]> git.proxmox.com Git - qemu.git/blob - hw/arm_mptimer.c
acpi_piix4: Re-define PCI hotplug eject register read
[qemu.git] / hw / arm_mptimer.c
1 /*
2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Copyright (c) 2011 Linaro Limited
6 * Written by Paul Brook, Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "sysbus.h"
23 #include "qemu-timer.h"
24
25 /* This device implements the per-cpu private timer and watchdog block
26 * which is used in both the ARM11MPCore and Cortex-A9MP.
27 */
28
29 #define MAX_CPUS 4
30
31 /* State of a single timer or watchdog block */
32 typedef struct {
33 uint32_t count;
34 uint32_t load;
35 uint32_t control;
36 uint32_t status;
37 int64_t tick;
38 QEMUTimer *timer;
39 qemu_irq irq;
40 MemoryRegion iomem;
41 } timerblock;
42
43 typedef struct {
44 SysBusDevice busdev;
45 uint32_t num_cpu;
46 timerblock timerblock[MAX_CPUS * 2];
47 MemoryRegion iomem[2];
48 } arm_mptimer_state;
49
50 static inline int get_current_cpu(arm_mptimer_state *s)
51 {
52 if (cpu_single_env->cpu_index >= s->num_cpu) {
53 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
54 s->num_cpu, cpu_single_env->cpu_index);
55 }
56 return cpu_single_env->cpu_index;
57 }
58
59 static inline void timerblock_update_irq(timerblock *tb)
60 {
61 qemu_set_irq(tb->irq, tb->status);
62 }
63
64 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */
65 static inline uint32_t timerblock_scale(timerblock *tb)
66 {
67 return (((tb->control >> 8) & 0xff) + 1) * 10;
68 }
69
70 static void timerblock_reload(timerblock *tb, int restart)
71 {
72 if (tb->count == 0) {
73 return;
74 }
75 if (restart) {
76 tb->tick = qemu_get_clock_ns(vm_clock);
77 }
78 tb->tick += (int64_t)tb->count * timerblock_scale(tb);
79 qemu_mod_timer(tb->timer, tb->tick);
80 }
81
82 static void timerblock_tick(void *opaque)
83 {
84 timerblock *tb = (timerblock *)opaque;
85 tb->status = 1;
86 if (tb->control & 2) {
87 tb->count = tb->load;
88 timerblock_reload(tb, 0);
89 } else {
90 tb->count = 0;
91 }
92 timerblock_update_irq(tb);
93 }
94
95 static uint64_t timerblock_read(void *opaque, target_phys_addr_t addr,
96 unsigned size)
97 {
98 timerblock *tb = (timerblock *)opaque;
99 int64_t val;
100 switch (addr) {
101 case 0: /* Load */
102 return tb->load;
103 case 4: /* Counter. */
104 if (((tb->control & 1) == 0) || (tb->count == 0)) {
105 return 0;
106 }
107 /* Slow and ugly, but hopefully won't happen too often. */
108 val = tb->tick - qemu_get_clock_ns(vm_clock);
109 val /= timerblock_scale(tb);
110 if (val < 0) {
111 val = 0;
112 }
113 return val;
114 case 8: /* Control. */
115 return tb->control;
116 case 12: /* Interrupt status. */
117 return tb->status;
118 default:
119 return 0;
120 }
121 }
122
123 static void timerblock_write(void *opaque, target_phys_addr_t addr,
124 uint64_t value, unsigned size)
125 {
126 timerblock *tb = (timerblock *)opaque;
127 int64_t old;
128 switch (addr) {
129 case 0: /* Load */
130 tb->load = value;
131 /* Fall through. */
132 case 4: /* Counter. */
133 if ((tb->control & 1) && tb->count) {
134 /* Cancel the previous timer. */
135 qemu_del_timer(tb->timer);
136 }
137 tb->count = value;
138 if (tb->control & 1) {
139 timerblock_reload(tb, 1);
140 }
141 break;
142 case 8: /* Control. */
143 old = tb->control;
144 tb->control = value;
145 if (((old & 1) == 0) && (value & 1)) {
146 if (tb->count == 0 && (tb->control & 2)) {
147 tb->count = tb->load;
148 }
149 timerblock_reload(tb, 1);
150 }
151 break;
152 case 12: /* Interrupt status. */
153 tb->status &= ~value;
154 timerblock_update_irq(tb);
155 break;
156 }
157 }
158
159 /* Wrapper functions to implement the "read timer/watchdog for
160 * the current CPU" memory regions.
