]> git.proxmox.com Git - qemu.git/blob - hw/cuda.c
monitor fixes
[qemu.git] / hw / cuda.c
1 /*
2 * QEMU CUDA support
3 *
4 * Copyright (c) 2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 //#define DEBUG_CUDA
27 //#define DEBUG_CUDA_PACKET
28
29 /* Bits in B data register: all active low */
30 #define TREQ 0x08 /* Transfer request (input) */
31 #define TACK 0x10 /* Transfer acknowledge (output) */
32 #define TIP 0x20 /* Transfer in progress (output) */
33
34 /* Bits in ACR */
35 #define SR_CTRL 0x1c /* Shift register control bits */
36 #define SR_EXT 0x0c /* Shift on external clock */
37 #define SR_OUT 0x10 /* Shift out if 1 */
38
39 /* Bits in IFR and IER */
40 #define IER_SET 0x80 /* set bits in IER */
41 #define IER_CLR 0 /* clear bits in IER */
42 #define SR_INT 0x04 /* Shift register full/empty */
43 #define T1_INT 0x40 /* Timer 1 interrupt */
44
45 /* Bits in ACR */
46 #define T1MODE 0xc0 /* Timer 1 mode */
47 #define T1MODE_CONT 0x40 /* continuous interrupts */
48
49 /* commands (1st byte) */
50 #define ADB_PACKET 0
51 #define CUDA_PACKET 1
52 #define ERROR_PACKET 2
53 #define TIMER_PACKET 3
54 #define POWER_PACKET 4
55 #define MACIIC_PACKET 5
56 #define PMU_PACKET 6
57
58
59 /* CUDA commands (2nd byte) */
60 #define CUDA_WARM_START 0x0
61 #define CUDA_AUTOPOLL 0x1
62 #define CUDA_GET_6805_ADDR 0x2
63 #define CUDA_GET_TIME 0x3
64 #define CUDA_GET_PRAM 0x7
65 #define CUDA_SET_6805_ADDR 0x8
66 #define CUDA_SET_TIME 0x9
67 #define CUDA_POWERDOWN 0xa
68 #define CUDA_POWERUP_TIME 0xb
69 #define CUDA_SET_PRAM 0xc
70 #define CUDA_MS_RESET 0xd
71 #define CUDA_SEND_DFAC 0xe
72 #define CUDA_BATTERY_SWAP_SENSE 0x10
73 #define CUDA_RESET_SYSTEM 0x11
74 #define CUDA_SET_IPL 0x12
75 #define CUDA_FILE_SERVER_FLAG 0x13
76 #define CUDA_SET_AUTO_RATE 0x14
77 #define CUDA_GET_AUTO_RATE 0x16
78 #define CUDA_SET_DEVICE_LIST 0x19
79 #define CUDA_GET_DEVICE_LIST 0x1a
80 #define CUDA_SET_ONE_SECOND_MODE 0x1b
81 #define CUDA_SET_POWER_MESSAGES 0x21
82 #define CUDA_GET_SET_IIC 0x22
83 #define CUDA_WAKEUP 0x23
84 #define CUDA_TIMER_TICKLE 0x24
85 #define CUDA_COMBINED_FORMAT_IIC 0x25
86
87 #define CUDA_TIMER_FREQ (4700000 / 6)
88 #define CUDA_ADB_POLL_FREQ 50
89
90 typedef struct CUDATimer {
91 unsigned int latch;
92 uint16_t counter_value; /* counter value at load time */
93 int64_t load_time;
94 int64_t next_irq_time;
95 QEMUTimer *timer;
96 } CUDATimer;
97
98 typedef struct CUDAState {
99 /* cuda registers */
100 uint8_t b; /* B-side data */
101 uint8_t a; /* A-side data */
102 uint8_t dirb; /* B-side direction (1=output) */
103 uint8_t dira; /* A-side direction (1=output) */
104 uint8_t sr; /* Shift register */
105 uint8_t acr; /* Auxiliary control register */
106 uint8_t pcr; /* Peripheral control register */
107 uint8_t ifr; /* Interrupt flag register */
108 uint8_t ier; /* Interrupt enable register */
109 uint8_t anh; /* A-side data, no handshake */
110
111 CUDATimer timers[2];
112
113 uint8_t last_b; /* last value of B register */
114 uint8_t last_acr; /* last value of B register */
115
116 int data_in_size;
117 int data_in_index;
118 int data_out_index;
119
120 int irq;
121 openpic_t *openpic;
122 uint8_t autopoll;
123 uint8_t data_in[128];
124 uint8_t data_out[16];
125 QEMUTimer *adb_poll_timer;
126 } CUDAState;
127
128 static CUDAState cuda_state;
129 ADBBusState adb_bus;
130
131 static void cuda_update(CUDAState *s);
132 static void cuda_receive_packet_from_host(CUDAState *s,
133 const uint8_t *data, int len);
134 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
135 int64_t current_time);
136
137 static void cuda_update_irq(CUDAState *s)
138 {
139 if (s->ifr & s->ier & (SR_INT | T1_INT)) {
