nonzero = edge triggered. */
47 } gic_irq_state;
48
49 #define ALL_CPU_MASK ((1 << NCPU) - 1)
50 #if NCPU > 1
51 #define NUM_CPU(s) ((s)->num_cpu)
52 #else
53 #define NUM_CPU(s) 1
54 #endif
55
56 #define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm)
57 #define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm)
58 #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
59 #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm)
60 #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm)
61 #define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0)
62 #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm)
63 #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm)
64 #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
65 #define GIC_SET_MODEL(irq) s->irq_state[irq].model = 1
66 #define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = 0
67 #define GIC_TEST_MODEL(irq) s->irq_state[irq].model
68 #define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level = (cm)
69 #define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm)
70 #define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
71 #define GIC_SET_TRIGGER(irq) s->irq_state[irq].trigger = 1
72 #define GIC_CLEAR_TRIGGER(irq) s->irq_state[irq].trigger = 0
73 #define GIC_TEST_TRIGGER(irq) s->irq_state[irq].trigger
74 #define GIC_GET_PRIORITY(irq, cpu) \
75 (((irq) < 32) ? s->priority1[irq][cpu] : s->priority2[(irq) - 32])
76 #ifdef NVIC
77 #define GIC_TARGET(irq) 1
78 #else
79 #define GIC_TARGET(irq) s->irq_target[irq]
80 #endif
81
82 typedef struct gic_state
83 {
84 SysBusDevice busdev;
85 qemu_irq parent_irq[NCPU];
86 int enabled;
87 int cpu_enabled[NCPU];
88
89 gic_irq_state irq_state[GIC_NIRQ];
90 #ifndef NVIC
91 int irq_target[GIC_NIRQ];
92 #endif
93 int priority1[32][NCPU];
94 int priority2[GIC_NIRQ - 32];
95 int last_active[GIC_NIRQ][NCPU];
96
97 int priority_mask[NCPU];
98 int running_irq[NCPU];
99 int running_priority[NCPU];
100 int current_pending[NCPU];
101
102 #if NCPU > 1
103 int num_cpu;
104 #endif
105
106 MemoryRegion iomem; /* Distributor */
107 #ifndef NVIC
108 /* This is just so we can have an opaque pointer which identifies
109 * both this GIC and which CPU interface we should be accessing.
110 */
111 struct gic_state *backref[NCPU];
112 MemoryRegion cpuiomem[NCPU+1]; /* CPU interfaces */
113 #endif
114 } gic_state;
115
116 /* TODO: Many places that call this routine could be optimized. */
117 /* Update interrupt status after enabled or pending bits have been changed. */
118 static void gic_update(gic_state *s)
119 {
120 int best_irq;
121 int best_prio;
122 int irq;
123 int level;
124 int cpu;
125 int cm;
126
127 for (cpu = 0; cpu < NUM_CPU(s); cpu++) {
128 cm = 1 << cpu;
129 s->current_pending[cpu] = 1023;
130 if (!s->enabled || !s->cpu_enabled[cpu]) {
131 qemu_irq_lower(s->parent_irq[cpu]);
132 return;
133 }
134 best_prio = 0x100;
135 best_irq = 1023;
136 for (irq = 0; irq < GIC_NIRQ; irq++) {
137 if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) {
138 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
139 best_prio = GIC_GET_PRIORITY(irq, cpu);
140 best_irq = irq;
141 }
142 }
143 }
144 level = 0;
145 if (best_prio <= s->priority_mask[cpu]) {
