]> git.proxmox.com Git - qemu.git/blob - hw/dma/sparc32_dma.c
hw/i386/Makefile.obj: use $(PYTHON) to run .py scripts consistently
[qemu.git] / hw / dma / sparc32_dma.c
1 /*
2 * QEMU Sparc32 DMA controller emulation
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Modifications:
7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 */
27
28 #include "hw/hw.h"
29 #include "hw/sparc/sparc32_dma.h"
30 #include "hw/sparc/sun4m.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33
34 /*
35 * This is the DMA controller part of chip STP2000 (Master I/O), also
36 * produced as NCR89C100. See
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
38 * and
39 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
40 */
41
42 #define DMA_REGS 4
43 #define DMA_SIZE (4 * sizeof(uint32_t))
44 /* We need the mask, because one instance of the device is not page
45 aligned (ledma, start address 0x0010) */
46 #define DMA_MASK (DMA_SIZE - 1)
47 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
48 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
49 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
50
51 #define DMA_VER 0xa0000000
52 #define DMA_INTR 1
53 #define DMA_INTREN 0x10
54 #define DMA_WRITE_MEM 0x100
55 #define DMA_EN 0x200
56 #define DMA_LOADED 0x04000000
57 #define DMA_DRAIN_FIFO 0x40
58 #define DMA_RESET 0x80
59
60 /* XXX SCSI and ethernet should have different read-only bit masks */
61 #define DMA_CSR_RO_MASK 0xfe000007
62
63 #define TYPE_SPARC32_DMA "sparc32_dma"
64 #define SPARC32_DMA(obj) OBJECT_CHECK(DMAState, (obj), TYPE_SPARC32_DMA)
65
66 typedef struct DMAState DMAState;
67
68 struct DMAState {
69 SysBusDevice parent_obj;
70
71 MemoryRegion iomem;
72 uint32_t dmaregs[DMA_REGS];
73 qemu_irq irq;
74 void *iommu;
75 qemu_irq gpio[2];
76 uint32_t is_ledma;
77 };
78
79 enum {
80 GPIO_RESET = 0,
81 GPIO_DMA,
82 };
83
84 /* Note: on sparc, the lance 16 bit bus is swapped */
85 void ledma_memory_read(void *opaque, hwaddr addr,
86 uint8_t *buf, int len, int do_bswap)
87 {
88 DMAState *s = opaque;
89 int i;
90
91 addr |= s->dmaregs[3];
92 trace_ledma_memory_read(addr);
93 if (do_bswap) {
94 sparc_iommu_memory_read(s->iommu, addr, buf, len);
95 } else {
96 addr &= ~1;
97 len &= ~1;
98 sparc_iommu_memory_read(s->iommu, addr, buf, len);
99 for(i = 0; i < len; i += 2) {
100 bswap16s((uint16_t *)(buf + i));
101 }
102 }
103 }
104
105 void ledma_memory_write(void *opaque, hwaddr addr,
106 uint8_t *buf, int len, int do_bswap)
107 {
108 DMAState *s = opaque;
109 int l, i;
110 uint16_t tmp_buf[32];
111
112 addr |= s->dmaregs[3];
113 trace_ledma_memory_write(addr);
114 if (do_bswap) {
115 sparc_iommu_memory_write(s->iommu, addr, buf, len);
116 } else {
117 addr &= ~1;
118 len &= ~1;
119 while (len > 0) {
120 l = len;
121 if (l > sizeof(tmp_buf))
122 l = sizeof(tmp_buf);
123 for(i = 0; i < l; i += 2) {
124 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
125 }
126 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
127 len -= l;
128 buf += l;
129 addr += l;
130 }
131 }
132 }
133
134 static void dma_set_irq(void *opaque, int irq, int level)
135 {
136 DMAState *s = opaque;
137 if (level) {
138 s->dmaregs[0] |= DMA_INTR;
139 if (s->dmaregs[0] & DMA_INTREN) {
140 trace_sparc32_dma_set_irq_raise();
141 qemu_irq_raise(s->irq);
142 }
143 } else {
144 if (s->dmaregs[0] & DMA_INTR) {
145 s->dmaregs[0] &= ~DMA_INTR;
146 if (s->dmaregs[0] & DMA_INTREN) {
147 trace_sparc32_dma_set_irq_lower();
148 qemu_irq_lower(s->irq);
149 }
150 }
151 }
152 }
153
154 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
155 {
156 DMAState *s = opaque;
157
158 trace_espdma_memory_read(s->dmaregs[1]);
159 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
160 s->dmaregs[1] += len;
161 }
162
163 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
164 {
165 DMAState *s = opaque;
166
167 trace_espdma_memory_write(s->dmaregs[1]);
168 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
169 s->dmaregs[1] += len;
170 }
171
172 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