140 openpic_set_irq(s->openpic, s->irq, 1);
141 } else {
142 openpic_set_irq(s->openpic, s->irq, 0);
143 }
144 }
145
146 static unsigned int get_counter(CUDATimer *s)
147 {
148 int64_t d;
149 unsigned int counter;
150
151 d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
152 CUDA_TIMER_FREQ, ticks_per_sec);
153 if (d <= s->counter_value) {
154 counter = d;
155 } else {
156 counter = s->latch - 1 - ((d - s->counter_value) % s->latch);
157 }
158 return counter;
159 }
160
161 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
162 {
163 #ifdef DEBUG_CUDA
164 printf("cuda: T%d.counter=%d\n",
165 1 + (ti->timer == NULL), val);
166 #endif
167 ti->load_time = qemu_get_clock(vm_clock);
168 ti->counter_value = val;
169 cuda_timer_update(s, ti, ti->load_time);
170 }
171
172 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
173 {
174 int64_t d, next_time, base;
175 /* current counter value */
176 d = muldiv64(current_time - s->load_time,
177 CUDA_TIMER_FREQ, ticks_per_sec);
178 if (d <= s->counter_value) {
179 next_time = s->counter_value + 1;
180 } else {
181 base = ((d - s->counter_value) / s->latch);
182 base = (base * s->latch) + s->counter_value;
183 next_time = base + s->latch;
184 }
185 #ifdef DEBUG_CUDA
186 printf("latch=%d counter=%lld delta_next=%lld\n",
187 s->latch, d, next_time - d);
188 #endif
189 next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
190 s->load_time;
191 if (next_time <= current_time)
192 next_time = current_time + 1;
193 return next_time;
194 }
195
196 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
197 int64_t current_time)
198 {
199 if (!ti->timer)
200 return;
201 if ((s->acr & T1MODE) != T1MODE_CONT) {
202 qemu_del_timer(ti->timer);
203 } else {
204 ti->next_irq_time = get_next_irq_time(ti, current_time);
205 qemu_mod_timer(ti->timer, ti->next_irq_time);
206 }
207 }
208
209 static void cuda_timer1(void *opaque)
210 {
211 CUDAState *s = opaque;
212 CUDATimer *ti = &s->timers[0];
213
214 cuda_timer_update(s, ti, ti->next_irq_time);
215 s->ifr |= T1_INT;
216 cuda_update_irq(s);
217 }
218
219 static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
220 {
221 CUDAState *s = opaque;
222 uint32_t val;
223
224 addr = (addr >> 9) & 0xf;
225 switch(addr) {
226 case 0:
227 val = s->b;
228 break;
229 case 1:
230 val = s->a;
231 break;
232 case 2:
233 val = s->dirb;
234 break;
235 case 3:
236 val = s->dira;
237 break;
238 case 4:
239 val = get_counter(&s->timers[0]) & 0xff;
240 s->ifr &= ~T1_INT;
241 cuda_update_irq(s);
242 break;
243 case 5:
244 val = get_counter(&s->timers[0]) >> 8;
245 s->ifr &= ~T1_INT;
246 cuda_update_irq(s);
247 break;
248 case 6:
249 val = s->timers[0].latch & 0xff;
250 break;
251 case 7:
252 val = (s->timers[0].latch >> 8) & 0xff;
253 break;
254 case 8:
255 val = get_counter(&s->timers[1]) & 0xff;
256 break;
257 case 9:
258 val = get_counter(&s->timers[1]) >> 8;
259 break;
260 case 10:
261 val = s->sr;
262 s->ifr &= ~SR_INT;
263 cuda_update_irq(s);
264 break;
265 case 11:
266 val = s->acr;
267 break;
268 case 12:
269 val = s->pcr;
270 break;
271 case 13:
272 val = s->ifr;
273 break;
274 case 14:
275 val = s->ier;
276 break;
277 default:
278 case 15:
279 val = s->anh;
280 break;
281 }
282 #ifdef DEBUG_CUDA
283 if (addr != 13 || val != 0)
284 printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
285 #endif
286 return val;
287 }
288
289 static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
290 {
291 CUDAState *s = opaque;
292
293 addr = (addr >> 9) & 0xf;
294 #ifdef DEBUG_CUDA
295 printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
296 #endif
297
298 switch(addr) {
299 case 0:
300 s->b = val;
301 cuda_update(s);
302 break;