146 s->current_pending[cpu] = best_irq;
147 if (best_prio < s->running_priority[cpu]) {
148 DPRINTF("Raised pending IRQ %d\n", best_irq);
149 level = 1;
150 }
151 }
152 qemu_set_irq(s->parent_irq[cpu], level);
153 }
154 }
155
156 static void __attribute__((unused))
157 gic_set_pending_private(gic_state *s, int cpu, int irq)
158 {
159 int cm = 1 << cpu;
160
161 if (GIC_TEST_PENDING(irq, cm))
162 return;
163
164 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
165 GIC_SET_PENDING(irq, cm);
166 gic_update(s);
167 }
168
169 /* Process a change in an external IRQ input. */
170 static void gic_set_irq(void *opaque, int irq, int level)
171 {
172 gic_state *s = (gic_state *)opaque;
173 /* The first external input line is internal interrupt 32. */
174 irq += 32;
175 if (level == GIC_TEST_LEVEL(irq, ALL_CPU_MASK))
176 return;
177
178 if (level) {
179 GIC_SET_LEVEL(irq, ALL_CPU_MASK);
180 if (GIC_TEST_TRIGGER(irq) || GIC_TEST_ENABLED(irq, ALL_CPU_MASK)) {
181 DPRINTF("Set %d pending mask %x\n", irq, GIC_TARGET(irq));
182 GIC_SET_PENDING(irq, GIC_TARGET(irq));
183 }
184 } else {
185 GIC_CLEAR_LEVEL(irq, ALL_CPU_MASK);
186 }
187 gic_update(s);
188 }
189
190 static void gic_set_running_irq(gic_state *s, int cpu, int irq)
191 {
192 s->running_irq[cpu] = irq;
193 if (irq == 1023) {
194 s->running_priority[cpu] = 0x100;
195 } else {
196 s->running_priority[cpu] = GIC_GET_PRIORITY(irq, cpu);
197 }
198 gic_update(s);
199 }
200
201 static uint32_t gic_acknowledge_irq(gic_state *s, int cpu)
202 {
203 int new_irq;
204 int cm = 1 << cpu;
205 new_irq = s->current_pending[cpu];
206 if (new_irq == 1023
207 || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) {
208 DPRINTF("ACK no pending IRQ\n");
209 return 1023;
210 }
211 s->last_active[new_irq][cpu] = s->running_irq[cpu];
212 /* Clear pending flags for both level and edge triggered interrupts.
213 Level triggered IRQs will be reasserted once they become inactive. */
214 GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm);
215 gic_set_running_irq(s, cpu, new_irq);
216 DPRINTF("ACK %d\n", new_irq);
217 return new_irq;
218 }
219
220 static void gic_complete_irq(gic_state * s, int cpu, int irq)
221 {
222 int update = 0;
223 int cm = 1 << cpu;
224 DPRINTF("EOI %d\n", irq);
225 if (irq >= GIC_NIRQ) {
226 /* This handles two cases:
227 * 1. If software writes the ID of a spurious interrupt [ie 1023]
228 * to the GICC_EOIR, the GIC ignores that write.
229 * 2. If software writes the number of a non-existent interrupt
230 * this must be a subcase of "value written does not match the last
231 * valid interrupt value read from the Interrupt Acknowledge
232 * register" and so this is UNPREDICTABLE. We choose to ignore it.
233 */
234 return;
235 }
236 if (s->running_irq[cpu] == 1023)
237 return; /* No active IRQ. */
238 /* Mark level triggered interrupts as pending if they are still
239 raised. */
240 if (!GIC_TEST_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
241 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
242 DPRINTF("Set %d pending mask %x\n", irq, cm);
243 GIC_SET_PENDING(irq, cm);
244 update = 1;
245 }
246 if (irq != s->running_irq[cpu]) {
247 /* Complete an IRQ that is not currently running. */
