]> git.proxmox.com Git - qemu.git/blob - hw/eepro100.c
PPC: Fix TLB invalidation bug within the PPC interrupt handler.
[qemu.git] / hw / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2011 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * Windows networking
28 *
29 * References:
30 *
31 * Intel 8255x 10/100 Mbps Ethernet Controller Family
32 * Open Source Software Developer Manual
33 *
34 * TODO:
35 * * PHY emulation should be separated from nic emulation.
36 * Most nic emulations could share the same phy code.
37 * * i82550 is untested. It is programmed like the i82559.
38 * * i82562 is untested. It is programmed like the i82559.
39 * * Power management (i82558 and later) is not implemented.
40 * * Wake-on-LAN is not implemented.
41 */
42
43 #include <stddef.h> /* offsetof */
44 #include "hw.h"
45 #include "pci.h"
46 #include "net.h"
47 #include "eeprom93xx.h"
48 #include "sysemu.h"
49 #include "dma.h"
50
51 /* QEMU sends frames smaller than 60 bytes to ethernet nics.
52 * Such frames are rejected by real nics and their emulations.
53 * To avoid this behaviour, other nic emulations pad received
54 * frames. The following definition enables this padding for
55 * eepro100, too. We keep the define around in case it might
56 * become useful the future if the core networking is ever
57 * changed to pad short packets itself. */
58 #define CONFIG_PAD_RECEIVED_FRAMES
59
60 #define KiB 1024
61
62 /* Debug EEPRO100 card. */
63 #if 0
64 # define DEBUG_EEPRO100
65 #endif
66
67 #ifdef DEBUG_EEPRO100
68 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
69 #else
70 #define logout(fmt, ...) ((void)0)
71 #endif
72
73 /* Set flags to 0 to disable debug output. */
74 #define INT 1 /* interrupt related actions */
75 #define MDI 1 /* mdi related actions */
76 #define OTHER 1
77 #define RXTX 1
78 #define EEPROM 1 /* eeprom related actions */
79
80 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
81
82 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
83
84 #define MAX_ETH_FRAME_SIZE 1514
85
86 /* This driver supports several different devices which are declared here. */
87 #define i82550 0x82550
88 #define i82551 0x82551
89 #define i82557A 0x82557a
90 #define i82557B 0x82557b
91 #define i82557C 0x82557c
92 #define i82558A 0x82558a
93 #define i82558B 0x82558b
94 #define i82559A 0x82559a
95 #define i82559B 0x82559b
96 #define i82559C 0x82559c
97 #define i82559ER 0x82559e
98 #define i82562 0x82562
99 #define i82801 0x82801
100
101 /* Use 64 word EEPROM. TODO: could be a runtime option. */
102 #define EEPROM_SIZE 64
103
104 #define PCI_MEM_SIZE (4 * KiB)
105 #define PCI_IO_SIZE 64
106 #define PCI_FLASH_SIZE (128 * KiB)
107
108 #define BIT(n) (1 << (n))
109 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
110
111 /* The SCB accepts the following controls for the Tx and Rx units: */
112 #define CU_NOP 0x0000 /* No operation. */
113 #define CU_START 0x0010 /* CU start. */
114 #define CU_RESUME 0x0020 /* CU resume. */
115 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
116 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
117 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
118 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
119 #define CU_SRESUME 0x00a0 /* CU static resume. */
120
121 #define RU_NOP 0x0000
122 #define RX_START 0x0001
123 #define RX_RESUME 0x0002
124 #define RU_ABORT 0x0004
125 #define RX_ADDR_LOAD 0x0006
126 #define RX_RESUMENR 0x0007
127 #define INT_MASK 0x0100
128 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
129
130 typedef struct {
131 const char *name;
132 const char *desc;
133 uint16_t device_id;
134 uint8_t revision;
135 uint16_t subsystem_vendor_id;
136 uint16_t subsystem_id;
137
138 uint32_t device;
139 uint8_t stats_size;
140 bool has_extended_tcb_support;
141 bool power_management;
142 } E100PCIDeviceInfo;
143
144 /* Offsets to the various registers.
145 All accesses need not be longword aligned. */
146 typedef enum {
147 SCBStatus = 0, /* Status Word. */
148 SCBAck = 1,
149 SCBCmd = 2, /* Rx/Command Unit command and status. */
150 SCBIntmask = 3,
151 SCBPointer = 4, /* General purpose pointer. */
152 SCBPort = 8, /* Misc. commands and operands. */
153 SCBflash = 12, /* Flash memory control. */
154 SCBeeprom = 14, /* EEPROM control. */
155 SCBCtrlMDI = 16, /* MDI interface control. */
156 SCBEarlyRx = 20, /* Early receive byte count. */
157 SCBFlow = 24, /* Flow Control. */
158 SCBpmdr = 27, /* Power Management Driver. */
159 SCBgctrl = 28, /* General Control. */
160 SCBgstat = 29, /* General Status. */
161 } E100RegisterOffset;
162
163 /* A speedo3 transmit buffer descriptor with two buffers... */
164 typedef struct {
165 uint16_t status;
166 uint16_t command;
167 uint32_t link; /* void * */
168 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
169 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
170 uint8_t tx_threshold; /* transmit threshold */
171 uint8_t tbd_count; /* TBD number */
172 #if 0
173 /* This constitutes two "TBD" entries: hdr and data */
174 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
175 int32_t tx_buf_size0; /* Length of Tx hdr. */
176 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
177 int32_t tx_buf_size1; /* Length of Tx data. */
178 #endif
179 } eepro100_tx_t;
180
181 /* Receive frame descriptor. */
182 typedef struct {
183 int16_t status;
184 uint16_t command;
185 uint32_t link; /* struct RxFD * */
186 uint32_t rx_buf_addr; /* void * */
187 uint16_t count;
188 uint16_t size;
189 /* Ethernet frame data follows. */
190 } eepro100_rx_t;
191
192 typedef enum {
193 COMMAND_EL = BIT(15),
194 COMMAND_S = BIT(14),
195 COMMAND_I = BIT(13),
196 COMMAND_NC = BIT(4),
197 COMMAND_SF = BIT(3),
198 COMMAND_CMD = BITS(2, 0),
199 } scb_command_bit;
200
201 typedef enum {
202 STATUS_C = BIT(15),
203 STATUS_OK = BIT(13),
204 } scb_status_bit;
205
206 typedef struct {
207 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
208 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
209 tx_multiple_collisions, tx_total_collisions;
210 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
211 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
212 rx_short_frame_errors;
213 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
214 uint16_t xmt_tco_frames, rcv_tco_frames;
215 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
216 uint32_t reserved[4];
217 } eepro100_stats_t;
218
219 typedef enum {
220 cu_idle = 0,
221 cu_suspended = 1,
222 cu_active = 2,
223 cu_lpq_active = 2,
224 cu_hqp_active = 3
225 } cu_state_t;
226
227 typedef enum {
228 ru_idle = 0,
229 ru_suspended = 1,
230 ru_no_resources = 2,
231 ru_ready = 4
232 } ru_state_t;
233
234 typedef struct {
235 PCIDevice dev;
236 /* Hash register (multicast mask array, multiple individual addresses). */
237 uint8_t mult[8];
238 MemoryRegion mmio_bar;
239 MemoryRegion io_bar;
240 MemoryRegion flash_bar;
241 NICState *nic;
242 NICConf conf;
243 uint8_t scb_stat; /* SCB stat/ack byte */
244 uint8_t int_stat; /* PCI interrupt status */
245 /* region must not be saved by nic_save. */
246 uint16_t mdimem[32];
247 eeprom_t *eeprom;
248 uint32_t device; /* device variant */
249 /* (cu_base + cu_offset) address the next command block in the command block list. */
250 uint32_t cu_base; /* CU base address */
251 uint32_t cu_offset; /* CU address offset */
252 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
253 uint32_t ru_base; /* RU base address */
254 uint32_t ru_offset; /* RU address offset */
255 uint32_t statsaddr; /* pointer to eepro100_stats_t */
256
257 /* Temporary status information (no need to save these values),
258 * used while processing CU commands. */
259 eepro100_tx_t tx; /* transmit buffer descriptor */
260 uint32_t cb_address; /* = cu_base + cu_offset */
261
262 /* Statistical counters. Also used for wake-up packet (i82559). */
263 eepro100_stats_t statistics;
264
265 /* Data in mem is always in the byte order of the controller (le).
