]> git.proxmox.com Git - qemu.git/blob - hw/arm_timer.c
SCSI divide capacity by s->cluster_size (Rik van Riel)
[qemu.git] / hw / arm_timer.c
1 /*
2 * ARM PrimeCell Timer modules.
3 *
4 * Copyright (c) 2005-2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GPL.
8 */
9
10 #include "hw.h"
11 #include "qemu-timer.h"
12 #include "primecell.h"
13
14 /* Common timer implementation. */
15
16 #define TIMER_CTRL_ONESHOT (1 << 0)
17 #define TIMER_CTRL_32BIT (1 << 1)
18 #define TIMER_CTRL_DIV1 (0 << 2)
19 #define TIMER_CTRL_DIV16 (1 << 2)
20 #define TIMER_CTRL_DIV256 (2 << 2)
21 #define TIMER_CTRL_IE (1 << 5)
22 #define TIMER_CTRL_PERIODIC (1 << 6)
23 #define TIMER_CTRL_ENABLE (1 << 7)
24
25 typedef struct {
26 ptimer_state *timer;
27 uint32_t control;
28 uint32_t limit;
29 int freq;
30 int int_level;
31 qemu_irq irq;
32 } arm_timer_state;
33
34 /* Check all active timers, and schedule the next timer interrupt. */
35
36 static void arm_timer_update(arm_timer_state *s)
37 {
38 /* Update interrupts. */
39 if (s->int_level && (s->control & TIMER_CTRL_IE)) {
40 qemu_irq_raise(s->irq);
41 } else {
42 qemu_irq_lower(s->irq);
43 }
44 }
45
46 static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
47 {
48 arm_timer_state *s = (arm_timer_state *)opaque;
49
50 switch (offset >> 2) {
51 case 0: /* TimerLoad */
52 case 6: /* TimerBGLoad */
53 return s->limit;
54 case 1: /* TimerValue */
55 return ptimer_get_count(s->timer);
56 case 2: /* TimerControl */
57 return s->control;
58 case 4: /* TimerRIS */
59 return s->int_level;
60 case 5: /* TimerMIS */
61 if ((s->control & TIMER_CTRL_IE) == 0)
62 return 0;
63 return s->int_level;
64 default:
65 cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
66 (int)offset);
67 return 0;
68 }
69 }
70
71 /* Reset the timer limit after settings have changed. */
72 static void arm_timer_recalibrate(arm_timer_state *s, int reload)
73 {
74 uint32_t limit;
75
76 if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
77 /* Free running. */
78 if (s->control & TIMER_CTRL_32BIT)
79 limit = 0xffffffff;
80 else
81 limit = 0xffff;
82 } else {
83 /* Periodic. */
84 limit = s->limit;
85 }
86 ptimer_set_limit(s->timer, limit, reload);
87 }
88
89 static void arm_timer_write(void *opaque, target_phys_addr_t offset,
90 uint32_t value)
91 {
92 arm_timer_state *s = (arm_timer_state *)opaque;
93 int freq;
94
95 switch (offset >> 2) {
96 case 0: /* TimerLoad */
97 s->limit = value;
98 arm_timer_recalibrate(s, 1);
99 break;
100 case 1: /* TimerValue */
101 /* ??? Linux seems to want to write to this readonly register.
102 Ignore it. */
103 break;
104 case 2: /* TimerControl */
105 if (s->control & TIMER_CTRL_ENABLE) {
106 /* Pause the timer if it is running. This may cause some
107 inaccuracy dure to rounding, but avoids a whole lot of other
108 messyness. */
109 ptimer_stop(s->timer);
110 }
111 s->control = value;
112 freq = s->freq;
113 /* ??? Need to recalculate expiry time after changing divisor. */
114 switch ((value >> 2) & 3) {
115 case 1: freq >>= 4; break;
116 case 2: freq >>= 8; break;
117 }
118 arm_timer_recalibrate(s, 0);
119 ptimer_set_freq(s->timer, freq);
120 if (s->control & TIMER_CTRL_ENABLE) {
121 /* Restart the timer if still enabled. */
122 ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
123 }
124 break;
125 case 3: /* TimerIntClr */
126 s->int_level = 0;
127 break;
128 case 6: /* TimerBGLoad */
129 s->limit = value;
130 arm_timer_recalibrate(s, 0);
131 break;
132 default:
133 cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
134 (int)offset);
135 }
136 arm_timer_update(s);
137 }
138
139 static void arm_timer_tick(void *opaque)
140 {
141 arm_timer_state *s = (arm_timer_state *)opaque;
142 s->int_level = 1;
143 arm_timer_update(s);
144 }
145
146 static void arm_timer_save(QEMUFile *f, void *opaque)
147 {
148 arm_timer_state *s = (arm_timer_state *)opaque;
149 qemu_put_be32(f, s->control);
150 qemu_put_be32(f, s->limit);
151 qemu_put_be32(f, s->int_level);
152 qemu_put_ptimer(f, s->timer);
153 }
154
155 static int arm_timer_load(QEMUFile *f, void *opaque, int version_id)
156 {
157 arm_timer_state *s = (arm_timer_state *)opaque;
158
159 if (version_id != 1)
160 return -EINVAL;
161
162 s->control = qemu_get_be32(f);
163 s->limit = qemu_get_be32(f);
164 s->int_level = qemu_get_be32(f);
165 qemu_get_ptimer(f, s->timer);
166 return 0;
167 }
168
169 static void *arm_timer_init(uint32_t freq, qemu_irq irq)
170 {
171 arm_timer_state *s;
172 QEMUBH *bh;
173
174 s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
175 s->irq = irq;
176 s->freq = freq;
177 s->control = TIMER_CTRL_IE;
178
179 bh = qemu_bh_new(arm_timer_tick, s);
180 s->timer = ptimer_init(bh);
181 register_savevm("arm_timer", -1, 1, arm_timer_save, arm_timer_load, s);
182 return s;
183 }
184
185 /* ARM PrimeCell SP804 dual timer module.
