]> git.proxmox.com Git - qemu.git/blob - hw/char/cadence_uart.c
aio / timers: Switch entire codebase to the new timer API
[qemu.git] / hw / char / cadence_uart.c
1 /*
2 * Device model for Cadence UART
3 *
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "hw/sysbus.h"
20 #include "sysemu/char.h"
21 #include "qemu/timer.h"
22
23 #ifdef CADENCE_UART_ERR_DEBUG
24 #define DB_PRINT(...) do { \
25 fprintf(stderr, ": %s: ", __func__); \
26 fprintf(stderr, ## __VA_ARGS__); \
27 } while (0);
28 #else
29 #define DB_PRINT(...)
30 #endif
31
32 #define UART_SR_INTR_RTRIG 0x00000001
33 #define UART_SR_INTR_REMPTY 0x00000002
34 #define UART_SR_INTR_RFUL 0x00000004
35 #define UART_SR_INTR_TEMPTY 0x00000008
36 #define UART_SR_INTR_TFUL 0x00000010
37 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
38 * SR, then the same bit in CISR is set high too */
39 #define UART_SR_TO_CISR_MASK 0x0000001F
40
41 #define UART_INTR_ROVR 0x00000020
42 #define UART_INTR_FRAME 0x00000040
43 #define UART_INTR_PARE 0x00000080
44 #define UART_INTR_TIMEOUT 0x00000100
45 #define UART_INTR_DMSI 0x00000200
46
47 #define UART_SR_RACTIVE 0x00000400
48 #define UART_SR_TACTIVE 0x00000800
49 #define UART_SR_FDELT 0x00001000
50
51 #define UART_CR_RXRST 0x00000001
52 #define UART_CR_TXRST 0x00000002
53 #define UART_CR_RX_EN 0x00000004
54 #define UART_CR_RX_DIS 0x00000008
55 #define UART_CR_TX_EN 0x00000010
56 #define UART_CR_TX_DIS 0x00000020
57 #define UART_CR_RST_TO 0x00000040
58 #define UART_CR_STARTBRK 0x00000080
59 #define UART_CR_STOPBRK 0x00000100
60
61 #define UART_MR_CLKS 0x00000001
62 #define UART_MR_CHRL 0x00000006
63 #define UART_MR_CHRL_SH 1
64 #define UART_MR_PAR 0x00000038
65 #define UART_MR_PAR_SH 3
66 #define UART_MR_NBSTOP 0x000000C0
67 #define UART_MR_NBSTOP_SH 6
68 #define UART_MR_CHMODE 0x00000300
69 #define UART_MR_CHMODE_SH 8
70 #define UART_MR_UCLKEN 0x00000400
71 #define UART_MR_IRMODE 0x00000800
72
73 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
74 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
75 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
76 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
77 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
78 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
79 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
80 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
81 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
82 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
83
84 #define RX_FIFO_SIZE 16
85 #define TX_FIFO_SIZE 16
86 #define UART_INPUT_CLK 50000000
87
88 #define R_CR (0x00/4)
89 #define R_MR (0x04/4)
90 #define R_IER (0x08/4)
91 #define R_IDR (0x0C/4)
92 #define R_IMR (0x10/4)
93 #define R_CISR (0x14/4)
94 #define R_BRGR (0x18/4)
95 #define R_RTOR (0x1C/4)
96 #define R_RTRIG (0x20/4)
97 #define R_MCR (0x24/4)
98 #define R_MSR (0x28/4)
99 #define R_SR (0x2C/4)
100 #define R_TX_RX (0x30/4)
101 #define R_BDIV (0x34/4)
102 #define R_FDEL (0x38/4)
103 #define R_PMIN (0x3C/4)
104 #define R_PWID (0x40/4)
105 #define R_TTRIG (0x44/4)
106
107 #define R_MAX (R_TTRIG + 1)
108
109 #define TYPE_CADENCE_UART "cadence_uart"
110 #define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)
111
112 typedef struct {
113 SysBusDevice parent_obj;
114
115 MemoryRegion iomem;
116 uint32_t r[R_MAX];
117 uint8_t r_fifo[RX_FIFO_SIZE];
118 uint32_t rx_wpos;
119 uint32_t rx_count;
120 uint64_t char_tx_time;
121 CharDriverState *chr;
122 qemu_irq irq;
123 struct QEMUTimer *fifo_trigger_handle;
124 struct QEMUTimer *tx_time_handle;
125 } UartState;
126
127 static void uart_update_status(UartState *s)
128 {
129 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
130 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
131 }
132
133 static void fifo_trigger_update(void *opaque)
134 {
135 UartState *s = (UartState *)opaque;
136
137 s->r[R_CISR] |= UART_INTR_TIMEOUT;
138
139 uart_update_status(s);
140 }
141
142 static void uart_tx_redo(UartState *s)
143 {
144 uint64_t new_tx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
145
146 timer_mod(s->tx_time_handle, new_tx_time + s->char_tx_time);
147
148 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
149
150 uart_update_status(s);
151 }
152
153 static void uart_tx_write(void *opaque)
154 {
155 UartState *s = (UartState *)opaque;
156
157 uart_tx_redo(s);