266 * It must be dword aligned to allow direct access to 32 bit values. */
267 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
268
269 /* Configuration bytes. */
270 uint8_t configuration[22];
271
272 /* vmstate for each particular nic */
273 VMStateDescription *vmstate;
274
275 /* Quasi static device properties (no need to save them). */
276 uint16_t stats_size;
277 bool has_extended_tcb_support;
278 } EEPRO100State;
279
280 /* Word indices in EEPROM. */
281 typedef enum {
282 EEPROM_CNFG_MDIX = 0x03,
283 EEPROM_ID = 0x05,
284 EEPROM_PHY_ID = 0x06,
285 EEPROM_VENDOR_ID = 0x0c,
286 EEPROM_CONFIG_ASF = 0x0d,
287 EEPROM_DEVICE_ID = 0x23,
288 EEPROM_SMBUS_ADDR = 0x90,
289 } EEPROMOffset;
290
291 /* Bit values for EEPROM ID word. */
292 typedef enum {
293 EEPROM_ID_MDM = BIT(0), /* Modem */
294 EEPROM_ID_STB = BIT(1), /* Standby Enable */
295 EEPROM_ID_WMR = BIT(2), /* ??? */
296 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
297 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
298 EEPROM_ID_ALT = BIT(7), /* */
299 /* BITS(10, 8) device revision */
300 EEPROM_ID_BD = BIT(11), /* boot disable */
301 EEPROM_ID_ID = BIT(13), /* id bit */
302 /* BITS(15, 14) signature */
303 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
304 } eeprom_id_bit;
305
306 /* Default values for MDI (PHY) registers */
307 static const uint16_t eepro100_mdi_default[] = {
308 /* MDI Registers 0 - 6, 7 */
309 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
310 /* MDI Registers 8 - 15 */
311 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
312 /* MDI Registers 16 - 31 */
313 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
314 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
315 };
316
317 /* Readonly mask for MDI (PHY) registers */
318 static const uint16_t eepro100_mdi_mask[] = {
319 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
320 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
321 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
322 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
323 };
324
325 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
326
327 /* Read a 16 bit control/status (CSR) register. */
328 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
329 {
330 assert(!((uintptr_t)&s->mem[addr] & 1));
331 return le16_to_cpup((uint16_t *)&s->mem[addr]);
332 }
333
334 /* Read a 32 bit control/status (CSR) register. */
335 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
336 {
337 assert(!((uintptr_t)&s->mem[addr] & 3));
338 return le32_to_cpup((uint32_t *)&s->mem[addr]);
339 }
340
341 /* Write a 16 bit control/status (CSR) register. */
342 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
343 uint16_t val)
344 {
345 assert(!((uintptr_t)&s->mem[addr] & 1));
346 cpu_to_le16w((uint16_t *)&s->mem[addr], val);
347 }
348
349 /* Read a 32 bit control/status (CSR) register. */
350 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
351 uint32_t val)
352 {
353 assert(!((uintptr_t)&s->mem[addr] & 3));
354 cpu_to_le32w((uint32_t *)&s->mem[addr], val);
355 }
356
357 #if defined(DEBUG_EEPRO100)
358 static const char *nic_dump(const uint8_t * buf, unsigned size)
359 {
360 static char dump[3 * 16 + 1];
361 char *p = &dump[0];
362 if (size > 16) {
363 size = 16;
364 }
365 while (size-- > 0) {
366 p += sprintf(p, " %02x", *buf++);
367 }
368 return dump;
369 }
370 #endif /* DEBUG_EEPRO100 */
371
372 enum scb_stat_ack {
373 stat_ack_not_ours = 0x00,
374 stat_ack_sw_gen = 0x04,
375 stat_ack_rnr = 0x10,
376 stat_ack_cu_idle = 0x20,
377 stat_ack_frame_rx = 0x40,
378 stat_ack_cu_cmd_done = 0x80,
379 stat_ack_not_present = 0xFF,
380 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
381 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
382 };
383
384 static void disable_interrupt(EEPRO100State * s)
385 {
386 if (s->int_stat) {
387 TRACE(INT, logout("interrupt disabled\n"));
388 qemu_irq_lower(s->dev.irq[0]);
389 s->int_stat = 0;
390 }
391 }
392
393 static void enable_interrupt(EEPRO100State * s)
394 {
395 if (!s->int_stat) {
396 TRACE(INT, logout("interrupt enabled\n"));
397 qemu_irq_raise(s->dev.irq[0]);
398 s->int_stat = 1;
399 }
400 }
401
402 static void eepro100_acknowledge(EEPRO100State * s)
403 {
404 s->scb_stat &= ~s->mem[SCBAck];
405 s->mem[SCBAck] = s->scb_stat;
406 if (s->scb_stat == 0) {
407 disable_interrupt(s);
408 }
409 }
410
411 static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
412 {
413 uint8_t mask = ~s->mem[SCBIntmask];
414 s->mem[SCBAck] |= status;
415 status = s->scb_stat = s->mem[SCBAck];
416 status &= (mask | 0x0f);
417 #if 0
418 status &= (~s->mem[SCBIntmask] | 0x0xf);
419 #endif
420 if (status && (mask & 0x01)) {
421 /* SCB mask and SCB Bit M do not disable interrupt. */
422 enable_interrupt(s);
423 } else if (s->int_stat) {
424 disable_interrupt(s);
425 }
426 }
427
428 static void eepro100_cx_interrupt(EEPRO100State * s)
429 {
430 /* CU completed action command. */
431 /* Transmit not ok (82557 only, not in emulation). */
432 eepro100_interrupt(s, 0x80);
433 }
434
435 static void eepro100_cna_interrupt(EEPRO100State * s)
436 {
437 /* CU left the active state. */
438 eepro100_interrupt(s, 0x20);
439 }
440
441 static void eepro100_fr_interrupt(EEPRO100State * s)
442 {
443 /* RU received a complete frame. */
444 eepro100_interrupt(s, 0x40);
445 }
446
447 static void eepro100_rnr_interrupt(EEPRO100State * s)
448 {
449 /* RU is not ready. */
450 eepro100_interrupt(s, 0x10);
451 }
452
453 static void eepro100_mdi_interrupt(EEPRO100State * s)
454 {
455 /* MDI completed read or write cycle. */
456 eepro100_interrupt(s, 0x08);
457 }
458
459 static void eepro100_swi_interrupt(EEPRO100State * s)
460 {
461 /* Software has requested an interrupt. */
462 eepro100_interrupt(s, 0x04);
463 }
464
465 #if 0
466 static void eepro100_fcp_interrupt(EEPRO100State * s)
467 {
468 /* Flow control pause interrupt (82558 and later). */
469 eepro100_interrupt(s, 0x01);
470 }
471 #endif
472
473 static void e100_pci_reset(EEPRO100State * s)
474 {
475 E100PCIDeviceInfo *info = eepro100_get_class(s);
476 uint32_t device = s->device;
477 uint8_t *pci_conf = s->dev.config;
478
479 TRACE(OTHER, logout("%p\n", s));
480
481 /* PCI Status */
482 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
483 PCI_STATUS_FAST_BACK);
484 /* PCI Latency Timer */
485 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
486 /* Capability Pointer is set by PCI framework. */
487 /* Interrupt Line */
488 /* Interrupt Pin */
489 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
490 /* Minimum Grant */
491 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
492 /* Maximum Latency */
493 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
494
495 s->stats_size = info->stats_size;
496 s->has_extended_tcb_support = info->has_extended_tcb_support;
497
498 switch (device) {
499 case i82550:
500 case i82551:
501 case i82557A:
502 case i82557B:
503 case i82557C:
504 case i82558A:
505 case i82558B:
506 case i82559A:
507 case i82559B:
508 case i82559ER:
509 case i82562:
510 case i82801:
511 case i82559C:
512 break;
513 default:
514 logout("Device %X is undefined!\n", device);
515 }
516
517 /* Standard TxCB. */
518 s->configuration[6] |= BIT(4);
519
520 /* Standard statistical counters. */
521 s->configuration[6] |= BIT(5);
522
523 if (s->stats_size == 80) {
524 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
525 if (s->configuration[6] & BIT(2)) {
526 /* TCO statistical counters. */
527 assert(s->configuration[6] & BIT(5));
528 } else {
529 if (s->configuration[6] & BIT(5)) {
530 /* No extended statistical counters, i82557 compatible. */
531 s->stats_size = 64;
532 } else {
533 /* i82558 compatible. */
534 s->stats_size = 76;
535 }
536 }
537 } else {
538 if (s->configuration[6] & BIT(5)) {
539 /* No extended statistical counters. */
540 s->stats_size = 64;
541 }
542 }
543 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
544
545 if (info->power_management) {
546 /* Power Management Capabilities */
547 int cfg_offset = 0xdc;
548 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
549 cfg_offset, PCI_PM_SIZEOF);
550 assert(r >= 0);
