]> git.proxmox.com Git - qemu.git/blob - hw/axis_dev88.c
ETRAX: Add a model for the axis devboard88 machine.
[qemu.git] / hw / axis_dev88.c
1 /*
2 * QEMU model for the AXIS devboard 88.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <time.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "net.h"
28 #include "flash.h"
29 #include "sysemu.h"
30 #include "devices.h"
31 #include "boards.h"
32
33 #include "etraxfs.h"
34
35 #define D(x)
36 #define DNAND(x)
37
38 struct nand_state_t
39 {
40 struct nand_flash_s *nand;
41 unsigned int rdy:1;
42 unsigned int ale:1;
43 unsigned int cle:1;
44 unsigned int ce:1;
45 };
46
47 static struct nand_state_t nand_state;
48 static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
49 {
50 struct nand_state_t *s = opaque;
51 uint32_t r;
52 int rdy;
53
54 r = nand_getio(s->nand);
55 nand_getpins(s->nand, &rdy);
56 s->rdy = rdy;
57
58 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
59 return r;
60 }
61
62 static void
63 nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
64 {
65 struct nand_state_t *s = opaque;
66 int rdy;
67
68 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
69 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
70 nand_setio(s->nand, value);
71 nand_getpins(s->nand, &rdy);
72 s->rdy = rdy;
73 }
74
75 static CPUReadMemoryFunc *nand_read[] = {
76 &nand_readl,
77 &nand_readl,
78 &nand_readl,
79 };
80
81 static CPUWriteMemoryFunc *nand_write[] = {
82 &nand_writel,
83 &nand_writel,
84 &nand_writel,
85 };
86
87 #define RW_PA_DOUT 0
88 #define R_PA_DIN 1
89 #define RW_PA_OE 2
90 struct gpio_state_t
91 {
92 struct nand_state_t *nand;
93 uint32_t regs[0x5c / 4];
94 } gpio_state;
95
96 static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
97 {
98 struct gpio_state_t *s = opaque;
99 uint32_t r = 0;
100
101 addr >>= 2;
102 switch (addr)
103 {
104 case R_PA_DIN:
105 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
106
107 /* Encode pins from the nand. */
108 r |= s->nand->rdy << 7;
109 break;
110 default:
111 r = s->regs[addr];
112 break;
113 }
114 return r;
115 D(printf("%s %x=%x\n", __func__, addr, r));
116 }
117
118 static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
119 {
120 struct gpio_state_t *s = opaque;
121 D(printf("%s %x=%x\n", __func__, addr, value));
122
123 addr >>= 2;
124 switch (addr)
125 {
126 case RW_PA_DOUT:
127 /* Decode nand pins. */
128 s->nand->ale = !!(value & (1 << 6));
129 s->nand->cle = !!(value & (1 << 5));
130 s->nand->ce = !!(value & (1 << 4));
131
132 s->regs[addr] = value;
133 break;
134 default:
135 s->regs[addr] = value;
136 break;
137 }
138 }
139
140 static CPUReadMemoryFunc *gpio_read[] = {
141 NULL, NULL,
142 &gpio_readl,
143 };
144
145 static CPUWriteMemoryFunc *gpio_write[] = {
146 NULL, NULL,
147 &gpio_writel,
148 };
149
150 #define INTMEM_SIZE (128 * 1024)
151
152 static uint32_t bootstrap_pc;
153 static void main_cpu_reset(void *opaque)
154 {
155 CPUState *env = opaque;
156 cpu_reset(env);
157
158 env->pc = bootstrap_pc;
159 }
160
161 static
162 void axisdev88_init (ram_addr_t ram_size, int vga_ram_size,
163 const char *boot_device, DisplayState *ds,
164 const char *kernel_filename, const char *kernel_cmdline,
165 const char *initrd_filename, const char *cpu_model)
166 {
167 CPUState *env;
168 struct etraxfs_pic *pic;
169 void *etraxfs_dmac;
170 struct etraxfs_dma_client *eth[2] = {NULL, NULL};
171 int kernel_size;
