]> git.proxmox.com Git - qemu.git/blob - hw/block/nvme.c
tcg/aarch64: Implement tlb lookup fast path
[qemu.git] / hw / block / nvme.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13 *
14 * http://www.nvmexpress.org/resources/
15 */
16
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21 */
22
23 #include <hw/block/block.h>
24 #include <hw/hw.h>
25 #include <hw/pci/msix.h>
26 #include <hw/pci/pci.h>
27
28 #include "nvme.h"
29
30 static void nvme_process_sq(void *opaque);
31
32 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
33 {
34 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
35 }
36
37 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
38 {
39 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
40 }
41
42 static void nvme_inc_cq_tail(NvmeCQueue *cq)
43 {
44 cq->tail++;
45 if (cq->tail >= cq->size) {
46 cq->tail = 0;
47 cq->phase = !cq->phase;
48 }
49 }
50
51 static void nvme_inc_sq_head(NvmeSQueue *sq)
52 {
53 sq->head = (sq->head + 1) % sq->size;
54 }
55
56 static uint8_t nvme_cq_full(NvmeCQueue *cq)
57 {
58 return (cq->tail + 1) % cq->size == cq->head;
59 }
60
61 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
62 {
63 return sq->head == sq->tail;
64 }
65
66 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
67 {
68 if (cq->irq_enabled) {
69 if (msix_enabled(&(n->parent_obj))) {
70 msix_notify(&(n->parent_obj), cq->vector);
71 } else {
72 qemu_irq_pulse(n->parent_obj.irq[0]);
73 }
74 }
75 }
76
77 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
78 uint32_t len, NvmeCtrl *n)
79 {
80 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
81 trans_len = MIN(len, trans_len);
82 int num_prps = (len >> n->page_bits) + 1;
83
84 if (!prp1) {
85 return NVME_INVALID_FIELD | NVME_DNR;
86 }
87
88 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
89 qemu_sglist_add(qsg, prp1, trans_len);
90 len -= trans_len;
91 if (len) {
92 if (!prp2) {
93 goto unmap;
94 }
95 if (len > n->page_size) {
96 uint64_t prp_list[n->max_prp_ents];
97 uint32_t nents, prp_trans;
98 int i = 0;
99
100 nents = (len + n->page_size - 1) >> n->page_bits;
101 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
102 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
103 while (len != 0) {
104 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
105
106 if (i == n->max_prp_ents - 1 && len > n->page_size) {
107 if (!prp_ent || prp_ent & (n->page_size - 1)) {
108 goto unmap;
109 }
110
111 i = 0;
112 nents = (len + n->page_size - 1) >> n->page_bits;
113 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
114 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
115 prp_trans);
116 prp_ent = le64_to_cpu(prp_list[i]);
117 }
118
119 if (!prp_ent || prp_ent & (n->page_size - 1)) {
120 goto unmap;
121 }
122
123 trans_len = MIN(len, n->page_size);
124 qemu_sglist_add(qsg, prp_ent, trans_len);
125 len -= trans_len;
126 i++;
127 }
128 } else {
129 if (prp2 & (n->page_size - 1)) {
130 goto unmap;
131 }
132 qemu_sglist_add(qsg, prp2, len);
133 }
134 }
135 return NVME_SUCCESS;
136
137 unmap:
138 qemu_sglist_destroy(qsg);
139 return NVME_INVALID_FIELD | NVME_DNR;
140 }
141
142 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
143 uint64_t prp1, uint64_t prp2)
144 {
145 QEMUSGList qsg;
146
147 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
148 return NVME_INVALID_FIELD | NVME_DNR;
149 }
150 if (dma_buf_read(ptr, len, &qsg)) {
151 qemu_sglist_destroy(&qsg);
152 return NVME_INVALID_FIELD | NVME_DNR;
153 }
154 return NVME_SUCCESS;
155 }
156
157 static void nvme_post_cqes(void *opaque)
158 {
159 NvmeCQueue *cq = opaque;
160 NvmeCtrl *n = cq->ctrl;
161 NvmeRequest *req, *next;
162
163 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
164 NvmeSQueue *sq;
165 hwaddr addr;
166
167 if (nvme_cq_full(cq)) {
168 break;
169 }
170
171 QTAILQ_REMOVE(&cq->req_list, req, entry);
172 sq = req->sq;
173 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