551 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
552 #if 0 /* TODO: replace dummy code for power management emulation. */
553 /* TODO: Power Management Control / Status. */
554 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
555 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
556 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
557 #endif
558 }
559
560 #if EEPROM_SIZE > 0
561 if (device == i82557C || device == i82558B || device == i82559C) {
562 /*
563 TODO: get vendor id from EEPROM for i82557C or later.
564 TODO: get device id from EEPROM for i82557C or later.
565 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
566 TODO: header type is determined by EEPROM for i82559.
567 TODO: get subsystem id from EEPROM for i82557C or later.
568 TODO: get subsystem vendor id from EEPROM for i82557C or later.
569 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
570 TODO: capability pointer depends on EEPROM for i82558.
571 */
572 logout("Get device id and revision from EEPROM!!!\n");
573 }
574 #endif /* EEPROM_SIZE > 0 */
575 }
576
577 static void nic_selective_reset(EEPRO100State * s)
578 {
579 size_t i;
580 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
581 #if 0
582 eeprom93xx_reset(s->eeprom);
583 #endif
584 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
585 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
586 if (s->device == i82557B || s->device == i82557C)
587 eeprom_contents[5] = 0x0100;
588 eeprom_contents[EEPROM_PHY_ID] = 1;
589 uint16_t sum = 0;
590 for (i = 0; i < EEPROM_SIZE - 1; i++) {
591 sum += eeprom_contents[i];
592 }
593 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
594 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
595
596 memset(s->mem, 0, sizeof(s->mem));
597 e100_write_reg4(s, SCBCtrlMDI, BIT(21));
598
599 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
600 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
601 }
602
603 static void nic_reset(void *opaque)
604 {
605 EEPRO100State *s = opaque;
606 TRACE(OTHER, logout("%p\n", s));
607 /* TODO: Clearing of hash register for selective reset, too? */
608 memset(&s->mult[0], 0, sizeof(s->mult));
609 nic_selective_reset(s);
610 }
611
612 #if defined(DEBUG_EEPRO100)
613 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
614 "Command/Status",
615 "General Pointer",
616 "Port",
617 "EEPROM/Flash Control",
618 "MDI Control",
619 "Receive DMA Byte Count",
620 "Flow Control",
621 "General Status/Control"
622 };
623
624 static char *regname(uint32_t addr)
625 {
626 static char buf[32];
627 if (addr < PCI_IO_SIZE) {
628 const char *r = e100_reg[addr / 4];
629 if (r != 0) {
630 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
631 } else {
632 snprintf(buf, sizeof(buf), "0x%02x", addr);
633 }
634 } else {
635 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
636 }
637 return buf;
638 }
639 #endif /* DEBUG_EEPRO100 */
640
641 /*****************************************************************************
642 *
643 * Command emulation.
644 *
645 ****************************************************************************/
646
647 #if 0
648 static uint16_t eepro100_read_command(EEPRO100State * s)
649 {
650 uint16_t val = 0xffff;
651 TRACE(OTHER, logout("val=0x%04x\n", val));
652 return val;
653 }
654 #endif
655
656 /* Commands that can be put in a command list entry. */
657 enum commands {
658 CmdNOp = 0,
659 CmdIASetup = 1,
660 CmdConfigure = 2,
661 CmdMulticastList = 3,
662 CmdTx = 4,
663 CmdTDR = 5, /* load microcode */
664 CmdDump = 6,
665 CmdDiagnose = 7,
666
667 /* And some extra flags: */
668 CmdSuspend = 0x4000, /* Suspend after completion. */
669 CmdIntr = 0x2000, /* Interrupt after completion. */
670 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
671 };
672
673 static cu_state_t get_cu_state(EEPRO100State * s)
674 {
675 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
676 }
677
678 static void set_cu_state(EEPRO100State * s, cu_state_t state)
679 {
680 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
681 }
682
683 static ru_state_t get_ru_state(EEPRO100State * s)
684 {
685 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
686 }
687
688 static void set_ru_state(EEPRO100State * s, ru_state_t state)
689 {
690 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
691 }
692
693 static void dump_statistics(EEPRO100State * s)
694 {
695 /* Dump statistical data. Most data is never changed by the emulation
696 * and always 0, so we first just copy the whole block and then those
697 * values which really matter.
698 * Number of data should check configuration!!!
699 */
700 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
701 stl_le_pci_dma(&s->dev, s->statsaddr + 0,
702 s->statistics.tx_good_frames);
703 stl_le_pci_dma(&s->dev, s->statsaddr + 36,
704 s->statistics.rx_good_frames);
705 stl_le_pci_dma(&s->dev, s->statsaddr + 48,
706 s->statistics.rx_resource_errors);
707 stl_le_pci_dma(&s->dev, s->statsaddr + 60,
708 s->statistics.rx_short_frame_errors);
709 #if 0
710 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames);
711 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames);
712 missing("CU dump statistical counters");
713 #endif
714 }
715
716 static void read_cb(EEPRO100State *s)
717 {
718 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
719 s->tx.status = le16_to_cpu(s->tx.status);
720 s->tx.command = le16_to_cpu(s->tx.command);
721 s->tx.link = le32_to_cpu(s->tx.link);
722 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
723 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
724 }
725
726 static void tx_command(EEPRO100State *s)
727 {
728 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
729 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
730 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
731 uint8_t buf[2600];
732 uint16_t size = 0;
733 uint32_t tbd_address = s->cb_address + 0x10;
734 TRACE(RXTX, logout
735 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
736 tbd_array, tcb_bytes, s->tx.tbd_count));
737
738 if (tcb_bytes > 2600) {
739 logout("TCB byte count too large, using 2600\n");
740 tcb_bytes = 2600;
741 }
742 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
743 logout
744 ("illegal values of TBD array address and TCB byte count!\n");
745 }
746 assert(tcb_bytes <= sizeof(buf));
747 while (size < tcb_bytes) {
748 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
749 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
750 #if 0
751 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
752 #endif
753 tbd_address += 8;
754 TRACE(RXTX, logout
755 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
756 tx_buffer_address, tx_buffer_size));
757 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
758 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size);
759 size += tx_buffer_size;
760 }
761 if (tbd_array == 0xffffffff) {
762 /* Simplified mode. Was already handled by code above. */
763 } else {
764 /* Flexible mode. */
765 uint8_t tbd_count = 0;
766 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
767 /* Extended Flexible TCB. */
768 for (; tbd_count < 2; tbd_count++) {
769 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev,
770 tbd_address);
771 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev,
772 tbd_address + 4);
773 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev,
774 tbd_address + 6);
775 tbd_address += 8;
776 TRACE(RXTX, logout
777 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
778 tx_buffer_address, tx_buffer_size));
779 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
780 pci_dma_read(&s->dev, tx_buffer_address,
781 &buf[size], tx_buffer_size);
782 size += tx_buffer_size;
783 if (tx_buffer_el & 1) {
784 break;
785 }
786 }
787 }
788 tbd_address = tbd_array;
789 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
790 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
791 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
792 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
793 tbd_address += 8;
794 TRACE(RXTX, logout
795 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
796 tx_buffer_address, tx_buffer_size));
797 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
798 pci_dma_read(&s->dev, tx_buffer_address,
799 &buf[size], tx_buffer_size);
800 size += tx_buffer_size;
801 if (tx_buffer_el & 1) {
802 break;
803 }
804 }
805 }
806 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
807 qemu_send_packet(&s->nic->nc, buf, size);
808 s->statistics.tx_good_frames++;
809 /* Transmit with bad status would raise an CX/TNO interrupt.
