]> git.proxmox.com Git - qemu.git/blob - hw/block/m25p80.c
qom: aggressively optimize qom casting
[qemu.git] / hw / block / m25p80.c
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "hw/hw.h"
25 #include "sysemu/blockdev.h"
26 #include "hw/ssi.h"
27
28 #ifndef M25P80_ERR_DEBUG
29 #define M25P80_ERR_DEBUG 0
30 #endif
31
32 #define DB_PRINT_L(level, ...) do { \
33 if (M25P80_ERR_DEBUG > (level)) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } \
37 } while (0);
38
39 /* Fields for FlashPartInfo->flags */
40
41 /* erase capabilities */
42 #define ER_4K 1
43 #define ER_32K 2
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
46 */
47 #define WR_1 0x100
48
49 typedef struct FlashPartInfo {
50 const char *part_name;
51 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52 uint32_t jedec;
53 /* extended jedec code */
54 uint16_t ext_jedec;
55 /* there is confusion between manufacturers as to what a sector is. In this
56 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
57 * command (opcode 0xd8).
58 */
59 uint32_t sector_size;
60 uint32_t n_sectors;
61 uint32_t page_size;
62 uint8_t flags;
63 } FlashPartInfo;
64
65 /* adapted from linux */
66
67 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
68 .part_name = (_part_name),\
69 .jedec = (_jedec),\
70 .ext_jedec = (_ext_jedec),\
71 .sector_size = (_sector_size),\
72 .n_sectors = (_n_sectors),\
73 .page_size = 256,\
74 .flags = (_flags),\
75
76 #define JEDEC_NUMONYX 0x20
77 #define JEDEC_WINBOND 0xEF
78 #define JEDEC_SPANSION 0x01
79
80 static const FlashPartInfo known_devices[] = {
81 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
82 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
83 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
84
85 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
86 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
87 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
88
89 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
90 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
91 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
92 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
93
94 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
95
96 /* EON -- en25xxx */
97 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
98 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
99 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
100 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
101 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
102
103 /* GigaDevice */
104 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
105 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
106
107 /* Intel/Numonyx -- xxxs33b */
108 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
109 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
110 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
111 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
112
113 /* Macronix */
114 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
115 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
116 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
117 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
118 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
119 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
120 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
121 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
122 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
123 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
124
125 /* Micron */
126 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, 0) },
127 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, 0) },
128 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
129
130 /* Spansion -- single (large) sector size only, at least
131 * for the chips listed here (without boot sectors).
132 */
133 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
134 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
135 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
136 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
137 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
138 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
139 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
140 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
141 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
142 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
143 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
144 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
145 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
146 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
147 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
148 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
149 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
150
151 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
152 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
153 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
154 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
155 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
156 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
157 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
158 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
159 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
160
161 /* ST Microelectronics -- newer production may have feature updates */
162 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
163 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
164 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
165 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
166 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
167 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
168 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
169 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
170 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
171 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
172
173 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
174 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
175 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
176
177 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
178 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
179 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
180
181 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
182 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
183 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
184 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
185
186 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
187 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
188 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
189 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
190 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
191 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
192 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
193 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
194 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
195 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
196 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
197 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
198 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
199 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
200
201 /* Numonyx -- n25q128 */
202 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
203 };
204
205 typedef enum {
206 NOP = 0,
207 WRSR = 0x1,
208 WRDI = 0x4,
209 RDSR = 0x5,
210 WREN = 0x6,
211 JEDEC_READ = 0x9f,
212 BULK_ERASE = 0xc7,
213
214 READ = 0x3,
215 FAST_READ = 0xb,
216 DOR = 0x3b,
217 QOR = 0x6b,
218 DIOR = 0xbb,
219 QIOR = 0xeb,
220
221 PP = 0x2,
222 DPP = 0xa2,
223 QPP = 0x32,
224
225 ERASE_4K = 0x20,
226 ERASE_32K = 0x52,
227 ERASE_SECTOR = 0xd8,
228 } FlashCMD;
229
230 typedef enum {
231 STATE_IDLE,
232 STATE_PAGE_PROGRAM,
233 STATE_READ,
234 STATE_COLLECTING_DATA,
235 STATE_READING_DATA,
236 } CMDState;
237
238 typedef struct Flash {
239 SSISlave ssidev;
240 uint32_t r;
241
242 BlockDriverState *bdrv;
243
244 uint8_t *storage;
245 uint32_t size;
246 int page_size;
247
248 uint8_t state;
249 uint8_t data[16];
250 uint32_t len;
251 uint32_t pos;
252 uint8_t needed_bytes;
253 uint8_t cmd_in_progress;
254 uint64_t cur_addr;
255 bool write_enable;
256
257 int64_t dirty_page;
258
259 const FlashPartInfo *pi;
260
261 } Flash;
262
263 typedef struct M25P80Class {
264 SSISlaveClass parent_class;
265 FlashPartInfo *pi;
266 } M25P80Class;
267
268 #define TYPE_M25P80 "m25p80-generic"
269 #define M25P80(obj) \
270 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
271 #define M25P80_CLASS(klass) \
272 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
273 #define M25P80_GET_CLASS(obj) \
274 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
275
276 static void bdrv_sync_complete(void *opaque, int ret)
277 {
278 /* do nothing. Masters do not directly interact with the backing store,
279 * only the working copy so no mutexing required.