158 }
159
160 static void uart_rx_reset(UartState *s)
161 {
162 s->rx_wpos = 0;
163 s->rx_count = 0;
164 if (s->chr) {
165 qemu_chr_accept_input(s->chr);
166 }
167
168 s->r[R_SR] |= UART_SR_INTR_REMPTY;
169 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
170 }
171
172 static void uart_tx_reset(UartState *s)
173 {
174 s->r[R_SR] |= UART_SR_INTR_TEMPTY;
175 s->r[R_SR] &= ~UART_SR_INTR_TFUL;
176 }
177
178 static void uart_send_breaks(UartState *s)
179 {
180 int break_enabled = 1;
181
182 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
183 &break_enabled);
184 }
185
186 static void uart_parameters_setup(UartState *s)
187 {
188 QEMUSerialSetParams ssp;
189 unsigned int baud_rate, packet_size;
190
191 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
192 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
193
194 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
195 packet_size = 1;
196
197 switch (s->r[R_MR] & UART_MR_PAR) {
198 case UART_PARITY_EVEN:
199 ssp.parity = 'E';
200 packet_size++;
201 break;
202 case UART_PARITY_ODD:
203 ssp.parity = 'O';
204 packet_size++;
205 break;
206 default:
207 ssp.parity = 'N';
208 break;
209 }
210
211 switch (s->r[R_MR] & UART_MR_CHRL) {
212 case UART_DATA_BITS_6:
213 ssp.data_bits = 6;
214 break;
215 case UART_DATA_BITS_7:
216 ssp.data_bits = 7;
217 break;
218 default:
219 ssp.data_bits = 8;
220 break;
221 }
222
223 switch (s->r[R_MR] & UART_MR_NBSTOP) {
224 case UART_STOP_BITS_1:
225 ssp.stop_bits = 1;
226 break;
227 default:
228 ssp.stop_bits = 2;
229 break;
230 }
231
232 packet_size += ssp.data_bits + ssp.stop_bits;
233 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
234 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
235 }
236
237 static int uart_can_receive(void *opaque)
238 {
239 UartState *s = (UartState *)opaque;
240
241 return RX_FIFO_SIZE - s->rx_count;
242 }
243
244 static void uart_ctrl_update(UartState *s)
245 {
246 if (s->r[R_CR] & UART_CR_TXRST) {
247 uart_tx_reset(s);
248 }
249
250 if (s->r[R_CR] & UART_CR_RXRST) {
251 uart_rx_reset(s);
252 }
253
254 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
255
256 if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
257 uart_tx_redo(s);
258 }
259
260 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
261 uart_send_breaks(s);
262 }
263 }
264
265 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
266 {
267 UartState *s = (UartState *)opaque;
268 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
269 int i;
270
271 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
272 return;
273 }
274
275 s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
276
277 if (s->rx_count == RX_FIFO_SIZE) {
278 s->r[R_CISR] |= UART_INTR_ROVR;
279 } else {
280 for (i = 0; i < size; i++) {
281 s->r_fifo[s->rx_wpos] = buf[i];
282 s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
283 s->rx_count++;
284
285 if (s->rx_count == RX_FIFO_SIZE) {
286 s->r[R_SR] |= UART_SR_INTR_RFUL;
287 break;
288 }
289
290 if (s->rx_count >= s->r[R_RTRIG]) {
291 s->r[R_SR] |= UART_SR_INTR_RTRIG;
292 }
293 }
294 timer_mod(s->fifo_trigger_handle, new_rx_time +
295 (s->char_tx_time * 4));
296 }
297 uart_update_status(s);
298 }
299
300 static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
301 {
302 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
303 return;
304 }
305
306 qemu_chr_fe_write_all(s->chr, buf, size);
307 }
308
309 static void uart_receive(void *opaque, const uint8_t *buf, int size)
310 {
311 UartState *s = (UartState *)opaque;
312 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
313
314 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
315 uart_write_rx_fifo(opaque, buf, size);
316 }
317 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
318 uart_write_tx_fifo(s, buf, size);
319 }
320 }
321
322 static void uart_event(void *opaque, int event)
323 {
324 UartState *s = (UartState *)opaque;
325 uint8_t buf = '\0';
326
327 if (event == CHR_EVENT_BREAK) {
328 uart_write_rx_fifo(opaque, &buf, 1);
329 }
330
331 uart_update_status(s);
332 }
333
334 static void uart_read_rx_fifo(UartState *s, uint32_t *c)
335 {
336 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
337 return;
338 }
339
340 s->r[R_SR] &= ~UART_SR_INTR_RFUL;
341
342 if (s->rx_count) {
343 uint32_t rx_rpos =
344 (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