810 * (82557 only). Emulation never has bad status. */
811 #if 0
812 eepro100_cx_interrupt(s);
813 #endif
814 }
815
816 static void set_multicast_list(EEPRO100State *s)
817 {
818 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
819 uint16_t i;
820 memset(&s->mult[0], 0, sizeof(s->mult));
821 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
822 for (i = 0; i < multicast_count; i += 6) {
823 uint8_t multicast_addr[6];
824 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
825 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
826 unsigned mcast_idx = compute_mcast_idx(multicast_addr);
827 assert(mcast_idx < 64);
828 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
829 }
830 }
831
832 static void action_command(EEPRO100State *s)
833 {
834 for (;;) {
835 bool bit_el;
836 bool bit_s;
837 bool bit_i;
838 bool bit_nc;
839 uint16_t ok_status = STATUS_OK;
840 s->cb_address = s->cu_base + s->cu_offset;
841 read_cb(s);
842 bit_el = ((s->tx.command & COMMAND_EL) != 0);
843 bit_s = ((s->tx.command & COMMAND_S) != 0);
844 bit_i = ((s->tx.command & COMMAND_I) != 0);
845 bit_nc = ((s->tx.command & COMMAND_NC) != 0);
846 #if 0
847 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
848 #endif
849 s->cu_offset = s->tx.link;
850 TRACE(OTHER,
851 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
852 s->tx.status, s->tx.command, s->tx.link));
853 switch (s->tx.command & COMMAND_CMD) {
854 case CmdNOp:
855 /* Do nothing. */
856 break;
857 case CmdIASetup:
858 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
859 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
860 break;
861 case CmdConfigure:
862 pci_dma_read(&s->dev, s->cb_address + 8,
863 &s->configuration[0], sizeof(s->configuration));
864 TRACE(OTHER, logout("configuration: %s\n",
865 nic_dump(&s->configuration[0], 16)));
866 TRACE(OTHER, logout("configuration: %s\n",
867 nic_dump(&s->configuration[16],
868 ARRAY_SIZE(s->configuration) - 16)));
869 if (s->configuration[20] & BIT(6)) {
870 TRACE(OTHER, logout("Multiple IA bit\n"));
871 }
872 break;
873 case CmdMulticastList:
874 set_multicast_list(s);
875 break;
876 case CmdTx:
877 if (bit_nc) {
878 missing("CmdTx: NC = 0");
879 ok_status = 0;
880 break;
881 }
882 tx_command(s);
883 break;
884 case CmdTDR:
885 TRACE(OTHER, logout("load microcode\n"));
886 /* Starting with offset 8, the command contains
887 * 64 dwords microcode which we just ignore here. */
888 break;
889 case CmdDiagnose:
890 TRACE(OTHER, logout("diagnose\n"));
891 /* Make sure error flag is not set. */
892 s->tx.status = 0;
893 break;
894 default:
895 missing("undefined command");
896 ok_status = 0;
897 break;
898 }
899 /* Write new status. */
900 stw_le_pci_dma(&s->dev, s->cb_address,
901 s->tx.status | ok_status | STATUS_C);
902 if (bit_i) {
903 /* CU completed action. */
904 eepro100_cx_interrupt(s);
905 }
906 if (bit_el) {
907 /* CU becomes idle. Terminate command loop. */
908 set_cu_state(s, cu_idle);
909 eepro100_cna_interrupt(s);
910 break;
911 } else if (bit_s) {
912 /* CU becomes suspended. Terminate command loop. */
913 set_cu_state(s, cu_suspended);
914 eepro100_cna_interrupt(s);
915 break;
916 } else {
917 /* More entries in list. */
918 TRACE(OTHER, logout("CU list with at least one more entry\n"));
919 }
920 }
921 TRACE(OTHER, logout("CU list empty\n"));
922 /* List is empty. Now CU is idle or suspended. */
923 }
924
925 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
926 {
927 cu_state_t cu_state;
928 switch (val) {
929 case CU_NOP:
930 /* No operation. */
931 break;
932 case CU_START:
933 cu_state = get_cu_state(s);
934 if (cu_state != cu_idle && cu_state != cu_suspended) {
935 /* Intel documentation says that CU must be idle or suspended
936 * for the CU start command. */
937 logout("unexpected CU state is %u\n", cu_state);
938 }
939 set_cu_state(s, cu_active);
940 s->cu_offset = e100_read_reg4(s, SCBPointer);
941 action_command(s);
942 break;
943 case CU_RESUME:
944 if (get_cu_state(s) != cu_suspended) {
945 logout("bad CU resume from CU state %u\n", get_cu_state(s));
946 /* Workaround for bad Linux eepro100 driver which resumes
947 * from idle state. */
948 #if 0
949 missing("cu resume");
950 #endif
951 set_cu_state(s, cu_suspended);
952 }
953 if (get_cu_state(s) == cu_suspended) {
954 TRACE(OTHER, logout("CU resuming\n"));
955 set_cu_state(s, cu_active);
956 action_command(s);
957 }
958 break;
959 case CU_STATSADDR:
960 /* Load dump counters address. */
961 s->statsaddr = e100_read_reg4(s, SCBPointer);
962 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
963 if (s->statsaddr & 3) {
964 /* Memory must be Dword aligned. */
965 logout("unaligned dump counters address\n");
966 /* Handling of misaligned addresses is undefined.
967 * Here we align the address by ignoring the lower bits. */
968 /* TODO: Test unaligned dump counter address on real hardware. */
969 s->statsaddr &= ~3;
970 }
971 break;
972 case CU_SHOWSTATS:
973 /* Dump statistical counters. */
974 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
975 dump_statistics(s);
976 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005);
977 break;
978 case CU_CMD_BASE:
979 /* Load CU base. */
980 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
981 s->cu_base = e100_read_reg4(s, SCBPointer);
982 break;
983 case CU_DUMPSTATS:
984 /* Dump and reset statistical counters. */
985 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
986 dump_statistics(s);
987 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007);
988 memset(&s->statistics, 0, sizeof(s->statistics));
989 break;
990 case CU_SRESUME:
991 /* CU static resume. */
992 missing("CU static resume");
993 break;
994 default:
995 missing("Undefined CU command");
996 }
997 }
998
999 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1000 {
1001 switch (val) {
1002 case RU_NOP:
1003 /* No operation. */
1004 break;
1005 case RX_START:
1006 /* RU start. */
1007 if (get_ru_state(s) != ru_idle) {
1008 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1009 #if 0
1010 assert(!"wrong RU state");
1011 #endif
1012 }
1013 set_ru_state(s, ru_ready);
1014 s->ru_offset = e100_read_reg4(s, SCBPointer);
1015 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1016 break;
1017 case RX_RESUME:
1018 /* Restart RU. */
1019 if (get_ru_state(s) != ru_suspended) {
1020 logout("RU state is %u, should be %u\n", get_ru_state(s),
1021 ru_suspended);
1022 #if 0
1023 assert(!"wrong RU state");
1024 #endif
1025 }
1026 set_ru_state(s, ru_ready);
1027 break;
1028 case RU_ABORT:
1029 /* RU abort. */
1030 if (get_ru_state(s) == ru_ready) {
1031 eepro100_rnr_interrupt(s);
1032 }
1033 set_ru_state(s, ru_idle);
1034 break;
1035 case RX_ADDR_LOAD:
1036 /* Load RU base. */
1037 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1038 s->ru_base = e100_read_reg4(s, SCBPointer);
1039 break;
1040 default:
1041 logout("val=0x%02x (undefined RU command)\n", val);
1042 missing("Undefined SU command");
1043 }
1044 }
1045
1046 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1047 {
1048 eepro100_ru_command(s, val & 0x0f);
1049 eepro100_cu_command(s, val & 0xf0);
1050 if ((val) == 0) {
1051 TRACE(OTHER, logout("val=0x%02x\n", val));
1052 }
1053 /* Clear command byte after command was accepted. */
1054 s->mem[SCBCmd] = 0;
1055 }
1056
1057 /*****************************************************************************
1058 *
1059 * EEPROM emulation.