280 */
281 }
282
283 static void flash_sync_page(Flash *s, int page)
284 {
285 if (s->bdrv) {
286 int bdrv_sector, nb_sectors;
287 QEMUIOVector iov;
288
289 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
290 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
291 qemu_iovec_init(&iov, 1);
292 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
293 nb_sectors * BDRV_SECTOR_SIZE);
294 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
295 bdrv_sync_complete, NULL);
296 }
297 }
298
299 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
300 {
301 int64_t start, end, nb_sectors;
302 QEMUIOVector iov;
303
304 if (!s->bdrv) {
305 return;
306 }
307
308 assert(!(len % BDRV_SECTOR_SIZE));
309 start = off / BDRV_SECTOR_SIZE;
310 end = (off + len) / BDRV_SECTOR_SIZE;
311 nb_sectors = end - start;
312 qemu_iovec_init(&iov, 1);
313 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
314 nb_sectors * BDRV_SECTOR_SIZE);
315 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
316 }
317
318 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
319 {
320 uint32_t len;
321 uint8_t capa_to_assert = 0;
322
323 switch (cmd) {
324 case ERASE_4K:
325 len = 4 << 10;
326 capa_to_assert = ER_4K;
327 break;
328 case ERASE_32K:
329 len = 32 << 10;
330 capa_to_assert = ER_32K;
331 break;
332 case ERASE_SECTOR:
333 len = s->pi->sector_size;
334 break;
335 case BULK_ERASE:
336 len = s->size;
337 break;
338 default:
339 abort();
340 }
341
342 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
343 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
344 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
345 " device\n", len);
346 }
347
348 if (!s->write_enable) {
349 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
350 return;
351 }
352 memset(s->storage + offset, 0xff, len);
353 flash_sync_area(s, offset, len);
354 }
355
356 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
357 {
358 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
359 flash_sync_page(s, s->dirty_page);
360 s->dirty_page = newpage;
361 }
362 }
363
364 static inline
365 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
366 {
367 int64_t page = addr / s->pi->page_size;
368 uint8_t prev = s->storage[s->cur_addr];
369
370 if (!s->write_enable) {
371 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
372 }
373
374 if ((prev ^ data) & data) {
375 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
376 " -> %" PRIx8 "\n", addr, prev, data);
377 }
378
379 if (s->pi->flags & WR_1) {
380 s->storage[s->cur_addr] = data;
381 } else {
382 s->storage[s->cur_addr] &= data;
383 }
384
385 flash_sync_dirty(s, page);
386 s->dirty_page = page;
387 }
388
389 static void complete_collecting_data(Flash *s)
390 {
391 s->cur_addr = s->data[0] << 16;
392 s->cur_addr |= s->data[1] << 8;
393 s->cur_addr |= s->data[2];
394
395 s->state = STATE_IDLE;
396
397 switch (s->cmd_in_progress) {
398 case DPP:
399 case QPP:
400 case PP:
401 s->state = STATE_PAGE_PROGRAM;
402 break;
403 case READ:
404 case FAST_READ:
405 case DOR:
406 case QOR:
407 case DIOR:
408 case QIOR:
409 s->state = STATE_READ;
410 break;
411 case ERASE_4K:
412 case ERASE_32K:
413 case ERASE_SECTOR:
414 flash_erase(s, s->cur_addr, s->cmd_in_progress);
415 break;
416 case WRSR:
417 if (s->write_enable) {
418 s->write_enable = false;
419 }
420 break;
421 default:
422 break;
423 }
424 }
425
426 static void decode_new_cmd(Flash *s, uint32_t value)
427 {
428 s->cmd_in_progress = value;
429 DB_PRINT_L(0, "decoded new command:%x\n", value);
430
431 switch (value) {
432
433 case ERASE_4K:
434 case ERASE_32K:
435 case ERASE_SECTOR:
436 case READ:
437 case DPP:
438 case QPP:
439 case PP:
440 s->needed_bytes = 3;
441 s->pos = 0;
442 s->len = 0;
443 s->state = STATE_COLLECTING_DATA;
444 break;
445
446 case FAST_READ:
447 case DOR:
448 case QOR:
449 s->needed_bytes = 4;
450 s->pos = 0;
451 s->len = 0;
452 s->state = STATE_COLLECTING_DATA;
453 break;
454
455 case DIOR:
456 switch ((s->pi->jedec >> 16) & 0xFF) {
457 case JEDEC_WINBOND:
458 case JEDEC_SPANSION:
459 s->needed_bytes = 4;
460 break;
461 case JEDEC_NUMONYX:
462 default:
463 s->needed_bytes = 5;
464 }
465 s->pos = 0;
466 s->len = 0;
467 s->state = STATE_COLLECTING_DATA;
468 break;
469
470 case QIOR:
471 switch ((s->pi->jedec >> 16) & 0xFF) {
472 case JEDEC_WINBOND:
473 case JEDEC_SPANSION:
474 s->needed_bytes = 6;
475 break;
476 case JEDEC_NUMONYX:
477 default:
478 s->needed_bytes = 8;
479 }
480 s->pos = 0;
481 s->len = 0;
482 s->state = STATE_COLLECTING_DATA;
483 break;
484
485 case WRSR:
486 if (s->write_enable) {
487 s->needed_bytes = 1;
488 s->pos = 0;
489 s->len = 0;
490 s->state = STATE_COLLECTING_DATA;
491 }
492 break;
493
494 case WRDI:
495 s->write_enable = false;
496 break;
497 case WREN:
498 s->write_enable = true;
499 break;
500
501 case RDSR:
502 s->data[0] = (!!s->write_enable) << 1;
503 s->pos = 0;
504 s->len = 1;
505 s->state = STATE_READING_DATA;
506 break;
507
508 case JEDEC_READ:
509 DB_PRINT_L(0, "populated jedec code\n");
510 s->data[0] = (s->pi->jedec >> 16) & 0xff;
511 s->data[1] = (s->pi->jedec >> 8) & 0xff;
512 s->data[2] = s->pi->jedec & 0xff;
513 if (s->pi->ext_jedec) {
514 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
515 s->data[4] = s->pi->ext_jedec & 0xff;
516 s->len = 5;
517 } else {
518 s->len = 3;
519 }
520 s->pos = 0;
521 s->state = STATE_READING_DATA;
522 break;
523
524 case BULK_ERASE:
525 if (s->write_enable) {
526 DB_PRINT_L(0, "chip erase\n");
527 flash_erase(s, 0, BULK_ERASE);
528 } else {
529 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
530 "protect!\n");
531 }
532 break;
533 case NOP:
534 break;
535 default:
536 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
537 break;
538 }
539 }
540
541 static int m25p80_cs(SSISlave *ss, bool select)
542 {
543 Flash *s = FROM_SSI_SLAVE(Flash, ss);
544
545 if (select) {
546 s->len = 0;
547 s->pos = 0;
548 s->state = STATE_IDLE;
549 flash_sync_dirty(s, -1);
550 }
551
552 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
553
554 return 0;
555 }
556
557 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
558 {
559 Flash *s = FROM_SSI_SLAVE(Flash, ss);
560 uint32_t r = 0;
561
562 switch (s->state) {
563
564 case STATE_PAGE_PROGRAM:
565 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
566 s->cur_addr, (uint8_t)tx);
567 flash_write8(s, s->cur_addr, (uint8_t)tx);