248 int tmp = s->running_irq[cpu];
249 while (s->last_active[tmp][cpu] != 1023) {
250 if (s->last_active[tmp][cpu] == irq) {
251 s->last_active[tmp][cpu] = s->last_active[irq][cpu];
252 break;
253 }
254 tmp = s->last_active[tmp][cpu];
255 }
256 if (update) {
257 gic_update(s);
258 }
259 } else {
260 /* Complete the current running IRQ. */
261 gic_set_running_irq(s, cpu, s->last_active[s->running_irq[cpu]][cpu]);
262 }
263 }
264
265 static uint32_t gic_dist_readb(void *opaque, target_phys_addr_t offset)
266 {
267 gic_state *s = (gic_state *)opaque;
268 uint32_t res;
269 int irq;
270 int i;
271 int cpu;
272 int cm;
273 int mask;
274
275 cpu = gic_get_current_cpu();
276 cm = 1 << cpu;
277 if (offset < 0x100) {
278 #ifndef NVIC
279 if (offset == 0)
280 return s->enabled;
281 if (offset == 4)
282 return ((GIC_NIRQ / 32) - 1) | ((NUM_CPU(s) - 1) << 5);
283 if (offset < 0x08)
284 return 0;
285 if (offset >= 0x80) {
286 /* Interrupt Security , RAZ/WI */
287 return 0;
288 }
289 #endif
290 goto bad_reg;
291 } else if (offset < 0x200) {
292 /* Interrupt Set/Clear Enable. */
293 if (offset < 0x180)
294 irq = (offset - 0x100) * 8;
295 else
296 irq = (offset - 0x180) * 8;
297 irq += GIC_BASE_IRQ;
298 if (irq >= GIC_NIRQ)
299 goto bad_reg;
300 res = 0;
301 for (i = 0; i < 8; i++) {
302 if (GIC_TEST_ENABLED(irq + i, cm)) {
303 res |= (1 << i);
304 }
305 }
306 } else if (offset < 0x300) {
307 /* Interrupt Set/Clear Pending. */
308 if (offset < 0x280)
309 irq = (offset - 0x200) * 8;
310 else
311 irq = (offset - 0x280) * 8;
312 irq += GIC_BASE_IRQ;
313 if (irq >= GIC_NIRQ)
314 goto bad_reg;
315 res = 0;
316 mask = (irq < 32) ? cm : ALL_CPU_MASK;
317 for (i = 0; i < 8; i++) {
318 if (GIC_TEST_PENDING(irq + i, mask)) {
319 res |= (1 << i);
320 }
321 }
322 } else if (offset < 0x400) {
323 /* Interrupt Active. */
324 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
325 if (irq >= GIC_NIRQ)
326 goto bad_reg;
327 res = 0;
328 mask = (irq < 32) ? cm : ALL_CPU_MASK;
329 for (i = 0; i < 8; i++) {
330 if (GIC_TEST_ACTIVE(irq + i, mask)) {
331 res |= (1 << i);
332 }
333 }
334 } else if (offset < 0x800) {
335 /* Interrupt Priority. */
336 irq = (offset - 0x400) + GIC_BASE_IRQ;
337 if (irq >= GIC_NIRQ)
338 goto bad_reg;
339 res = GIC_GET_PRIORITY(irq, cpu);
340 #ifndef NVIC
341 } else if (offset < 0xc00) {
342 /* Interrupt CPU Target. */
343 irq = (offset - 0x800) + GIC_BASE_IRQ;
344 if (irq >= GIC_NIRQ)
345 goto bad_reg;
346 if (irq >= 29 && irq <= 31) {
347 res = cm;
348 } else {
349 res = GIC_TARGET(irq);
350 }
351 } else if (offset < 0xf00) {
352 /* Interrupt Configuration. */
353 irq = (offset - 0xc00) * 2 + GIC_BASE_IRQ;
354 if (irq >= GIC_NIRQ)
355 goto bad_reg;
356 res = 0;
357 for (i = 0; i < 4; i++) {
358 if (GIC_TEST_MODEL(irq + i))
359 res |= (1 << (i * 2));
360 if (GIC_TEST_TRIGGER(irq + i))
361 res |= (2 << (i * 2));
362 }
363 #endif
364 } else if (offset < 0xfe0) {
365 goto bad_reg;
366 } else /* offset >= 0xfe0 */ {
367 if (offset & 3) {
368 res = 0;
369 } else {
370 res = gic_id[(offset - 0xfe0) >> 2];
371 }
372 }
373 return res;
374 bad_reg:
375 hw_error("gic_dist_readb: Bad offset %x\n", (int)offset);
376 return 0;
377 }
378
379 static uint32_t gic_dist_readw(void *opaque, target_phys_addr_t offset)