174 req->cqe.sq_id = cpu_to_le16(sq->sqid);
175 req->cqe.sq_head = cpu_to_le16(sq->head);
176 addr = cq->dma_addr + cq->tail * n->cqe_size;
177 nvme_inc_cq_tail(cq);
178 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
179 sizeof(req->cqe));
180 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
181 }
182 nvme_isr_notify(n, cq);
183 }
184
185 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
186 {
187 assert(cq->cqid == req->sq->cqid);
188 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
189 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
190 qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
191 }
192
193 static void nvme_rw_cb(void *opaque, int ret)
194 {
195 NvmeRequest *req = opaque;
196 NvmeSQueue *sq = req->sq;
197 NvmeCtrl *n = sq->ctrl;
198 NvmeCQueue *cq = n->cq[sq->cqid];
199
200 bdrv_acct_done(n->conf.bs, &req->acct);
201 if (!ret) {
202 req->status = NVME_SUCCESS;
203 } else {
204 req->status = NVME_INTERNAL_DEV_ERROR;
205 }
206
207 qemu_sglist_destroy(&req->qsg);
208 nvme_enqueue_req_completion(cq, req);
209 }
210
211 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
212 NvmeRequest *req)
213 {
214 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
215 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
216 uint64_t slba = le64_to_cpu(rw->slba);
217 uint64_t prp1 = le64_to_cpu(rw->prp1);
218 uint64_t prp2 = le64_to_cpu(rw->prp2);
219
220 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
221 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
222 uint64_t data_size = nlb << data_shift;
223 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
224 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
225
226 if ((slba + nlb) > ns->id_ns.nsze) {
227 return NVME_LBA_RANGE | NVME_DNR;
228 }
229 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
230 return NVME_INVALID_FIELD | NVME_DNR;
231 }
232 assert((nlb << data_shift) == req->qsg.size);
233
234 dma_acct_start(n->conf.bs, &req->acct, &req->qsg, is_write ?
235 BDRV_ACCT_WRITE : BDRV_ACCT_READ);
236 req->aiocb = is_write ?
237 dma_bdrv_write(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req) :
238 dma_bdrv_read(n->conf.bs, &req->qsg, aio_slba, nvme_rw_cb, req);
239
240 return NVME_NO_COMPLETE;
241 }
242
243 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
244 {
245 NvmeNamespace *ns;
246 uint32_t nsid = le32_to_cpu(cmd->nsid);
247
248 if (nsid == 0 || nsid > n->num_namespaces) {
249 return NVME_INVALID_NSID | NVME_DNR;
250 }
251
252 ns = &n->namespaces[nsid - 1];
253 switch (cmd->opcode) {
254 case NVME_CMD_FLUSH:
255 return NVME_SUCCESS;
256 case NVME_CMD_WRITE:
257 case NVME_CMD_READ:
258 return nvme_rw(n, ns, cmd, req);
259 default:
260 return NVME_INVALID_OPCODE | NVME_DNR;
261 }
262 }
263
264 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
265 {
266 n->sq[sq->sqid] = NULL;
267 qemu_del_timer(sq->timer);
268 qemu_free_timer(sq->timer);
269 g_free(sq->io_req);
270 if (sq->sqid) {
271 g_free(sq);
272 }
273 }
274
275 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
276 {
277 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
278 NvmeRequest *req, *next;
279 NvmeSQueue *sq;
280 NvmeCQueue *cq;
281 uint16_t qid = le16_to_cpu(c->qid);
282
283 if (!qid || nvme_check_sqid(n, qid)) {
284 return NVME_INVALID_QID | NVME_DNR;
285 }
286
287 sq = n->sq[qid];
288 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
289 req = QTAILQ_FIRST(&sq->out_req_list);
290 assert(req->aiocb);
291 bdrv_aio_cancel(req->aiocb);
292 }
293 if (!nvme_check_cqid(n, sq->cqid)) {
294 cq = n->cq[sq->cqid];
295 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
296
297 nvme_post_cqes(cq);
298 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
299 if (req->sq == sq) {
300 QTAILQ_REMOVE(&cq->req_list, req, entry);
301 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
302 }
303 }
304 }
305
306 nvme_free_sq(sq, n);
307 return NVME_SUCCESS;
308 }
309