1060 *
1061 ****************************************************************************/
1062
1063 #define EEPROM_CS 0x02
1064 #define EEPROM_SK 0x01
1065 #define EEPROM_DI 0x04
1066 #define EEPROM_DO 0x08
1067
1068 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1069 {
1070 uint16_t val = e100_read_reg2(s, SCBeeprom);
1071 if (eeprom93xx_read(s->eeprom)) {
1072 val |= EEPROM_DO;
1073 } else {
1074 val &= ~EEPROM_DO;
1075 }
1076 TRACE(EEPROM, logout("val=0x%04x\n", val));
1077 return val;
1078 }
1079
1080 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1081 {
1082 TRACE(EEPROM, logout("val=0x%02x\n", val));
1083
1084 /* mask unwritable bits */
1085 #if 0
1086 val = SET_MASKED(val, 0x31, eeprom->value);
1087 #endif
1088
1089 int eecs = ((val & EEPROM_CS) != 0);
1090 int eesk = ((val & EEPROM_SK) != 0);
1091 int eedi = ((val & EEPROM_DI) != 0);
1092 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1093 }
1094
1095 /*****************************************************************************
1096 *
1097 * MDI emulation.
1098 *
1099 ****************************************************************************/
1100
1101 #if defined(DEBUG_EEPRO100)
1102 static const char * const mdi_op_name[] = {
1103 "opcode 0",
1104 "write",
1105 "read",
1106 "opcode 3"
1107 };
1108
1109 static const char * const mdi_reg_name[] = {
1110 "Control",
1111 "Status",
1112 "PHY Identification (Word 1)",
1113 "PHY Identification (Word 2)",
1114 "Auto-Negotiation Advertisement",
1115 "Auto-Negotiation Link Partner Ability",
1116 "Auto-Negotiation Expansion"
1117 };
1118
1119 static const char *reg2name(uint8_t reg)
1120 {
1121 static char buffer[10];
1122 const char *p = buffer;
1123 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1124 p = mdi_reg_name[reg];
1125 } else {
1126 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1127 }
1128 return p;
1129 }
1130 #endif /* DEBUG_EEPRO100 */
1131
1132 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1133 {
1134 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1135
1136 #ifdef DEBUG_EEPRO100
1137 uint8_t raiseint = (val & BIT(29)) >> 29;
1138 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1139 uint8_t phy = (val & BITS(25, 21)) >> 21;
1140 uint8_t reg = (val & BITS(20, 16)) >> 16;
1141 uint16_t data = (val & BITS(15, 0));
1142 #endif
1143 /* Emulation takes no time to finish MDI transaction. */
1144 val |= BIT(28);
1145 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1146 val, raiseint, mdi_op_name[opcode], phy,
1147 reg2name(reg), data));
1148 return val;
1149 }
1150
1151 static void eepro100_write_mdi(EEPRO100State *s)
1152 {
1153 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1154 uint8_t raiseint = (val & BIT(29)) >> 29;
1155 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1156 uint8_t phy = (val & BITS(25, 21)) >> 21;
1157 uint8_t reg = (val & BITS(20, 16)) >> 16;
1158 uint16_t data = (val & BITS(15, 0));
1159 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1160 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1161 if (phy != 1) {
1162 /* Unsupported PHY address. */
1163 #if 0
1164 logout("phy must be 1 but is %u\n", phy);
1165 #endif
1166 data = 0;
1167 } else if (opcode != 1 && opcode != 2) {
1168 /* Unsupported opcode. */
1169 logout("opcode must be 1 or 2 but is %u\n", opcode);
1170 data = 0;
1171 } else if (reg > 6) {
1172 /* Unsupported register. */
1173 logout("register must be 0...6 but is %u\n", reg);
1174 data = 0;
1175 } else {
1176 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1177 val, raiseint, mdi_op_name[opcode], phy,
1178 reg2name(reg), data));
1179 if (opcode == 1) {
1180 /* MDI write */
1181 switch (reg) {
1182 case 0: /* Control Register */
1183 if (data & 0x8000) {
1184 /* Reset status and control registers to default. */
1185 s->mdimem[0] = eepro100_mdi_default[0];
1186 s->mdimem[1] = eepro100_mdi_default[1];
1187 data = s->mdimem[reg];
1188 } else {
1189 /* Restart Auto Configuration = Normal Operation */
1190 data &= ~0x0200;
1191 }
1192 break;
1193 case 1: /* Status Register */
1194 missing("not writable");
1195 data = s->mdimem[reg];
1196 break;
1197 case 2: /* PHY Identification Register (Word 1) */
1198 case 3: /* PHY Identification Register (Word 2) */
1199 missing("not implemented");
1200 break;
1201 case 4: /* Auto-Negotiation Advertisement Register */
1202 case 5: /* Auto-Negotiation Link Partner Ability Register */
1203 break;
1204 case 6: /* Auto-Negotiation Expansion Register */
1205 default:
1206 missing("not implemented");
1207 }
1208 s->mdimem[reg] = data;
1209 } else if (opcode == 2) {
1210 /* MDI read */
1211 switch (reg) {
1212 case 0: /* Control Register */
1213 if (data & 0x8000) {
1214 /* Reset status and control registers to default. */
1215 s->mdimem[0] = eepro100_mdi_default[0];
1216 s->mdimem[1] = eepro100_mdi_default[1];
1217 }
1218 break;
1219 case 1: /* Status Register */
1220 s->mdimem[reg] |= 0x0020;
1221 break;
1222 case 2: /* PHY Identification Register (Word 1) */
1223 case 3: /* PHY Identification Register (Word 2) */
1224 case 4: /* Auto-Negotiation Advertisement Register */
1225 break;
1226 case 5: /* Auto-Negotiation Link Partner Ability Register */
1227 s->mdimem[reg] = 0x41fe;
1228 break;
1229 case 6: /* Auto-Negotiation Expansion Register */
1230 s->mdimem[reg] = 0x0001;
1231 break;
1232 }
1233 data = s->mdimem[reg];
1234 }
1235 /* Emulation takes no time to finish MDI transaction.
1236 * Set MDI bit in SCB status register. */
1237 s->mem[SCBAck] |= 0x08;
1238 val |= BIT(28);
1239 if (raiseint) {
1240 eepro100_mdi_interrupt(s);
1241 }
1242 }
1243 val = (val & 0xffff0000) + data;
1244 e100_write_reg4(s, SCBCtrlMDI, val);
1245 }
1246
1247 /*****************************************************************************
1248 *
1249 * Port emulation.
1250 *
1251 ****************************************************************************/
1252
1253 #define PORT_SOFTWARE_RESET 0
1254 #define PORT_SELFTEST 1
1255 #define PORT_SELECTIVE_RESET 2
1256 #define PORT_DUMP 3
1257 #define PORT_SELECTION_MASK 3
1258
1259 typedef struct {
1260 uint32_t st_sign; /* Self Test Signature */
1261 uint32_t st_result; /* Self Test Results */
1262 } eepro100_selftest_t;
1263
1264 static uint32_t eepro100_read_port(EEPRO100State * s)
1265 {
1266 return 0;
1267 }
1268
1269 static void eepro100_write_port(EEPRO100State *s)
1270 {
1271 uint32_t val = e100_read_reg4(s, SCBPort);
1272 uint32_t address = (val & ~PORT_SELECTION_MASK);
1273 uint8_t selection = (val & PORT_SELECTION_MASK);
1274 switch (selection) {
1275 case PORT_SOFTWARE_RESET:
1276 nic_reset(s);
1277 break;
1278 case PORT_SELFTEST:
1279 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1280 eepro100_selftest_t data;
1281 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
1282 data.st_sign = 0xffffffff;
1283 data.st_result = 0;
1284 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
1285 break;
1286 case PORT_SELECTIVE_RESET:
1287 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1288 nic_selective_reset(s);
1289 break;
1290 default:
1291 logout("val=0x%08x\n", val);
1292 missing("unknown port selection");
1293 }
1294 }
1295
1296 /*****************************************************************************
1297 *
1298 * General hardware emulation.