303 case 1:
304 s->a = val;
305 break;
306 case 2:
307 s->dirb = val;
308 break;
309 case 3:
310 s->dira = val;
311 break;
312 case 4:
313 val = val | (get_counter(&s->timers[0]) & 0xff00);
314 set_counter(s, &s->timers[0], val);
315 break;
316 case 5:
317 val = (val << 8) | (get_counter(&s->timers[0]) & 0xff);
318 set_counter(s, &s->timers[0], val);
319 break;
320 case 6:
321 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
322 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
323 break;
324 case 7:
325 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
326 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
327 break;
328 case 8:
329 val = val | (get_counter(&s->timers[1]) & 0xff00);
330 set_counter(s, &s->timers[1], val);
331 break;
332 case 9:
333 val = (val << 8) | (get_counter(&s->timers[1]) & 0xff);
334 set_counter(s, &s->timers[1], val);
335 break;
336 case 10:
337 s->sr = val;
338 break;
339 case 11:
340 s->acr = val;
341 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
342 cuda_update(s);
343 break;
344 case 12:
345 s->pcr = val;
346 break;
347 case 13:
348 /* reset bits */
349 s->ifr &= ~val;
350 cuda_update_irq(s);
351 break;
352 case 14:
353 if (val & IER_SET) {
354 /* set bits */
355 s->ier |= val & 0x7f;
356 } else {
357 /* reset bits */
358 s->ier &= ~val;
359 }
360 cuda_update_irq(s);
361 break;
362 default:
363 case 15:
364 s->anh = val;
365 break;
366 }
367 }
368
369 /* NOTE: TIP and TREQ are negated */
370 static void cuda_update(CUDAState *s)
371 {
372 int packet_received, len;
373
374 packet_received = 0;
375 if (!(s->b & TIP)) {
376 /* transfer requested from host */
377
378 if (s->acr & SR_OUT) {
379 /* data output */
380 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
381 if (s->data_out_index < sizeof(s->data_out)) {
382 #ifdef DEBUG_CUDA
383 printf("cuda: send: %02x\n", s->sr);
384 #endif
385 s->data_out[s->data_out_index++] = s->sr;
386 s->ifr |= SR_INT;
387 cuda_update_irq(s);
388 }
389 }
390 } else {
391 if (s->data_in_index < s->data_in_size) {
392 /* data input */
393 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
394 s->sr = s->data_in[s->data_in_index++];
395 #ifdef DEBUG_CUDA
396 printf("cuda: recv: %02x\n", s->sr);
397 #endif
398 /* indicate end of transfer */
399 if (s->data_in_index >= s->data_in_size) {
400 s->b = (s->b | TREQ);
401 }
402 s->ifr |= SR_INT;
403 cuda_update_irq(s);
404 }
405 }
406 }
407 } else {
408 /* no transfer requested: handle sync case */
409 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
410 /* update TREQ state each time TACK change state */
411 if (s->b & TACK)
412 s->b = (s->b | TREQ);
413 else
414 s->b = (s->b & ~TREQ);
415 s->ifr |= SR_INT;
416 cuda_update_irq(s);
417 } else {
418 if (!(s->last_b & TIP)) {
419 /* handle end of host to cuda transfert */
420 packet_received = (s->data_out_index > 0);
421 /* always an IRQ at the end of transfert */
422 s->ifr |= SR_INT;
423 cuda_update_irq(s);
424 }
425 /* signal if there is data to read */
426 if (s->data_in_index < s->data_in_size) {
427 s->b = (s->b & ~TREQ);
428 }
429 }
430 }
431
432 s->last_acr = s->acr;
433 s->last_b = s->b;
434
435 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
436 recursively */
437 if (packet_received) {
438 len = s->data_out_index;
439 s->data_out_index = 0;
440 cuda_receive_packet_from_host(s, s->data_out, len);
441 }
442 }
443
444 static void cuda_send_packet_to_host(CUDAState *s,
445 const uint8_t *data, int len)
446 {
447 #ifdef DEBUG_CUDA_PACKET
448 {
449 int i;
450 printf("cuda_send_packet_to_host:\n");
451 for(i = 0; i < len; i++)
452 printf(" %02x", data[i]);
453 printf("\n");
454 }
455 #endif
456 memcpy(s->data_in, data, len);