310 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
311 uint16_t sqid, uint16_t cqid, uint16_t size)
312 {
313 int i;
314 NvmeCQueue *cq;
315
316 sq->ctrl = n;
317 sq->dma_addr = dma_addr;
318 sq->sqid = sqid;
319 sq->size = size;
320 sq->cqid = cqid;
321 sq->head = sq->tail = 0;
322 sq->io_req = g_malloc(sq->size * sizeof(*sq->io_req));
323
324 QTAILQ_INIT(&sq->req_list);
325 QTAILQ_INIT(&sq->out_req_list);
326 for (i = 0; i < sq->size; i++) {
327 sq->io_req[i].sq = sq;
328 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
329 }
330 sq->timer = qemu_new_timer_ns(vm_clock, nvme_process_sq, sq);
331
332 assert(n->cq[cqid]);
333 cq = n->cq[cqid];
334 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
335 n->sq[sqid] = sq;
336 }
337
338 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
339 {
340 NvmeSQueue *sq;
341 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
342
343 uint16_t cqid = le16_to_cpu(c->cqid);
344 uint16_t sqid = le16_to_cpu(c->sqid);
345 uint16_t qsize = le16_to_cpu(c->qsize);
346 uint16_t qflags = le16_to_cpu(c->sq_flags);
347 uint64_t prp1 = le64_to_cpu(c->prp1);
348
349 if (!cqid || nvme_check_cqid(n, cqid)) {
350 return NVME_INVALID_CQID | NVME_DNR;
351 }
352 if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
353 return NVME_INVALID_QID | NVME_DNR;
354 }
355 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
356 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
357 }
358 if (!prp1 || prp1 & (n->page_size - 1)) {
359 return NVME_INVALID_FIELD | NVME_DNR;
360 }
361 if (!(NVME_SQ_FLAGS_PC(qflags))) {
362 return NVME_INVALID_FIELD | NVME_DNR;
363 }
364 sq = g_malloc0(sizeof(*sq));
365 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
366 return NVME_SUCCESS;
367 }
368
369 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
370 {
371 n->cq[cq->cqid] = NULL;
372 qemu_del_timer(cq->timer);
373 qemu_free_timer(cq->timer);
374 msix_vector_unuse(&n->parent_obj, cq->vector);
375 if (cq->cqid) {
376 g_free(cq);
377 }
378 }
379
380 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
381 {
382 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
383 NvmeCQueue *cq;
384 uint16_t qid = le16_to_cpu(c->qid);
385
386 if (!qid || nvme_check_cqid(n, qid)) {
387 return NVME_INVALID_CQID | NVME_DNR;
388 }
389
390 cq = n->cq[qid];
391 if (!QTAILQ_EMPTY(&cq->sq_list)) {
392 return NVME_INVALID_QUEUE_DEL;
393 }
394 nvme_free_cq(cq, n);
395 return NVME_SUCCESS;
396 }
397
398 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
399 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
400 {
401 cq->ctrl = n;
402 cq->cqid = cqid;
403 cq->size = size;
404 cq->dma_addr = dma_addr;
405 cq->phase = 1;
406 cq->irq_enabled = irq_enabled;
407 cq->vector = vector;
408 cq->head = cq->tail = 0;
409 QTAILQ_INIT(&cq->req_list);
410 QTAILQ_INIT(&cq->sq_list);
411 msix_vector_use(&n->parent_obj, cq->vector);
412 n->cq[cqid] = cq;
413 cq->timer = qemu_new_timer_ns(vm_clock, nvme_post_cqes, cq);
414 }
415
416 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
417 {
418 NvmeCQueue *cq;
419 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
420 uint16_t cqid = le16_to_cpu(c->cqid);
421 uint16_t vector = le16_to_cpu(c->irq_vector);
422 uint16_t qsize = le16_to_cpu(c->qsize);
423 uint16_t qflags = le16_to_cpu(c->cq_flags);
424 uint64_t prp1 = le64_to_cpu(c->prp1);
425
426 if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
427 return NVME_INVALID_CQID | NVME_DNR;
428 }
429 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
430 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
431 }
432 if (!prp1) {
433 return NVME_INVALID_FIELD | NVME_DNR;
434 }
435 if (vector > n->num_queues) {
436 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
437 }
438 if (!(NVME_CQ_FLAGS_PC(qflags))) {
439 return NVME_INVALID_FIELD | NVME_DNR;
440 }
441
442 cq = g_malloc0(sizeof(*cq));
443 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
444 NVME_CQ_FLAGS_IEN(qflags));