380 {
381 uint32_t val;
382 val = gic_dist_readb(opaque, offset);
383 val |= gic_dist_readb(opaque, offset + 1) << 8;
384 return val;
385 }
386
387 static uint32_t gic_dist_readl(void *opaque, target_phys_addr_t offset)
388 {
389 uint32_t val;
390 #ifdef NVIC
391 gic_state *s = (gic_state *)opaque;
392 uint32_t addr;
393 addr = offset;
394 if (addr < 0x100 || addr > 0xd00)
395 return nvic_readl(s, addr);
396 #endif
397 val = gic_dist_readw(opaque, offset);
398 val |= gic_dist_readw(opaque, offset + 2) << 16;
399 return val;
400 }
401
402 static void gic_dist_writeb(void *opaque, target_phys_addr_t offset,
403 uint32_t value)
404 {
405 gic_state *s = (gic_state *)opaque;
406 int irq;
407 int i;
408 int cpu;
409
410 cpu = gic_get_current_cpu();
411 if (offset < 0x100) {
412 #ifdef NVIC
413 goto bad_reg;
414 #else
415 if (offset == 0) {
416 s->enabled = (value & 1);
417 DPRINTF("Distribution %sabled\n", s->enabled ? "En" : "Dis");
418 } else if (offset < 4) {
419 /* ignored. */
420 } else if (offset >= 0x80) {
421 /* Interrupt Security Registers, RAZ/WI */
422 } else {
423 goto bad_reg;
424 }
425 #endif
426 } else if (offset < 0x180) {
427 /* Interrupt Set Enable. */
428 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
429 if (irq >= GIC_NIRQ)
430 goto bad_reg;
431 if (irq < 16)
432 value = 0xff;
433 for (i = 0; i < 8; i++) {
434 if (value & (1 << i)) {
435 int mask = (irq < 32) ? (1 << cpu) : GIC_TARGET(irq);
436 int cm = (irq < 32) ? (1 << cpu) : ALL_CPU_MASK;
437
438 if (!GIC_TEST_ENABLED(irq + i, cm)) {
439 DPRINTF("Enabled IRQ %d\n", irq + i);
440 }
441 GIC_SET_ENABLED(irq + i, cm);
442 /* If a raised level triggered IRQ enabled then mark
443 is as pending. */
444 if (GIC_TEST_LEVEL(irq + i, mask)
445 && !GIC_TEST_TRIGGER(irq + i)) {
446 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
447 GIC_SET_PENDING(irq + i, mask);
448 }
449 }
450 }
451 } else if (offset < 0x200) {
452 /* Interrupt Clear Enable. */
453 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
454 if (irq >= GIC_NIRQ)
455 goto bad_reg;
456 if (irq < 16)
457 value = 0;
458 for (i = 0; i < 8; i++) {
459 if (value & (1 << i)) {
460 int cm = (irq < 32) ? (1 << cpu) : ALL_CPU_MASK;
461
462 if (GIC_TEST_ENABLED(irq + i, cm)) {
463 DPRINTF("Disabled IRQ %d\n", irq + i);
464 }
465 GIC_CLEAR_ENABLED(irq + i, cm);
466 }
467 }
468 } else if (offset < 0x280) {
469 /* Interrupt Set Pending. */
470 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
471 if (irq >= GIC_NIRQ)
472 goto bad_reg;
473 if (irq < 16)
474 irq = 0;
475
476 for (i = 0; i < 8; i++) {
477 if (value & (1 << i)) {
478 GIC_SET_PENDING(irq + i, GIC_TARGET(irq));
479 }
480 }
481 } else if (offset < 0x300) {
482 /* Interrupt Clear Pending. */
483 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
484 if (irq >= GIC_NIRQ)
485 goto bad_reg;
486 for (i = 0; i < 8; i++) {
487 /* ??? This currently clears the pending bit for all CPUs, even
488 for per-CPU interrupts. It's unclear whether this is the
489 corect behavior. */
490 if (value & (1 << i)) {
491 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
492 }
493 }
494 } else if (offset < 0x400) {
495 /* Interrupt Active. */
496 goto bad_reg;