568 s->cur_addr++;
569 break;
570
571 case STATE_READ:
572 r = s->storage[s->cur_addr];
573 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
574 (uint8_t)r);
575 s->cur_addr = (s->cur_addr + 1) % s->size;
576 break;
577
578 case STATE_COLLECTING_DATA:
579 s->data[s->len] = (uint8_t)tx;
580 s->len++;
581
582 if (s->len == s->needed_bytes) {
583 complete_collecting_data(s);
584 }
585 break;
586
587 case STATE_READING_DATA:
588 r = s->data[s->pos];
589 s->pos++;
590 if (s->pos == s->len) {
591 s->pos = 0;
592 s->state = STATE_IDLE;
593 }
594 break;
595
596 default:
597 case STATE_IDLE:
598 decode_new_cmd(s, (uint8_t)tx);
599 break;
600 }
601
602 return r;
603 }
604
605 static int m25p80_init(SSISlave *ss)
606 {
607 DriveInfo *dinfo;
608 Flash *s = FROM_SSI_SLAVE(Flash, ss);
609 M25P80Class *mc = M25P80_GET_CLASS(s);
610
611 s->pi = mc->pi;
612
613 s->size = s->pi->sector_size * s->pi->n_sectors;
614 s->dirty_page = -1;
615 s->storage = qemu_blockalign(s->bdrv, s->size);
616
617 dinfo = drive_get_next(IF_MTD);
618
619 if (dinfo && dinfo->bdrv) {
620 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
621 s->bdrv = dinfo->bdrv;
622 /* FIXME: Move to late init */
623 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
624 BDRV_SECTOR_SIZE))) {
625 fprintf(stderr, "Failed to initialize SPI flash!\n");
626 return 1;
627 }
628 } else {
629 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
630 memset(s->storage, 0xFF, s->size);
631 }
632
633 return 0;
634 }
635
636 static void m25p80_pre_save(void *opaque)
637 {
638 flash_sync_dirty((Flash *)opaque, -1);
639 }
640
641 static const VMStateDescription vmstate_m25p80 = {
642 .name = "xilinx_spi",
643 .version_id = 1,
644 .minimum_version_id = 1,
645 .minimum_version_id_old = 1,
646 .pre_save = m25p80_pre_save,
647 .fields = (VMStateField[]) {
648 VMSTATE_UINT8(state, Flash),
649 VMSTATE_UINT8_ARRAY(data, Flash, 16),
650 VMSTATE_UINT32(len, Flash),
651 VMSTATE_UINT32(pos, Flash),
652 VMSTATE_UINT8(needed_bytes, Flash),
653 VMSTATE_UINT8(cmd_in_progress, Flash),
654 VMSTATE_UINT64(cur_addr, Flash),
655 VMSTATE_BOOL(write_enable, Flash),
656 VMSTATE_END_OF_LIST()
657 }
658 };
659
660 static void m25p80_class_init(ObjectClass *klass, void *data)
661 {
662 DeviceClass *dc = DEVICE_CLASS(klass);
663 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
664 M25P80Class *mc = M25P80_CLASS(klass);
665
666 k->init = m25p80_init;
667 k->transfer = m25p80_transfer8;
668 k->set_cs = m25p80_cs;
669 k->cs_polarity = SSI_CS_LOW;
670 dc->vmsd = &vmstate_m25p80;
671 mc->pi = data;
672 }
673
674 static const TypeInfo m25p80_info = {
675 .name = TYPE_M25P80,
676 .parent = TYPE_SSI_SLAVE,
677 .instance_size = sizeof(Flash),
678 .class_size = sizeof(M25P80Class),
679 .abstract = true,
680 };
681
682 static void m25p80_register_types(void)
683 {
684 int i;
685
686 type_register_static(&m25p80_info);
687 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
688 TypeInfo ti = {
689 .name = known_devices[i].part_name,
690 .parent = TYPE_M25P80,
691 .class_init = m25p80_class_init,
692 .class_data = (void *)&known_devices[i],
693 };
694 type_register(&ti);
695 }
696 }
697
698 type_init(m25p80_register_types)