445 return NVME_SUCCESS;
446 }
447
448 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
449 {
450 NvmeNamespace *ns;
451 NvmeIdentify *c = (NvmeIdentify *)cmd;
452 uint32_t cns = le32_to_cpu(c->cns);
453 uint32_t nsid = le32_to_cpu(c->nsid);
454 uint64_t prp1 = le64_to_cpu(c->prp1);
455 uint64_t prp2 = le64_to_cpu(c->prp2);
456
457 if (cns) {
458 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
459 prp1, prp2);
460 }
461 if (nsid == 0 || nsid > n->num_namespaces) {
462 return NVME_INVALID_NSID | NVME_DNR;
463 }
464
465 ns = &n->namespaces[nsid - 1];
466 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
467 prp1, prp2);
468 }
469
470 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
471 {
472 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
473
474 switch (dw10) {
475 case NVME_NUMBER_OF_QUEUES:
476 req->cqe.result = cpu_to_le32(n->num_queues);
477 break;
478 default:
479 return NVME_INVALID_FIELD | NVME_DNR;
480 }
481 return NVME_SUCCESS;
482 }
483
484 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
485 {
486 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
487
488 switch (dw10) {
489 case NVME_NUMBER_OF_QUEUES:
490 req->cqe.result = cpu_to_le32(n->num_queues);
491 break;
492 default:
493 return NVME_INVALID_FIELD | NVME_DNR;
494 }
495 return NVME_SUCCESS;
496 }
497
498 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
499 {
500 switch (cmd->opcode) {
501 case NVME_ADM_CMD_DELETE_SQ:
502 return nvme_del_sq(n, cmd);
503 case NVME_ADM_CMD_CREATE_SQ:
504 return nvme_create_sq(n, cmd);
505 case NVME_ADM_CMD_DELETE_CQ:
506 return nvme_del_cq(n, cmd);
507 case NVME_ADM_CMD_CREATE_CQ:
508 return nvme_create_cq(n, cmd);
509 case NVME_ADM_CMD_IDENTIFY:
510 return nvme_identify(n, cmd);
511 case NVME_ADM_CMD_SET_FEATURES:
512 return nvme_set_feature(n, cmd, req);
513 case NVME_ADM_CMD_GET_FEATURES:
514 return nvme_get_feature(n, cmd, req);
515 default:
516 return NVME_INVALID_OPCODE | NVME_DNR;
517 }
518 }
519
520 static void nvme_process_sq(void *opaque)
521 {
522 NvmeSQueue *sq = opaque;
523 NvmeCtrl *n = sq->ctrl;
524 NvmeCQueue *cq = n->cq[sq->cqid];
525
526 uint16_t status;
527 hwaddr addr;
528 NvmeCmd cmd;
529 NvmeRequest *req;
530
531 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
532 addr = sq->dma_addr + sq->head * n->sqe_size;
533 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
534 nvme_inc_sq_head(sq);
535
536 req = QTAILQ_FIRST(&sq->req_list);
537 QTAILQ_REMOVE(&sq->req_list, req, entry);
538 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
539 memset(&req->cqe, 0, sizeof(req->cqe));
540 req->cqe.cid = cmd.cid;
541
542 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
543 nvme_admin_cmd(n, &cmd, req);
544 if (status != NVME_NO_COMPLETE) {
545 req->status = status;
546 nvme_enqueue_req_completion(cq, req);
547 }
548 }
549 }
550
551 static void nvme_clear_ctrl(NvmeCtrl *n)
552 {
553 int i;
554
555 for (i = 0; i < n->num_queues; i++) {
556 if (n->sq[i] != NULL) {
557 nvme_free_sq(n->sq[i], n);
558 }
559 }
560 for (i = 0; i < n->num_queues; i++) {
561 if (n->cq[i] != NULL) {
562 nvme_free_cq(n->cq[i], n);
563 }
564 }
565
566 bdrv_flush(n->conf.bs);
567 n->bar.cc = 0;
568 }
569
570 static int nvme_start_ctrl(NvmeCtrl *n)
571 {
572 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
573 uint32_t page_size = 1 << page_bits;
574
575 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
576 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
577 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
578 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
579 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
580 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
581 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
582 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
583 !NVME_AQA_ASQS(n->bar.aqa) || NVME_AQA_ASQS(n->bar.aqa) > 4095 ||
584 !NVME_AQA_ACQS(n->bar.aqa) || NVME_AQA_ACQS(n->bar.aqa) > 4095) {