497 } else if (offset < 0x800) {
498 /* Interrupt Priority. */
499 irq = (offset - 0x400) + GIC_BASE_IRQ;
500 if (irq >= GIC_NIRQ)
501 goto bad_reg;
502 if (irq < 32) {
503 s->priority1[irq][cpu] = value;
504 } else {
505 s->priority2[irq - 32] = value;
506 }
507 #ifndef NVIC
508 } else if (offset < 0xc00) {
509 /* Interrupt CPU Target. */
510 irq = (offset - 0x800) + GIC_BASE_IRQ;
511 if (irq >= GIC_NIRQ)
512 goto bad_reg;
513 if (irq < 29)
514 value = 0;
515 else if (irq < 32)
516 value = ALL_CPU_MASK;
517 s->irq_target[irq] = value & ALL_CPU_MASK;
518 } else if (offset < 0xf00) {
519 /* Interrupt Configuration. */
520 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
521 if (irq >= GIC_NIRQ)
522 goto bad_reg;
523 if (irq < 32)
524 value |= 0xaa;
525 for (i = 0; i < 4; i++) {
526 if (value & (1 << (i * 2))) {
527 GIC_SET_MODEL(irq + i);
528 } else {
529 GIC_CLEAR_MODEL(irq + i);
530 }
531 if (value & (2 << (i * 2))) {
532 GIC_SET_TRIGGER(irq + i);
533 } else {
534 GIC_CLEAR_TRIGGER(irq + i);
535 }
536 }
537 #endif
538 } else {
539 /* 0xf00 is only handled for 32-bit writes. */
540 goto bad_reg;
541 }
542 gic_update(s);
543 return;
544 bad_reg:
545 hw_error("gic_dist_writeb: Bad offset %x\n", (int)offset);
546 }
547
548 static void gic_dist_writew(void *opaque, target_phys_addr_t offset,
549 uint32_t value)
550 {
551 gic_dist_writeb(opaque, offset, value & 0xff);
552 gic_dist_writeb(opaque, offset + 1, value >> 8);
553 }
554
555 static void gic_dist_writel(void *opaque, target_phys_addr_t offset,
556 uint32_t value)
557 {
558 gic_state *s = (gic_state *)opaque;
559 #ifdef NVIC
560 uint32_t addr;
561 addr = offset;
562 if (addr < 0x100 || (addr > 0xd00 && addr != 0xf00)) {
563 nvic_writel(s, addr, value);
564 return;
565 }
566 #endif
567 if (offset == 0xf00) {
568 int cpu;
569 int irq;
570 int mask;
571
572 cpu = gic_get_current_cpu();
573 irq = value & 0x3ff;
574 switch ((value >> 24) & 3) {
575 case 0:
576 mask = (value >> 16) & ALL_CPU_MASK;
577 break;
578 case 1:
579 mask = ALL_CPU_MASK ^ (1 << cpu);
580 break;
581 case 2:
582 mask = 1 << cpu;
583 break;
584 default:
585 DPRINTF("Bad Soft Int target filter\n");
586 mask = ALL_CPU_MASK;
587 break;
588 }
589 GIC_SET_PENDING(irq, mask);
590 gic_update(s);
591 return;
592 }
593 gic_dist_writew(opaque, offset, value & 0xffff);
594 gic_dist_writew(opaque, offset + 2, value >> 16);
595 }
596
597 static const MemoryRegionOps gic_dist_ops = {
598 .old_mmio = {
599 .read = { gic_dist_readb, gic_dist_readw, gic_dist_readl, },
600 .write = { gic_dist_writeb, gic_dist_writew, gic_dist_writel, },
601 },
602 .endianness = DEVICE_NATIVE_ENDIAN,
603 };
604
605 #ifndef NVIC
606 static uint32_t gic_cpu_read(gic_state *s, int cpu, int offset)
607 {
608 switch (offset) {
609 case 0x00: /* Control */
610 return s->cpu_enabled[cpu];
611 case 0x04: /* Priority mask */
612 return s->priority_mask[cpu];
613 case 0x08: /* Binary Point */
614 /* ??? Not implemented. */
615 return 0;
616 case 0x0c: /* Acknowledge */
617 return gic_acknowledge_irq(s, cpu);
618 case 0x14: /* Running Priority */
619 return s->running_priority[cpu];
620 case 0x18: /* Highest Pending Interrupt */
621 return s->current_pending[cpu];
622 default:
623 hw_error("gic_cpu_read: Bad offset %x\n", (int)offset);
624 return 0;
625 }
626 }
627
628 static void gic_cpu_write(gic_state *s, int cpu, int offset, uint32_t value)
629 {
630 switch (offset) {
631 case 0x00: /* Control */
632 s->cpu_enabled[cpu] = (value & 1);
633 DPRINTF("CPU %d %sabled\n", cpu, s->cpu_enabled ? "En" : "Dis");
634 break;
635 case 0x04: /* Priority mask */
636 s->priority_mask[cpu] = (value & 0xff);
637 break;
638 case 0x08: /* Binary Point */
639 /* ??? Not implemented. */
640 break;
641 case 0x10: /* End Of Interrupt */
642 return gic_complete_irq(s, cpu, value & 0x3ff);
643 default:
644 hw_error("gic_cpu_write: Bad offset %x\n", (int)offset);
645 return;
646 }
647 gic_update(s);
648 }
649
650 /* Wrappers to read/write the GIC CPU interface for the current CPU */
651 static uint64_t gic_thiscpu_read(void *opaque, target_phys_addr_t addr,
652 unsigned size)
653 {
654 gic_state *s = (gic_state *)opaque;
655 return gic_cpu_read(s, gic_get_current_cpu(), addr & 0xff);
656 }
657
658 static void gic_thiscpu_write(void *opaque, target_phys_addr_t addr,
659 uint64_t value, unsigned size)
660 {
661 gic_state *s = (gic_state *)opaque;
662 gic_cpu_write(s, gic_get_current_cpu(), addr & 0xff, value);
663 }
664
665 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
666 * These just decode the opaque pointer into gic_state* + cpu id.
667 */
668 static uint64_t gic_do_cpu_read(void *opaque, target_phys_addr_t addr,
669 unsigned size)
670 {
671 gic_state **backref = (gic_state **)opaque;
672 gic_state *s = *backref;
673 int id = (backref - s->backref);
674 return gic_cpu_read(s, id, addr & 0xff);
675 }
676
677 static void gic_do_cpu_write(void *opaque, target_phys_addr_t addr,
678 uint64_t value, unsigned size)
679 {
680 gic_state **backref = (gic_state **)opaque;
681 gic_state *s = *backref;
682 int id = (backref - s->backref);
683 gic_cpu_write(s, id, addr & 0xff, value);
684 }
685
686 static const MemoryRegionOps gic_thiscpu_ops = {
687 .read = gic_thiscpu_read,
688 .write = gic_thiscpu_write,
689 .endianness = DEVICE_NATIVE_ENDIAN,
690 };
691
692 static const MemoryRegionOps gic_cpu_ops = {
693 .read = gic_do_cpu_read,
694 .write = gic_do_cpu_write,
695 .endianness = DEVICE_NATIVE_ENDIAN,
696 };
697 #endif
698
699 static void gic_reset(gic_state *s)
700 {
701 int i;
702 memset(s->irq_state, 0, GIC_NIRQ * sizeof(gic_irq_state));
703 for (i = 0 ; i < NUM_CPU(s); i++) {
704 s->priority_mask[i] = 0xf0;
705 s->current_pending[i] = 1023;
706 s->running_irq[i] = 1023;
707 s->running_priority[i] = 0x100;
708 #ifdef NVIC
709 /* The NVIC doesn't have per-cpu interfaces, so enable by default. */
710 s->cpu_enabled[i] = 1;
711 #else
712 s->cpu_enabled[i] = 0;
713 #endif
714 }
715 for (i = 0; i < 16; i++) {
716 GIC_SET_ENABLED(i, ALL_CPU_MASK);
717 GIC_SET_TRIGGER(i);
718 }
719 #ifdef NVIC
720 /* The NVIC is always enabled. */
721 s->enabled = 1;
722 #else
723 s->enabled = 0;
724 #endif
725 }
726
727 static void gic_save(QEMUFile *f, void *opaque)
728 {
729 gic_state *s = (gic_state *)opaque;
730 int i;
731 int j;
732
733 qemu_put_be32(f, s->enabled);
734 for (i = 0; i < NUM_CPU(s); i++) {
735 qemu_put_be32(f, s->cpu_enabled[i]);
736 for (j = 0; j < 32; j++)