161 */
162 static uint64_t arm_thistimer_read(void *opaque, target_phys_addr_t addr,
163 unsigned size)
164 {
165 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
166 int id = get_current_cpu(s);
167 return timerblock_read(&s->timerblock[id * 2], addr, size);
168 }
169
170 static void arm_thistimer_write(void *opaque, target_phys_addr_t addr,
171 uint64_t value, unsigned size)
172 {
173 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
174 int id = get_current_cpu(s);
175 timerblock_write(&s->timerblock[id * 2], addr, value, size);
176 }
177
178 static uint64_t arm_thiswdog_read(void *opaque, target_phys_addr_t addr,
179 unsigned size)
180 {
181 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
182 int id = get_current_cpu(s);
183 return timerblock_read(&s->timerblock[id * 2 + 1], addr, size);
184 }
185
186 static void arm_thiswdog_write(void *opaque, target_phys_addr_t addr,
187 uint64_t value, unsigned size)
188 {
189 arm_mptimer_state *s = (arm_mptimer_state *)opaque;
190 int id = get_current_cpu(s);
191 timerblock_write(&s->timerblock[id * 2 + 1], addr, value, size);
192 }
193
194 static const MemoryRegionOps arm_thistimer_ops = {
195 .read = arm_thistimer_read,
196 .write = arm_thistimer_write,
197 .valid = {
198 .min_access_size = 4,
199 .max_access_size = 4,
200 },
201 .endianness = DEVICE_NATIVE_ENDIAN,
202 };
203
204 static const MemoryRegionOps arm_thiswdog_ops = {
205 .read = arm_thiswdog_read,
206 .write = arm_thiswdog_write,
207 .valid = {
208 .min_access_size = 4,
209 .max_access_size = 4,
210 },
211 .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213
214 static const MemoryRegionOps timerblock_ops = {
215 .read = timerblock_read,
216 .write = timerblock_write,
217 .valid = {
218 .min_access_size = 4,
219 .max_access_size = 4,
220 },
221 .endianness = DEVICE_NATIVE_ENDIAN,
222 };
223
224 static void timerblock_reset(timerblock *tb)
225 {
226 tb->count = 0;
227 tb->load = 0;
228 tb->control = 0;
229 tb->status = 0;
230 tb->tick = 0;
231 }
232
233 static void arm_mptimer_reset(DeviceState *dev)
234 {
235 arm_mptimer_state *s =
236 FROM_SYSBUS(arm_mptimer_state, sysbus_from_qdev(dev));
237 int i;
238 /* We reset every timer in the array, not just the ones we're using,
239 * because vmsave will look at every array element.
240 */
241 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
242 timerblock_reset(&s->timerblock[i]);
243 }
244 }
245
246 static int arm_mptimer_init(SysBusDevice *dev)
247 {
248 arm_mptimer_state *s = FROM_SYSBUS(arm_mptimer_state, dev);
249 int i;
250 if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
251 hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
252 }
253 /* We implement one timer and one watchdog block per CPU, and
254 * expose multiple MMIO regions:
255 * * region 0 is "timer for this core"
256 * * region 1 is "watchdog for this core"
257 * * region 2 is "timer for core 0"
258 * * region 3 is "watchdog for core 0"
259 * * region 4 is "timer for core 1"
260 * * region 5 is "watchdog for core 1"
261 * and so on.
262 * The outgoing interrupt lines are
263 * * timer for core 0
264 * * watchdog for core 0
265 * * timer for core 1
266 * * watchdog for core 1
267 * and so on.
268 */
269 memory_region_init_io(&s->iomem[0], &arm_thistimer_ops, s,
270 "arm_mptimer_timer", 0x20);
271 sysbus_init_mmio(dev, &s->iomem[0]);
272 memory_region_init_io(&s->iomem[1], &arm_thiswdog_ops, s,
273 "arm_mptimer_wdog", 0x20);
274 sysbus_init_mmio(dev, &s->iomem[1]);
275 for (i = 0; i < (s->num_cpu * 2); i++) {
276 timerblock *tb = &s->timerblock[i];
277 tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
278 sysbus_init_irq(dev, &tb->irq);
279 memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
280 "arm_mptimer_timerblock", 0x20);
281 sysbus_init_mmio(dev, &tb->iomem);
282 }
283
284 return 0;
285 }
286
287 static const VMStateDescription vmstate_timerblock = {
288 .name = "arm_mptimer_timerblock",
289 .version_id = 1,
290 .minimum_version_id = 1,
291 .fields = (VMStateField[]) {
292 VMSTATE_UINT32(count, timerblock),
293 VMSTATE_UINT32(load, timerblock),
294 VMSTATE_UINT32(control, timerblock),
295 VMSTATE_UINT32(status, timerblock),
296 VMSTATE_INT64(tick, timerblock),
297 VMSTATE_END_OF_LIST()
298 }
299 };
300
301 static const VMStateDescription vmstate_arm_mptimer = {
302 .name = "arm_mptimer",
303 .version_id = 1,
304 .minimum_version_id = 1,
305 .fields = (VMStateField[]) {
306 VMSTATE_STRUCT_ARRAY(timerblock, arm_mptimer_state, (MAX_CPUS * 2),
307 1, vmstate_timerblock, timerblock),
308 VMSTATE_END_OF_LIST()
309 }
310 };
311
312 static Property arm_mptimer_properties[] = {
313 DEFINE_PROP_UINT32("num-cpu", arm_mptimer_state, num_cpu, 0),
314 DEFINE_PROP_END_OF_LIST()
315 };
316
317 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
318 {
319 DeviceClass *dc = DEVICE_CLASS(klass);
320 SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
321
322 sbc->init = arm_mptimer_init;
323 dc->vmsd = &vmstate_arm_mptimer;
324 dc->reset = arm_mptimer_reset;
325 dc->no_user = 1;
326 dc->props = arm_mptimer_properties;
327 }
328
329 static TypeInfo arm_mptimer_info = {
330 .name = "arm_mptimer",
331 .parent = TYPE_SYS_BUS_DEVICE,
332 .instance_size = sizeof(arm_mptimer_state),
333 .class_init = arm_mptimer_class_init,
334 };
335
336 static void arm_mptimer_register_types(void)
337 {
338 type_register_static(&arm_mptimer_info);
339 }
340
341 type_init(arm_mptimer_register_types)