1299 *
1300 ****************************************************************************/
1301
1302 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1303 {
1304 uint8_t val = 0;
1305 if (addr <= sizeof(s->mem) - sizeof(val)) {
1306 val = s->mem[addr];
1307 }
1308
1309 switch (addr) {
1310 case SCBStatus:
1311 case SCBAck:
1312 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1313 break;
1314 case SCBCmd:
1315 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1316 #if 0
1317 val = eepro100_read_command(s);
1318 #endif
1319 break;
1320 case SCBIntmask:
1321 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1322 break;
1323 case SCBPort + 3:
1324 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1325 break;
1326 case SCBeeprom:
1327 val = eepro100_read_eeprom(s);
1328 break;
1329 case SCBCtrlMDI:
1330 case SCBCtrlMDI + 1:
1331 case SCBCtrlMDI + 2:
1332 case SCBCtrlMDI + 3:
1333 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1334 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1335 break;
1336 case SCBpmdr: /* Power Management Driver Register */
1337 val = 0;
1338 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1339 break;
1340 case SCBgctrl: /* General Control Register */
1341 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1342 break;
1343 case SCBgstat: /* General Status Register */
1344 /* 100 Mbps full duplex, valid link */
1345 val = 0x07;
1346 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1347 break;
1348 default:
1349 logout("addr=%s val=0x%02x\n", regname(addr), val);
1350 missing("unknown byte read");
1351 }
1352 return val;
1353 }
1354
1355 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1356 {
1357 uint16_t val = 0;
1358 if (addr <= sizeof(s->mem) - sizeof(val)) {
1359 val = e100_read_reg2(s, addr);
1360 }
1361
1362 switch (addr) {
1363 case SCBStatus:
1364 case SCBCmd:
1365 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1366 break;
1367 case SCBeeprom:
1368 val = eepro100_read_eeprom(s);
1369 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1370 break;
1371 case SCBCtrlMDI:
1372 case SCBCtrlMDI + 2:
1373 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1374 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1375 break;
1376 default:
1377 logout("addr=%s val=0x%04x\n", regname(addr), val);
1378 missing("unknown word read");
1379 }
1380 return val;
1381 }
1382
1383 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1384 {
1385 uint32_t val = 0;
1386 if (addr <= sizeof(s->mem) - sizeof(val)) {
1387 val = e100_read_reg4(s, addr);
1388 }
1389
1390 switch (addr) {
1391 case SCBStatus:
1392 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1393 break;
1394 case SCBPointer:
1395 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1396 break;
1397 case SCBPort:
1398 val = eepro100_read_port(s);
1399 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1400 break;
1401 case SCBflash:
1402 val = eepro100_read_eeprom(s);
1403 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1404 break;
1405 case SCBCtrlMDI:
1406 val = eepro100_read_mdi(s);
1407 break;
1408 default:
1409 logout("addr=%s val=0x%08x\n", regname(addr), val);
1410 missing("unknown longword read");
1411 }
1412 return val;
1413 }
1414
1415 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1416 {
1417 /* SCBStatus is readonly. */
1418 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1419 s->mem[addr] = val;
1420 }
1421
1422 switch (addr) {
1423 case SCBStatus:
1424 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1425 break;
1426 case SCBAck:
1427 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1428 eepro100_acknowledge(s);
1429 break;
1430 case SCBCmd:
1431 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1432 eepro100_write_command(s, val);
1433 break;
1434 case SCBIntmask:
1435 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1436 if (val & BIT(1)) {
1437 eepro100_swi_interrupt(s);
1438 }
1439 eepro100_interrupt(s, 0);
1440 break;
1441 case SCBPointer:
1442 case SCBPointer + 1:
1443 case SCBPointer + 2:
1444 case SCBPointer + 3:
1445 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1446 break;
1447 case SCBPort:
1448 case SCBPort + 1:
1449 case SCBPort + 2:
1450 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1451 break;
1452 case SCBPort + 3:
1453 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1454 eepro100_write_port(s);
1455 break;
1456 case SCBFlow: /* does not exist on 82557 */
1457 case SCBFlow + 1:
1458 case SCBFlow + 2:
1459 case SCBpmdr: /* does not exist on 82557 */
1460 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1461 break;
1462 case SCBeeprom:
1463 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1464 eepro100_write_eeprom(s->eeprom, val);
1465 break;
1466 case SCBCtrlMDI:
1467 case SCBCtrlMDI + 1:
1468 case SCBCtrlMDI + 2:
1469 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1470 break;
1471 case SCBCtrlMDI + 3:
1472 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1473 eepro100_write_mdi(s);
1474 break;
1475 default:
1476 logout("addr=%s val=0x%02x\n", regname(addr), val);
1477 missing("unknown byte write");
1478 }
1479 }
1480
1481 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1482 {
1483 /* SCBStatus is readonly. */
1484 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1485 e100_write_reg2(s, addr, val);
1486 }
1487
1488 switch (addr) {
1489 case SCBStatus:
1490 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1491 s->mem[SCBAck] = (val >> 8);
1492 eepro100_acknowledge(s);
1493 break;
1494 case SCBCmd:
1495 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1496 eepro100_write_command(s, val);
1497 eepro100_write1(s, SCBIntmask, val >> 8);
1498 break;
1499 case SCBPointer:
1500 case SCBPointer + 2:
1501 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1502 break;
1503 case SCBPort:
1504 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1505 break;
1506 case SCBPort + 2:
1507 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1508 eepro100_write_port(s);
1509 break;
1510 case SCBeeprom:
1511 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1512 eepro100_write_eeprom(s->eeprom, val);
1513 break;
1514 case SCBCtrlMDI:
1515 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1516 break;
1517 case SCBCtrlMDI + 2:
1518 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1519 eepro100_write_mdi(s);
1520 break;
1521 default:
1522 logout("addr=%s val=0x%04x\n", regname(addr), val);
1523 missing("unknown word write");
1524 }
1525 }
1526
1527 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1528 {
1529 if (addr <= sizeof(s->mem) - sizeof(val)) {
1530 e100_write_reg4(s, addr, val);
1531 }
1532
1533 switch (addr) {
1534 case SCBPointer:
1535 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1536 break;
1537 case SCBPort:
1538 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1539 eepro100_write_port(s);
1540 break;
1541 case SCBflash:
1542 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1543 val = val >> 16;
1544 eepro100_write_eeprom(s->eeprom, val);
1545 break;
1546 case SCBCtrlMDI:
1547 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1548 eepro100_write_mdi(s);
1549 break;
1550 default:
1551 logout("addr=%s val=0x%08x\n", regname(addr), val);
1552 missing("unknown longword write");
1553 }
1554 }
1555
1556 static uint64_t eepro100_read(void *opaque, target_phys_addr_t addr,
1557 unsigned size)
1558 {
1559 EEPRO100State *s = opaque;
1560
1561 switch (size) {
1562 case 1: return eepro100_read1(s, addr);
1563 case 2: return eepro100_read2(s, addr);
1564 case 4: return eepro100_read4(s, addr);
1565 default: abort();
1566 }
1567 }
1568
1569 static void eepro100_write(void *opaque, target_phys_addr_t addr,
1570 uint64_t data, unsigned size)
1571 {
1572 EEPRO100State *s = opaque;
1573
1574 switch (size) {
1575 case 1: return eepro100_write1(s, addr, data);
1576 case 2: return eepro100_write2(s, addr, data);
1577 case 4: return eepro100_write4(s, addr, data);
1578 default: abort();
1579 }
1580 }
1581
1582 static const MemoryRegionOps eepro100_ops = {
1583 .read = eepro100_read,
1584 .write = eepro100_write,
1585 .endianness = DEVICE_LITTLE_ENDIAN,
1586 };
1587
1588 static int nic_can_receive(VLANClientState *nc)
1589 {
1590 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1591 TRACE(RXTX, logout("%p\n", s));
1592 return get_ru_state(s) == ru_ready;
1593 #if 0
1594 return !eepro100_buffer_full(s);
1595 #endif
1596 }
1597
1598 static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
1599 {
1600 /* TODO:
1601 * - Magic packets should set bit 30 in power management driver register.