457 s->data_in_size = len;
458 s->data_in_index = 0;
459 cuda_update(s);
460 s->ifr |= SR_INT;
461 cuda_update_irq(s);
462 }
463
464 static void cuda_adb_poll(void *opaque)
465 {
466 CUDAState *s = opaque;
467 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
468 int olen;
469
470 olen = adb_poll(&adb_bus, obuf + 2);
471 if (olen > 0) {
472 obuf[0] = ADB_PACKET;
473 obuf[1] = 0x40; /* polled data */
474 cuda_send_packet_to_host(s, obuf, olen + 2);
475 }
476 qemu_mod_timer(s->adb_poll_timer,
477 qemu_get_clock(vm_clock) +
478 (ticks_per_sec / CUDA_ADB_POLL_FREQ));
479 }
480
481 static void cuda_receive_packet(CUDAState *s,
482 const uint8_t *data, int len)
483 {
484 uint8_t obuf[16];
485 int ti, autopoll;
486
487 switch(data[0]) {
488 case CUDA_AUTOPOLL:
489 autopoll = (data[1] != 0);
490 if (autopoll != s->autopoll) {
491 s->autopoll = autopoll;
492 if (autopoll) {
493 qemu_mod_timer(s->adb_poll_timer,
494 qemu_get_clock(vm_clock) +
495 (ticks_per_sec / CUDA_ADB_POLL_FREQ));
496 } else {
497 qemu_del_timer(s->adb_poll_timer);
498 }
499 }
500 obuf[0] = CUDA_PACKET;
501 obuf[1] = data[1];
502 cuda_send_packet_to_host(s, obuf, 2);
503 break;
504 case CUDA_GET_TIME:
505 /* XXX: add time support ? */
506 ti = time(NULL);
507 obuf[0] = CUDA_PACKET;
508 obuf[1] = 0;
509 obuf[2] = 0;
510 obuf[3] = ti >> 24;
511 obuf[4] = ti >> 16;
512 obuf[5] = ti >> 8;
513 obuf[6] = ti;
514 cuda_send_packet_to_host(s, obuf, 7);
515 break;
516 case CUDA_SET_TIME:
517 case CUDA_FILE_SERVER_FLAG:
518 case CUDA_SET_DEVICE_LIST:
519 case CUDA_SET_AUTO_RATE:
520 case CUDA_SET_POWER_MESSAGES:
521 obuf[0] = CUDA_PACKET;
522 obuf[1] = 0;
523 cuda_send_packet_to_host(s, obuf, 2);
524 break;
525 default:
526 break;
527 }
528 }
529
530 static void cuda_receive_packet_from_host(CUDAState *s,
531 const uint8_t *data, int len)
532 {
533 #ifdef DEBUG_CUDA_PACKET
534 {
535 int i;
536 printf("cuda_receive_packet_to_host:\n");
537 for(i = 0; i < len; i++)
538 printf(" %02x", data[i]);
539 printf("\n");
540 }
541 #endif
542 switch(data[0]) {
543 case ADB_PACKET:
544 {
545 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
546 int olen;
547 olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
548 if (olen > 0) {
549 obuf[0] = ADB_PACKET;
550 obuf[1] = 0x00;
551 } else {
552 /* error */
553 obuf[0] = ADB_PACKET;
554 obuf[1] = -olen;
555 olen = 0;
556 }
557 cuda_send_packet_to_host(s, obuf, olen + 2);
558 }
559 break;
560 case CUDA_PACKET:
561 cuda_receive_packet(s, data + 1, len - 1);
562 break;
563 }
564 }
565
566 static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
567 {
568 }
569
570 static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
571 {
572 }
573
574 static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
575 {
576 return 0;
577 }
578
579 static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
580 {
581 return 0;
582 }
583
584 static CPUWriteMemoryFunc *cuda_write[] = {
585 &cuda_writeb,
586 &cuda_writew,
587 &cuda_writel,
588 };
589
590 static CPUReadMemoryFunc *cuda_read[] = {
591 &cuda_readb,
592 &cuda_readw,
593 &cuda_readl,
594 };
595
596 int cuda_init(openpic_t *openpic, int irq)
597 {
598 CUDAState *s = &cuda_state;
599 int cuda_mem_index;
600
601 s->openpic = openpic;
602 s->irq = irq;
603
604 s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
605 s->timers[0].latch = 0x10000;
606 set_counter(s, &s->timers[0], 0xffff);
607 s->timers[1].latch = 0x10000;
608 s->ier = T1_INT | SR_INT;
609 set_counter(s, &s->timers[1], 0xffff);
610
611 s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
612 cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
613 return cuda_mem_index;
614 }