173 unsigned size)
174 {
175 DMAState *s = opaque;
176 uint32_t saddr;
177
178 if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
179 /* aliased to espdma, but we can't get there from here */
180 /* buggy driver if using undocumented behavior, just return 0 */
181 trace_sparc32_dma_mem_readl(addr, 0);
182 return 0;
183 }
184 saddr = (addr & DMA_MASK) >> 2;
185 trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
186 return s->dmaregs[saddr];
187 }
188
189 static void dma_mem_write(void *opaque, hwaddr addr,
190 uint64_t val, unsigned size)
191 {
192 DMAState *s = opaque;
193 uint32_t saddr;
194
195 if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
196 /* aliased to espdma, but we can't get there from here */
197 trace_sparc32_dma_mem_writel(addr, 0, val);
198 return;
199 }
200 saddr = (addr & DMA_MASK) >> 2;
201 trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
202 switch (saddr) {
203 case 0:
204 if (val & DMA_INTREN) {
205 if (s->dmaregs[0] & DMA_INTR) {
206 trace_sparc32_dma_set_irq_raise();
207 qemu_irq_raise(s->irq);
208 }
209 } else {
210 if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
211 trace_sparc32_dma_set_irq_lower();
212 qemu_irq_lower(s->irq);
213 }
214 }
215 if (val & DMA_RESET) {
216 qemu_irq_raise(s->gpio[GPIO_RESET]);
217 qemu_irq_lower(s->gpio[GPIO_RESET]);
218 } else if (val & DMA_DRAIN_FIFO) {
219 val &= ~DMA_DRAIN_FIFO;
220 } else if (val == 0)
221 val = DMA_DRAIN_FIFO;
222
223 if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
224 trace_sparc32_dma_enable_raise();
225 qemu_irq_raise(s->gpio[GPIO_DMA]);
226 } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
227 trace_sparc32_dma_enable_lower();
228 qemu_irq_lower(s->gpio[GPIO_DMA]);
229 }
230
231 val &= ~DMA_CSR_RO_MASK;
232 val |= DMA_VER;
233 s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
234 break;
235 case 1:
236 s->dmaregs[0] |= DMA_LOADED;
237 /* fall through */
238 default:
239 s->dmaregs[saddr] = val;
240 break;
241 }
242 }
243
244 static const MemoryRegionOps dma_mem_ops = {
245 .read = dma_mem_read,
246 .write = dma_mem_write,
247 .endianness = DEVICE_NATIVE_ENDIAN,
248 .valid = {
249 .min_access_size = 4,
250 .max_access_size = 4,
251 },
252 };
253
254 static void dma_reset(DeviceState *d)
255 {
256 DMAState *s = SPARC32_DMA(d);
257
258 memset(s->dmaregs, 0, DMA_SIZE);
259 s->dmaregs[0] = DMA_VER;
260 }
261
262 static const VMStateDescription vmstate_dma = {
263 .name ="sparc32_dma",
264 .version_id = 2,
265 .minimum_version_id = 2,
266 .minimum_version_id_old = 2,
267 .fields = (VMStateField []) {
268 VMSTATE_UINT32_ARRAY(dmaregs, DMAState, DMA_REGS),
269 VMSTATE_END_OF_LIST()
270 }
271 };
272
273 static int sparc32_dma_init1(SysBusDevice *sbd)
274 {
275 DeviceState *dev = DEVICE(sbd);
276 DMAState *s = SPARC32_DMA(dev);
277 int reg_size;
278
279 sysbus_init_irq(sbd, &s->irq);
280
281 reg_size = s->is_ledma ? DMA_ETH_SIZE : DMA_SIZE;
282 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
283 "dma", reg_size);
284 sysbus_init_mmio(sbd, &s->iomem);
285
286 qdev_init_gpio_in(dev, dma_set_irq, 1);
287 qdev_init_gpio_out(dev, s->gpio, 2);
288
289 return 0;
290 }
291
292 static Property sparc32_dma_properties[] = {
293 DEFINE_PROP_PTR("iommu_opaque", DMAState, iommu),
294 DEFINE_PROP_UINT32("is_ledma", DMAState, is_ledma, 0),
295 DEFINE_PROP_END_OF_LIST(),
296 };
297
298 static void sparc32_dma_class_init(ObjectClass *klass, void *data)
299 {
300 DeviceClass *dc = DEVICE_CLASS(klass);
301 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
302
303 k->init = sparc32_dma_init1;
304 dc->reset = dma_reset;
305 dc->vmsd = &vmstate_dma;
306 dc->props = sparc32_dma_properties;
307 }
308
309 static const TypeInfo sparc32_dma_info = {
310 .name = TYPE_SPARC32_DMA,
311 .parent = TYPE_SYS_BUS_DEVICE,
312 .instance_size = sizeof(DMAState),
313 .class_init = sparc32_dma_class_init,
314 };
315
316 static void sparc32_dma_register_types(void)
317 {
318 type_register_static(&sparc32_dma_info);
319 }
320
321 type_init(sparc32_dma_register_types)