737 qemu_put_be32(f, s->priority1[j][i]);
738 for (j = 0; j < GIC_NIRQ; j++)
739 qemu_put_be32(f, s->last_active[j][i]);
740 qemu_put_be32(f, s->priority_mask[i]);
741 qemu_put_be32(f, s->running_irq[i]);
742 qemu_put_be32(f, s->running_priority[i]);
743 qemu_put_be32(f, s->current_pending[i]);
744 }
745 for (i = 0; i < GIC_NIRQ - 32; i++) {
746 qemu_put_be32(f, s->priority2[i]);
747 }
748 for (i = 0; i < GIC_NIRQ; i++) {
749 #ifndef NVIC
750 qemu_put_be32(f, s->irq_target[i]);
751 #endif
752 qemu_put_byte(f, s->irq_state[i].enabled);
753 qemu_put_byte(f, s->irq_state[i].pending);
754 qemu_put_byte(f, s->irq_state[i].active);
755 qemu_put_byte(f, s->irq_state[i].level);
756 qemu_put_byte(f, s->irq_state[i].model);
757 qemu_put_byte(f, s->irq_state[i].trigger);
758 }
759 }
760
761 static int gic_load(QEMUFile *f, void *opaque, int version_id)
762 {
763 gic_state *s = (gic_state *)opaque;
764 int i;
765 int j;
766
767 if (version_id != 2)
768 return -EINVAL;
769
770 s->enabled = qemu_get_be32(f);
771 for (i = 0; i < NUM_CPU(s); i++) {
772 s->cpu_enabled[i] = qemu_get_be32(f);
773 for (j = 0; j < 32; j++)
774 s->priority1[j][i] = qemu_get_be32(f);
775 for (j = 0; j < GIC_NIRQ; j++)
776 s->last_active[j][i] = qemu_get_be32(f);
777 s->priority_mask[i] = qemu_get_be32(f);
778 s->running_irq[i] = qemu_get_be32(f);
779 s->running_priority[i] = qemu_get_be32(f);
780 s->current_pending[i] = qemu_get_be32(f);
781 }
782 for (i = 0; i < GIC_NIRQ - 32; i++) {
783 s->priority2[i] = qemu_get_be32(f);
784 }
785 for (i = 0; i < GIC_NIRQ; i++) {
786 #ifndef NVIC
787 s->irq_target[i] = qemu_get_be32(f);
788 #endif
789 s->irq_state[i].enabled = qemu_get_byte(f);
790 s->irq_state[i].pending = qemu_get_byte(f);
791 s->irq_state[i].active = qemu_get_byte(f);
792 s->irq_state[i].level = qemu_get_byte(f);
793 s->irq_state[i].model = qemu_get_byte(f);
794 s->irq_state[i].trigger = qemu_get_byte(f);
795 }
796
797 return 0;
798 }
799
800 #if NCPU > 1
801 static void gic_init(gic_state *s, int num_cpu)
802 #else
803 static void gic_init(gic_state *s)
804 #endif
805 {
806 int i;
807
808 #if NCPU > 1
809 s->num_cpu = num_cpu;
810 #endif
811 qdev_init_gpio_in(&s->busdev.qdev, gic_set_irq, GIC_NIRQ - 32);
812 for (i = 0; i < NUM_CPU(s); i++) {
813 sysbus_init_irq(&s->busdev, &s->parent_irq[i]);
814 }
815 memory_region_init_io(&s->iomem, &gic_dist_ops, s, "gic_dist", 0x1000);
816 #ifndef NVIC
817 /* Memory regions for the CPU interfaces (NVIC doesn't have these):
818 * a region for "CPU interface for this core", then a region for
819 * "CPU interface for core 0", "for core 1", ...
820 * NB that the memory region size of 0x100 applies for the 11MPCore
821 * and also cores following the GIC v1 spec (ie A9).
822 * GIC v2 defines a larger memory region (0x1000) so this will need
823 * to be extended when we implement A15.
824 */
825 memory_region_init_io(&s->cpuiomem[0], &gic_thiscpu_ops, s,
826 "gic_cpu", 0x100);
827 for (i = 0; i < NUM_CPU(s); i++) {
828 s->backref[i] = s;
829 memory_region_init_io(&s->cpuiomem[i+1], &gic_cpu_ops, &s->backref[i],
830 "gic_cpu", 0x100);
831 }
832 #endif
833
834 gic_reset(s);
835 register_savevm(NULL, "arm_gic", -1, 2, gic_save, gic_load, s);
836 }