345 *c = s->r_fifo[rx_rpos];
346 s->rx_count--;
347
348 if (!s->rx_count) {
349 s->r[R_SR] |= UART_SR_INTR_REMPTY;
350 }
351 qemu_chr_accept_input(s->chr);
352 } else {
353 *c = 0;
354 s->r[R_SR] |= UART_SR_INTR_REMPTY;
355 }
356
357 if (s->rx_count < s->r[R_RTRIG]) {
358 s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
359 }
360 uart_update_status(s);
361 }
362
363 static void uart_write(void *opaque, hwaddr offset,
364 uint64_t value, unsigned size)
365 {
366 UartState *s = (UartState *)opaque;
367
368 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
369 offset >>= 2;
370 switch (offset) {
371 case R_IER: /* ier (wts imr) */
372 s->r[R_IMR] |= value;
373 break;
374 case R_IDR: /* idr (wtc imr) */
375 s->r[R_IMR] &= ~value;
376 break;
377 case R_IMR: /* imr (read only) */
378 break;
379 case R_CISR: /* cisr (wtc) */
380 s->r[R_CISR] &= ~value;
381 break;
382 case R_TX_RX: /* UARTDR */
383 switch (s->r[R_MR] & UART_MR_CHMODE) {
384 case NORMAL_MODE:
385 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
386 break;
387 case LOCAL_LOOPBACK:
388 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
389 break;
390 }
391 break;
392 default:
393 s->r[offset] = value;
394 }
395
396 switch (offset) {
397 case R_CR:
398 uart_ctrl_update(s);
399 break;
400 case R_MR:
401 uart_parameters_setup(s);
402 break;
403 }
404 }
405
406 static uint64_t uart_read(void *opaque, hwaddr offset,
407 unsigned size)
408 {
409 UartState *s = (UartState *)opaque;
410 uint32_t c = 0;
411
412 offset >>= 2;
413 if (offset >= R_MAX) {
414 c = 0;
415 } else if (offset == R_TX_RX) {
416 uart_read_rx_fifo(s, &c);
417 } else {
418 c = s->r[offset];
419 }
420
421 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
422 return c;
423 }
424
425 static const MemoryRegionOps uart_ops = {
426 .read = uart_read,
427 .write = uart_write,
428 .endianness = DEVICE_NATIVE_ENDIAN,
429 };
430
431 static void cadence_uart_reset(UartState *s)
432 {
433 s->r[R_CR] = 0x00000128;
434 s->r[R_IMR] = 0;
435 s->r[R_CISR] = 0;
436 s->r[R_RTRIG] = 0x00000020;
437 s->r[R_BRGR] = 0x0000000F;
438 s->r[R_TTRIG] = 0x00000020;
439
440 uart_rx_reset(s);
441 uart_tx_reset(s);
442
443 s->rx_count = 0;
444 s->rx_wpos = 0;
445 }
446
447 static int cadence_uart_init(SysBusDevice *dev)
448 {
449 UartState *s = CADENCE_UART(dev);
450
451 memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
452 sysbus_init_mmio(dev, &s->iomem);
453 sysbus_init_irq(dev, &s->irq);
454
455 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
456 (QEMUTimerCB *)fifo_trigger_update, s);
457
458 s->tx_time_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
459 (QEMUTimerCB *)uart_tx_write, s);
460
461 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
462
463 s->chr = qemu_char_get_next_serial();
464
465 cadence_uart_reset(s);
466
467 if (s->chr) {
468 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
469 uart_event, s);
470 }
471
472 return 0;
473 }
474
475 static int cadence_uart_post_load(void *opaque, int version_id)
476 {
477 UartState *s = opaque;
478
479 uart_parameters_setup(s);
480 uart_update_status(s);
481 return 0;
482 }
483
484 static const VMStateDescription vmstate_cadence_uart = {
485 .name = "cadence_uart",
486 .version_id = 1,
487 .minimum_version_id = 1,
488 .minimum_version_id_old = 1,
489 .post_load = cadence_uart_post_load,
490 .fields = (VMStateField[]) {
491 VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
492 VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
493 VMSTATE_UINT32(rx_count, UartState),
494 VMSTATE_UINT32(rx_wpos, UartState),
495 VMSTATE_TIMER(fifo_trigger_handle, UartState),
496 VMSTATE_TIMER(tx_time_handle, UartState),
497 VMSTATE_END_OF_LIST()
498 }
499 };
500
501 static void cadence_uart_class_init(ObjectClass *klass, void *data)
502 {
503 DeviceClass *dc = DEVICE_CLASS(klass);
504 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
505
506 sdc->init = cadence_uart_init;
507 dc->vmsd = &vmstate_cadence_uart;
508 }
509
510 static const TypeInfo cadence_uart_info = {
511 .name = TYPE_CADENCE_UART,
512 .parent = TYPE_SYS_BUS_DEVICE,
513 .instance_size = sizeof(UartState),
514 .class_init = cadence_uart_class_init,
515 };
516
517 static void cadence_uart_register_types(void)
518 {
519 type_register_static(&cadence_uart_info);
520 }
521
522 type_init(cadence_uart_register_types)