585 return -1;
586 }
587
588 n->page_bits = page_bits;
589 n->page_size = page_size;
590 n->max_prp_ents = n->page_size / sizeof(uint64_t);
591 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
592 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
593 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
594 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
595 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
596 NVME_AQA_ASQS(n->bar.aqa) + 1);
597
598 return 0;
599 }
600
601 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
602 unsigned size)
603 {
604 switch (offset) {
605 case 0xc:
606 n->bar.intms |= data & 0xffffffff;
607 n->bar.intmc = n->bar.intms;
608 break;
609 case 0x10:
610 n->bar.intms &= ~(data & 0xffffffff);
611 n->bar.intmc = n->bar.intms;
612 break;
613 case 0x14:
614 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
615 n->bar.cc = data;
616 if (nvme_start_ctrl(n)) {
617 n->bar.csts = NVME_CSTS_FAILED;
618 } else {
619 n->bar.csts = NVME_CSTS_READY;
620 }
621 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
622 nvme_clear_ctrl(n);
623 n->bar.csts &= ~NVME_CSTS_READY;
624 }
625 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
626 nvme_clear_ctrl(n);
627 n->bar.cc = data;
628 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
629 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
630 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
631 n->bar.cc = data;
632 }
633 break;
634 case 0x24:
635 n->bar.aqa = data & 0xffffffff;
636 break;
637 case 0x28:
638 n->bar.asq = data;
639 break;
640 case 0x2c:
641 n->bar.asq |= data << 32;
642 break;
643 case 0x30:
644 n->bar.acq = data;
645 break;
646 case 0x34:
647 n->bar.acq |= data << 32;
648 break;
649 default:
650 break;
651 }
652 }
653
654 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
655 {
656 NvmeCtrl *n = (NvmeCtrl *)opaque;
657 uint8_t *ptr = (uint8_t *)&n->bar;
658 uint64_t val = 0;
659
660 if (addr < sizeof(n->bar)) {
661 memcpy(&val, ptr + addr, size);
662 }
663 return val;
664 }
665
666 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
667 {
668 uint32_t qid;
669
670 if (addr & ((1 << 2) - 1)) {
671 return;
672 }
673
674 if (((addr - 0x1000) >> 2) & 1) {
675 uint16_t new_head = val & 0xffff;
676 int start_sqs;
677 NvmeCQueue *cq;
678
679 qid = (addr - (0x1000 + (1 << 2))) >> 3;
680 if (nvme_check_cqid(n, qid)) {
681 return;
682 }
683
684 cq = n->cq[qid];
685 if (new_head >= cq->size) {
686 return;
687 }
688
689 start_sqs = nvme_cq_full(cq) ? 1 : 0;
690 cq->head = new_head;
691 if (start_sqs) {
692 NvmeSQueue *sq;
693 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
694 qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
695 }
696 qemu_mod_timer(cq->timer, qemu_get_clock_ns(vm_clock) + 500);
697 }
698
699 if (cq->tail != cq->head) {
700 nvme_isr_notify(n, cq);
701 }
702 } else {
703 uint16_t new_tail = val & 0xffff;
704 NvmeSQueue *sq;
705
706 qid = (addr - 0x1000) >> 3;
707 if (nvme_check_sqid(n, qid)) {
708 return;
709 }
710
711 sq = n->sq[qid];
712 if (new_tail >= sq->size) {
713 return;
714 }
715
716 sq->tail = new_tail;
717 qemu_mod_timer(sq->timer, qemu_get_clock_ns(vm_clock) + 500);
718 }
719 }
720
721 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
722 unsigned size)
723 {
724 NvmeCtrl *n = (NvmeCtrl *)opaque;
725 if (addr < sizeof(n->bar)) {
726 nvme_write_bar(n, addr, data, size);
727 } else if (addr >= 0x1000) {
728 nvme_process_db(n, addr, data);
729 }
730 }
731
732 static const MemoryRegionOps nvme_mmio_ops = {
733 .read = nvme_mmio_read,
734 .write = nvme_mmio_write,
735 .endianness = DEVICE_LITTLE_ENDIAN,
736 .impl = {
737 .min_access_size = 2,
738 .max_access_size = 8,
739 },
740 };
741
742 static int nvme_init(PCIDevice *pci_dev)
743 {
744 NvmeCtrl *n = NVME(pci_dev);
745 NvmeIdCtrl *id = &n->id_ctrl;
746
747 int i;
748 int64_t bs_size;
749 uint8_t *pci_conf;
750
751 if (!(n->conf.bs)) {