1602 * - Interesting packets should set bit 29 in power management driver register.
1603 */
1604 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1605 uint16_t rfd_status = 0xa000;
1606 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1607 uint8_t min_buf[60];
1608 #endif
1609 static const uint8_t broadcast_macaddr[6] =
1610 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1611
1612 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1613 /* Pad to minimum Ethernet frame length */
1614 if (size < sizeof(min_buf)) {
1615 memcpy(min_buf, buf, size);
1616 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1617 buf = min_buf;
1618 size = sizeof(min_buf);
1619 }
1620 #endif
1621
1622 if (s->configuration[8] & 0x80) {
1623 /* CSMA is disabled. */
1624 logout("%p received while CSMA is disabled\n", s);
1625 return -1;
1626 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1627 } else if (size < 64 && (s->configuration[7] & BIT(0))) {
1628 /* Short frame and configuration byte 7/0 (discard short receive) set:
1629 * Short frame is discarded */
1630 logout("%p received short frame (%zu byte)\n", s, size);
1631 s->statistics.rx_short_frame_errors++;
1632 return -1;
1633 #endif
1634 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
1635 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1636 * Long frames are discarded. */
1637 logout("%p received long frame (%zu byte), ignored\n", s, size);
1638 return -1;
1639 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
1640 /* Frame matches individual address. */
1641 /* TODO: check configuration byte 15/4 (ignore U/L). */
1642 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1643 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1644 /* Broadcast frame. */
1645 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1646 rfd_status |= 0x0002;
1647 } else if (buf[0] & 0x01) {
1648 /* Multicast frame. */
1649 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1650 if (s->configuration[21] & BIT(3)) {
1651 /* Multicast all bit is set, receive all multicast frames. */
1652 } else {
1653 unsigned mcast_idx = compute_mcast_idx(buf);
1654 assert(mcast_idx < 64);
1655 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1656 /* Multicast frame is allowed in hash table. */
1657 } else if (s->configuration[15] & BIT(0)) {
1658 /* Promiscuous: receive all. */
1659 rfd_status |= 0x0004;
1660 } else {
1661 TRACE(RXTX, logout("%p multicast ignored\n", s));
1662 return -1;
1663 }
1664 }
1665 /* TODO: Next not for promiscuous mode? */
1666 rfd_status |= 0x0002;
1667 } else if (s->configuration[15] & BIT(0)) {
1668 /* Promiscuous: receive all. */
1669 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1670 rfd_status |= 0x0004;
1671 } else if (s->configuration[20] & BIT(6)) {
1672 /* Multiple IA bit set. */
1673 unsigned mcast_idx = compute_mcast_idx(buf);
1674 assert(mcast_idx < 64);
1675 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1676 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
1677 } else {
1678 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
1679 return -1;
1680 }
1681 } else {
1682 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1683 nic_dump(buf, size)));
1684 return size;
1685 }
1686
1687 if (get_ru_state(s) != ru_ready) {
1688 /* No resources available. */
1689 logout("no resources, state=%u\n", get_ru_state(s));
1690 /* TODO: RNR interrupt only at first failed frame? */
1691 eepro100_rnr_interrupt(s);
1692 s->statistics.rx_resource_errors++;
1693 #if 0
1694 assert(!"no resources");
1695 #endif
1696 return -1;
1697 }
1698 /* !!! */
1699 eepro100_rx_t rx;
1700 pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
1701 &rx, sizeof(eepro100_rx_t));
1702 uint16_t rfd_command = le16_to_cpu(rx.command);
1703 uint16_t rfd_size = le16_to_cpu(rx.size);
1704
1705 if (size > rfd_size) {
1706 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1707 "(%zu bytes); data truncated\n", rfd_size, size);
1708 size = rfd_size;
1709 }
1710 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1711 if (size < 64) {
1712 rfd_status |= 0x0080;
1713 }
1714 #endif
1715 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1716 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1717 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1718 offsetof(eepro100_rx_t, status), rfd_status);
1719 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1720 offsetof(eepro100_rx_t, count), size);
1721 /* Early receive interrupt not supported. */
1722 #if 0
1723 eepro100_er_interrupt(s);
1724 #endif
1725 /* Receive CRC Transfer not supported. */
1726 if (s->configuration[18] & BIT(2)) {
1727 missing("Receive CRC Transfer");
1728 return -1;
1729 }
1730 /* TODO: check stripping enable bit. */
1731 #if 0
1732 assert(!(s->configuration[17] & BIT(0)));
1733 #endif
1734 pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
1735 sizeof(eepro100_rx_t), buf, size);
1736 s->statistics.rx_good_frames++;
1737 eepro100_fr_interrupt(s);
1738 s->ru_offset = le32_to_cpu(rx.link);
1739 if (rfd_command & COMMAND_EL) {
1740 /* EL bit is set, so this was the last frame. */
1741 logout("receive: Running out of frames\n");
1742 set_ru_state(s, ru_suspended);
1743 }
1744 if (rfd_command & COMMAND_S) {
1745 /* S bit is set. */
1746 set_ru_state(s, ru_suspended);
1747 }
1748 return size;
1749 }
1750
1751 static const VMStateDescription vmstate_eepro100 = {
1752 .version_id = 3,
1753 .minimum_version_id = 2,
1754 .minimum_version_id_old = 2,
1755 .fields = (VMStateField []) {
1756 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1757 VMSTATE_UNUSED(32),
1758 VMSTATE_BUFFER(mult, EEPRO100State),
1759 VMSTATE_BUFFER(mem, EEPRO100State),
1760 /* Save all members of struct between scb_stat and mem. */
1761 VMSTATE_UINT8(scb_stat, EEPRO100State),
1762 VMSTATE_UINT8(int_stat, EEPRO100State),
1763 VMSTATE_UNUSED(3*4),
1764 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1765 VMSTATE_UNUSED(19*4),
1766 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1767 /* The eeprom should be saved and restored by its own routines. */
1768 VMSTATE_UINT32(device, EEPRO100State),
1769 /* TODO check device. */
1770 VMSTATE_UINT32(cu_base, EEPRO100State),
1771 VMSTATE_UINT32(cu_offset, EEPRO100State),
1772 VMSTATE_UINT32(ru_base, EEPRO100State),
1773 VMSTATE_UINT32(ru_offset, EEPRO100State),
1774 VMSTATE_UINT32(statsaddr, EEPRO100State),
1775 /* Save eepro100_stats_t statistics. */
1776 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1777 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1778 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1779 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1780 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1781 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1782 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1783 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1784 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1785 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1786 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1787 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1788 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1789 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1790 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1791 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1792 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1793 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1794 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1795 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1796 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1797 /* Configuration bytes. */
1798 VMSTATE_BUFFER(configuration, EEPRO100State),
1799 VMSTATE_END_OF_LIST()
1800 }
1801 };
1802
1803 static void nic_cleanup(VLANClientState *nc)
1804 {
1805 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1806
1807 s->nic = NULL;
1808 }
1809
1810 static int pci_nic_uninit(PCIDevice *pci_dev)
1811 {
1812 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1813
1814 memory_region_destroy(&s->mmio_bar);
1815 memory_region_destroy(&s->io_bar);
1816 memory_region_destroy(&s->flash_bar);
1817 vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