186 Docs for this device don't seem to be publicly available. This
187 implementation is based on guesswork, the linux kernel sources and the
188 Integrator/CP timer modules. */
189
190 typedef struct {
191 void *timer[2];
192 int level[2];
193 qemu_irq irq;
194 } sp804_state;
195
196 /* Merge the IRQs from the two component devices. */
197 static void sp804_set_irq(void *opaque, int irq, int level)
198 {
199 sp804_state *s = (sp804_state *)opaque;
200
201 s->level[irq] = level;
202 qemu_set_irq(s->irq, s->level[0] || s->level[1]);
203 }
204
205 static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
206 {
207 sp804_state *s = (sp804_state *)opaque;
208
209 /* ??? Don't know the PrimeCell ID for this device. */
210 if (offset < 0x20) {
211 return arm_timer_read(s->timer[0], offset);
212 } else {
213 return arm_timer_read(s->timer[1], offset - 0x20);
214 }
215 }
216
217 static void sp804_write(void *opaque, target_phys_addr_t offset,
218 uint32_t value)
219 {
220 sp804_state *s = (sp804_state *)opaque;
221
222 if (offset < 0x20) {
223 arm_timer_write(s->timer[0], offset, value);
224 } else {
225 arm_timer_write(s->timer[1], offset - 0x20, value);
226 }
227 }
228
229 static CPUReadMemoryFunc *sp804_readfn[] = {
230 sp804_read,
231 sp804_read,
232 sp804_read
233 };
234
235 static CPUWriteMemoryFunc *sp804_writefn[] = {
236 sp804_write,
237 sp804_write,
238 sp804_write
239 };
240
241 static void sp804_save(QEMUFile *f, void *opaque)
242 {
243 sp804_state *s = (sp804_state *)opaque;
244 qemu_put_be32(f, s->level[0]);
245 qemu_put_be32(f, s->level[1]);
246 }
247
248 static int sp804_load(QEMUFile *f, void *opaque, int version_id)
249 {
250 sp804_state *s = (sp804_state *)opaque;
251
252 if (version_id != 1)
253 return -EINVAL;
254
255 s->level[0] = qemu_get_be32(f);
256 s->level[1] = qemu_get_be32(f);
257 return 0;
258 }
259
260 void sp804_init(uint32_t base, qemu_irq irq)
261 {
262 int iomemtype;
263 sp804_state *s;
264 qemu_irq *qi;
265
266 s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
267 qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
268 s->irq = irq;
269 /* ??? The timers are actually configurable between 32kHz and 1MHz, but
270 we don't implement that. */
271 s->timer[0] = arm_timer_init(1000000, qi[0]);
272 s->timer[1] = arm_timer_init(1000000, qi[1]);
273 iomemtype = cpu_register_io_memory(0, sp804_readfn,
274 sp804_writefn, s);
275 cpu_register_physical_memory(base, 0x00001000, iomemtype);
276 register_savevm("sp804", -1, 1, sp804_save, sp804_load, s);
277 }
278
279
280 /* Integrator/CP timer module. */
281
282 typedef struct {
283 void *timer[3];
284 } icp_pit_state;
285
286 static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
287 {
288 icp_pit_state *s = (icp_pit_state *)opaque;
289 int n;
290
291 /* ??? Don't know the PrimeCell ID for this device. */
292 n = offset >> 8;
293 if (n > 3)
294 cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
295
296 return arm_timer_read(s->timer[n], offset & 0xff);
297 }
298
299 static void icp_pit_write(void *opaque, target_phys_addr_t offset,
300 uint32_t value)
301 {
302 icp_pit_state *s = (icp_pit_state *)opaque;
303 int n;
304
305 n = offset >> 8;
306 if (n > 3)
307 cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
308
309 arm_timer_write(s->timer[n], offset & 0xff, value);
310 }
311
312
313 static CPUReadMemoryFunc *icp_pit_readfn[] = {
314 icp_pit_read,
315 icp_pit_read,
316 icp_pit_read
317 };
318
319 static CPUWriteMemoryFunc *icp_pit_writefn[] = {
320 icp_pit_write,
321 icp_pit_write,
322 icp_pit_write
323 };
324
325 void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
326 {
327 int iomemtype;
328 icp_pit_state *s;
329
330 s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
331 /* Timer 0 runs at the system clock speed (40MHz). */
332 s->timer[0] = arm_timer_init(40000000, pic[irq]);
333 /* The other two timers run at 1MHz. */
334 s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
335 s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
336
337 iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
338 icp_pit_writefn, s);
339 cpu_register_physical_memory(base, 0x00001000, iomemtype);
340 /* This device has no state to save/restore. The component timers will
341 save themselves. */
342 }