172 int i;
173 int nand_regs;
174 int gpio_regs;
175 ram_addr_t phys_ram;
176 ram_addr_t phys_intmem;
177
178 /* init CPUs */
179 if (cpu_model == NULL) {
180 cpu_model = "crisv32";
181 }
182 env = cpu_init(cpu_model);
183 qemu_register_reset(main_cpu_reset, env);
184
185 /* allocate RAM */
186 phys_ram = qemu_ram_alloc(ram_size);
187 cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
188
189 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
190 internal memory. */
191 phys_intmem = qemu_ram_alloc(INTMEM_SIZE);
192 cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
193 phys_intmem | IO_MEM_RAM);
194
195
196 /* Attach a NAND flash to CS1. */
197 nand_state.nand = nand_init(NAND_MFR_STMICRO, 0xf1);
198 nand_regs = cpu_register_io_memory(0, nand_read, nand_write, &nand_state);
199 cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
200
201 gpio_state.nand = &nand_state;
202 gpio_regs = cpu_register_io_memory(0, gpio_read, gpio_write, &gpio_state);
203 cpu_register_physical_memory(0x3001a000, 0x1c, gpio_regs);
204
205
206 pic = etraxfs_pic_init(env, 0x3001c000);
207 etraxfs_dmac = etraxfs_dmac_init(env, 0x30000000, 10);
208 for (i = 0; i < 10; i++) {
209 /* On ETRAX, odd numbered channels are inputs. */
210 etraxfs_dmac_connect(etraxfs_dmac, i, pic->irq + 7 + i, i & 1);
211 }
212
213 /* Add the two ethernet blocks. */
214 eth[0] = etraxfs_eth_init(&nd_table[0], env, pic->irq + 25, 0x30034000);
215 if (nb_nics > 1)
216 eth[1] = etraxfs_eth_init(&nd_table[1], env, pic->irq + 26, 0x30036000);
217
218 /* The DMA Connector block is missing, hardwire things for now. */
219 etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]);
220 etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1);
221 if (eth[1]) {
222 etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]);
223 etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1);
224 }
225
226 /* 2 timers. */
227 etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3001e000);
228 etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3005e000);
229
230 for (i = 0; i < 4; i++) {
231 if (serial_hds[i]) {
232 etraxfs_ser_init(env, pic->irq + 0x14 + i,
233 serial_hds[i], 0x30026000 + i * 0x2000);
234 }
235 }
236
237 if (kernel_filename) {
238 uint64_t entry, high;
239 int kcmdline_len;
240
241 /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis
242 devboard SDK. */
243 kernel_size = load_elf(kernel_filename, -0x80000000LL,
244 &entry, NULL, &high);
245 bootstrap_pc = entry;
246 if (kernel_size < 0) {
247 /* Takes a kimage from the axis devboard SDK. */
248 kernel_size = load_image(kernel_filename, phys_ram_base + 0x4000);
249 bootstrap_pc = 0x40004000;
250 env->regs[9] = 0x40004000 + kernel_size;
251 }
252 env->regs[8] = 0x56902387; /* RAM init magic. */
253
254 if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
255 if (kcmdline_len > 256) {
256 fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n");
257 exit(1);
258 }
259 pstrcpy_targphys(high, 256, kernel_cmdline);
260 /* Let the kernel know we are modifying the cmdline. */
261 env->regs[10] = 0x87109563;
262 env->regs[11] = high;
263 }
264 }
265 env->pc = bootstrap_pc;
266
267 printf ("pc =%x\n", env->pc);
268 printf ("ram size =%ld\n", ram_size);
269 }
270
271 QEMUMachine axisdev88_machine = {
272 .name = "axis-dev88",
273 .desc = "AXIS devboard 88",
274 .init = axisdev88_init,
275 .ram_require = 0x8000000,
276 };