752 return -1;
753 }
754
755 bs_size = bdrv_getlength(n->conf.bs);
756 if (bs_size <= 0) {
757 return -1;
758 }
759
760 blkconf_serial(&n->conf, &n->serial);
761 if (!n->serial) {
762 return -1;
763 }
764
765 pci_conf = pci_dev->config;
766 pci_conf[PCI_INTERRUPT_PIN] = 1;
767 pci_config_set_prog_interface(pci_dev->config, 0x2);
768 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
769 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
770
771 n->num_namespaces = 1;
772 n->num_queues = 64;
773 n->reg_size = 1 << qemu_fls(0x1004 + 2 * (n->num_queues + 1) * 4);
774 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
775
776 n->namespaces = g_malloc0(sizeof(*n->namespaces)*n->num_namespaces);
777 n->sq = g_malloc0(sizeof(*n->sq)*n->num_queues);
778 n->cq = g_malloc0(sizeof(*n->cq)*n->num_queues);
779
780 memory_region_init_io(&n->iomem, &nvme_mmio_ops, n, "nvme", n->reg_size);
781 pci_register_bar(&n->parent_obj, 0,
782 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
783 &n->iomem);
784 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
785
786 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
787 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
788 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
789 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
790 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
791 id->rab = 6;
792 id->ieee[0] = 0x00;
793 id->ieee[1] = 0x02;
794 id->ieee[2] = 0xb3;
795 id->oacs = cpu_to_le16(0);
796 id->frmw = 7 << 1;
797 id->lpa = 1 << 0;
798 id->sqes = (0x6 << 4) | 0x6;
799 id->cqes = (0x4 << 4) | 0x4;
800 id->nn = cpu_to_le32(n->num_namespaces);
801 id->psd[0].mp = cpu_to_le16(0x9c4);
802 id->psd[0].enlat = cpu_to_le32(0x10);
803 id->psd[0].exlat = cpu_to_le32(0x4);
804
805 n->bar.cap = 0;
806 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
807 NVME_CAP_SET_CQR(n->bar.cap, 1);
808 NVME_CAP_SET_AMS(n->bar.cap, 1);
809 NVME_CAP_SET_TO(n->bar.cap, 0xf);
810 NVME_CAP_SET_CSS(n->bar.cap, 1);
811
812 n->bar.vs = 0x00010001;
813 n->bar.intmc = n->bar.intms = 0;
814
815 for (i = 0; i < n->num_namespaces; i++) {
816 NvmeNamespace *ns = &n->namespaces[i];
817 NvmeIdNs *id_ns = &ns->id_ns;
818 id_ns->nsfeat = 0;
819 id_ns->nlbaf = 0;
820 id_ns->flbas = 0;
821 id_ns->mc = 0;
822 id_ns->dpc = 0;
823 id_ns->dps = 0;
824 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
825 id_ns->ncap = id_ns->nuse = id_ns->nsze =
826 cpu_to_le64(n->ns_size >>
827 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
828 }
829 return 0;
830 }
831
832 static void nvme_exit(PCIDevice *pci_dev)
833 {
834 NvmeCtrl *n = NVME(pci_dev);
835
836 nvme_clear_ctrl(n);
837 g_free(n->namespaces);
838 g_free(n->cq);
839 g_free(n->sq);
840 msix_uninit_exclusive_bar(pci_dev);
841 memory_region_destroy(&n->iomem);
842 }
843
844 static Property nvme_props[] = {
845 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
846 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
847 DEFINE_PROP_END_OF_LIST(),
848 };
849
850 static const VMStateDescription nvme_vmstate = {
851 .name = "nvme",
852 .unmigratable = 1,
853 };
854
855 static void nvme_class_init(ObjectClass *oc, void *data)
856 {
857 DeviceClass *dc = DEVICE_CLASS(oc);
858 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
859
860 pc->init = nvme_init;
861 pc->exit = nvme_exit;
862 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
863 pc->vendor_id = PCI_VENDOR_ID_INTEL;
864 pc->device_id = 0x5845;
865 pc->revision = 1;
866 pc->is_express = 1;
867
868 dc->desc = "Non-Volatile Memory Express";
869 dc->props = nvme_props;
870 dc->vmsd = &nvme_vmstate;
871 }
872
873 static const TypeInfo nvme_info = {
874 .name = "nvme",
875 .parent = TYPE_PCI_DEVICE,
876 .instance_size = sizeof(NvmeCtrl),
877 .class_init = nvme_class_init,
878 };
879
880 static void nvme_register_types(void)
881 {
882 type_register_static(&nvme_info);
883 }
884
885 type_init(nvme_register_types)