1818 eeprom93xx_free(&pci_dev->qdev, s->eeprom);
1819 qemu_del_vlan_client(&s->nic->nc);
1820 return 0;
1821 }
1822
1823 static NetClientInfo net_eepro100_info = {
1824 .type = NET_CLIENT_TYPE_NIC,
1825 .size = sizeof(NICState),
1826 .can_receive = nic_can_receive,
1827 .receive = nic_receive,
1828 .cleanup = nic_cleanup,
1829 };
1830
1831 static int e100_nic_init(PCIDevice *pci_dev)
1832 {
1833 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1834 E100PCIDeviceInfo *info = eepro100_get_class(s);
1835
1836 TRACE(OTHER, logout("\n"));
1837
1838 s->device = info->device;
1839
1840 e100_pci_reset(s);
1841
1842 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1843 * i82559 and later support 64 or 256 word EEPROM. */
1844 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
1845
1846 /* Handler for memory-mapped I/O */
1847 memory_region_init_io(&s->mmio_bar, &eepro100_ops, s, "eepro100-mmio",
1848 PCI_MEM_SIZE);
1849 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
1850 memory_region_init_io(&s->io_bar, &eepro100_ops, s, "eepro100-io",
1851 PCI_IO_SIZE);
1852 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
1853 /* FIXME: flash aliases to mmio?! */
1854 memory_region_init_io(&s->flash_bar, &eepro100_ops, s, "eepro100-flash",
1855 PCI_FLASH_SIZE);
1856 pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
1857
1858 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1859 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1860
1861 nic_reset(s);
1862
1863 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1864 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
1865
1866 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1867 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1868
1869 qemu_register_reset(nic_reset, s);
1870
1871 s->vmstate = g_malloc(sizeof(vmstate_eepro100));
1872 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1873 s->vmstate->name = s->nic->nc.model;
1874 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
1875
1876 add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1877
1878 return 0;
1879 }
1880
1881 static E100PCIDeviceInfo e100_devices[] = {
1882 {
1883 .name = "i82550",
1884 .desc = "Intel i82550 Ethernet",
1885 .device = i82550,
1886 /* TODO: check device id. */
1887 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1888 /* Revision ID: 0x0c, 0x0d, 0x0e. */
1889 .revision = 0x0e,
1890 /* TODO: check size of statistical counters. */
1891 .stats_size = 80,
1892 /* TODO: check extended tcb support. */
1893 .has_extended_tcb_support = true,
1894 .power_management = true,
1895 },{
1896 .name = "i82551",
1897 .desc = "Intel i82551 Ethernet",
1898 .device = i82551,
1899 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1900 /* Revision ID: 0x0f, 0x10. */
1901 .revision = 0x0f,
1902 /* TODO: check size of statistical counters. */
1903 .stats_size = 80,
1904 .has_extended_tcb_support = true,
1905 .power_management = true,
1906 },{
1907 .name = "i82557a",
1908 .desc = "Intel i82557A Ethernet",
1909 .device = i82557A,
1910 .device_id = PCI_DEVICE_ID_INTEL_82557,
1911 .revision = 0x01,
1912 .power_management = false,
1913 },{
1914 .name = "i82557b",
1915 .desc = "Intel i82557B Ethernet",
1916 .device = i82557B,
1917 .device_id = PCI_DEVICE_ID_INTEL_82557,
1918 .revision = 0x02,
1919 .power_management = false,
1920 },{
1921 .name = "i82557c",
1922 .desc = "Intel i82557C Ethernet",
1923 .device = i82557C,
1924 .device_id = PCI_DEVICE_ID_INTEL_82557,
1925 .revision = 0x03,
1926 .power_management = false,
1927 },{
1928 .name = "i82558a",
1929 .desc = "Intel i82558A Ethernet",
1930 .device = i82558A,
1931 .device_id = PCI_DEVICE_ID_INTEL_82557,
1932 .revision = 0x04,
1933 .stats_size = 76,
1934 .has_extended_tcb_support = true,
1935 .power_management = true,
1936 },{
1937 .name = "i82558b",
1938 .desc = "Intel i82558B Ethernet",
1939 .device = i82558B,
1940 .device_id = PCI_DEVICE_ID_INTEL_82557,
1941 .revision = 0x05,
1942 .stats_size = 76,
1943 .has_extended_tcb_support = true,
1944 .power_management = true,
1945 },{
1946 .name = "i82559a",
1947 .desc = "Intel i82559A Ethernet",
1948 .device = i82559A,
1949 .device_id = PCI_DEVICE_ID_INTEL_82557,
1950 .revision = 0x06,
1951 .stats_size = 80,
1952 .has_extended_tcb_support = true,
1953 .power_management = true,
1954 },{
1955 .name = "i82559b",
1956 .desc = "Intel i82559B Ethernet",
1957 .device = i82559B,
1958 .device_id = PCI_DEVICE_ID_INTEL_82557,
1959 .revision = 0x07,
1960 .stats_size = 80,
1961 .has_extended_tcb_support = true,
1962 .power_management = true,
1963 },{
1964 .name = "i82559c",
1965 .desc = "Intel i82559C Ethernet",
1966 .device = i82559C,
1967 .device_id = PCI_DEVICE_ID_INTEL_82557,
1968 #if 0
1969 .revision = 0x08,
1970 #endif
1971 /* TODO: Windows wants revision id 0x0c. */
1972 .revision = 0x0c,
1973 #if EEPROM_SIZE > 0
1974 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
1975 .subsystem_id = 0x0040,
1976 #endif
1977 .stats_size = 80,
1978 .has_extended_tcb_support = true,
1979 .power_management = true,
1980 },{
1981 .name = "i82559er",
1982 .desc = "Intel i82559ER Ethernet",
1983 .device = i82559ER,
1984 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1985 .revision = 0x09,
1986 .stats_size = 80,
1987 .has_extended_tcb_support = true,
1988 .power_management = true,
1989 },{
1990 .name = "i82562",
1991 .desc = "Intel i82562 Ethernet",
1992 .device = i82562,
1993 /* TODO: check device id. */
1994 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1995 /* TODO: wrong revision id. */
1996 .revision = 0x0e,
1997 .stats_size = 80,
1998 .has_extended_tcb_support = true,
1999 .power_management = true,
2000 },{
2001 /* Toshiba Tecra 8200. */
2002 .name = "i82801",
2003 .desc = "Intel i82801 Ethernet",
2004 .device = i82801,
2005 .device_id = 0x2449,
2006 .revision = 0x03,
2007 .stats_size = 80,
2008 .has_extended_tcb_support = true,
2009 .power_management = true,
2010 }
2011 };
2012
2013 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
2014 {
2015 E100PCIDeviceInfo *info = NULL;
2016 int i;
2017
2018 /* This is admittedly awkward but also temporary. QOM allows for
2019 * parameterized typing and for subclassing both of which would suitable
2020 * handle what's going on here. But class_data is already being used as
2021 * a stop-gap hack to allow incremental qdev conversion so we cannot use it
2022 * right now. Once we merge the final QOM series, we can come back here and
2023 * do this in a much more elegant fashion.
2024 */
2025 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2026 if (strcmp(e100_devices[i].name, typename) == 0) {
2027 info = &e100_devices[i];
2028 break;
2029 }
2030 }
2031 assert(info != NULL);
2032
2033 return info;
2034 }
2035
2036 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
2037 {
2038 return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
2039 }
2040
2041 static Property e100_properties[] = {
2042 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2043 DEFINE_PROP_END_OF_LIST(),
2044 };
2045
2046 static void eepro100_class_init(ObjectClass *klass, void *data)
2047 {
2048 DeviceClass *dc = DEVICE_CLASS(klass);
2049 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2050 E100PCIDeviceInfo *info;
2051
2052 info = eepro100_get_class_by_name(object_class_get_name(klass));
2053
2054 dc->props = e100_properties;
2055 dc->desc = info->desc;
2056 k->vendor_id = PCI_VENDOR_ID_INTEL;
2057 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
2058 k->romfile = "pxe-eepro100.rom";
2059 k->init = e100_nic_init;
2060 k->exit = pci_nic_uninit;
2061 k->device_id = info->device_id;
2062 k->revision = info->revision;
2063 k->subsystem_vendor_id = info->subsystem_vendor_id;
2064 k->subsystem_id = info->subsystem_id;
2065 }
2066
2067 static void eepro100_register_types(void)
2068 {
2069 size_t i;
2070 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2071 TypeInfo type_info = {};
2072 E100PCIDeviceInfo *info = &e100_devices[i];
2073
2074 type_info.name = info->name;
2075 type_info.parent = TYPE_PCI_DEVICE;
2076 type_info.class_init = eepro100_class_init;
2077 type_info.instance_size = sizeof(EEPRO100State);
2078
2079 type_register(&type_info);
2080 }
2081 }
2082
2083 type_init(eepro100_register_types)