]> git.proxmox.com Git - qemu.git/blob - hw/eepro100.c
list MST as pci layer maintainer
[qemu.git] / hw / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (c) 2006-2007 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386) no valid link
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * non-i386 platforms
28 * Windows networking
29 *
30 * References:
31 *
32 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33 * Open Source Software Developer Manual
34 */
35
36 #if defined(TARGET_I386)
37 # warning "PXE boot still not working!"
38 #endif
39
40 #include <stddef.h> /* offsetof */
41 #include <stdbool.h>
42 #include "hw.h"
43 #include "loader.h" /* rom_add_option */
44 #include "pci.h"
45 #include "net.h"
46 #include "eeprom93xx.h"
47
48 /* Common declarations for all PCI devices. */
49
50 #define PCI_CONFIG_8(offset, value) \
51 (pci_conf[offset] = (value))
52 #define PCI_CONFIG_16(offset, value) \
53 (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
54 #define PCI_CONFIG_32(offset, value) \
55 (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
56
57 #define KiB 1024
58
59 /* Debug EEPRO100 card. */
60 //~ #define DEBUG_EEPRO100
61
62 #ifdef DEBUG_EEPRO100
63 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
64 #else
65 #define logout(fmt, ...) ((void)0)
66 #endif
67
68 /* Set flags to 0 to disable debug output. */
69 #define INT 1 /* interrupt related actions */
70 #define MDI 1 /* mdi related actions */
71 #define OTHER 1
72 #define RXTX 1
73 #define EEPROM 1 /* eeprom related actions */
74
75 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
76
77 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
78
79 #define MAX_ETH_FRAME_SIZE 1514
80
81 /* This driver supports several different devices which are declared here. */
82 #define i82550 0x82550
83 #define i82551 0x82551
84 #define i82557A 0x82557a
85 #define i82557B 0x82557b
86 #define i82557C 0x82557c
87 #define i82558A 0x82558a
88 #define i82558B 0x82558b
89 #define i82559A 0x82559a
90 #define i82559B 0x82559b
91 #define i82559C 0x82559c
92 #define i82559ER 0x82559e
93 #define i82562 0x82562
94
95 /* Use 64 word EEPROM. TODO: could be a runtime option. */
96 #define EEPROM_SIZE 64
97
98 #define PCI_MEM_SIZE (4 * KiB)
99 #define PCI_IO_SIZE 64
100 #define PCI_FLASH_SIZE (128 * KiB)
101
102 #define BIT(n) (1 << (n))
103 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
104
105 /* The SCB accepts the following controls for the Tx and Rx units: */
106 #define CU_NOP 0x0000 /* No operation. */
107 #define CU_START 0x0010 /* CU start. */
108 #define CU_RESUME 0x0020 /* CU resume. */
109 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
110 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
111 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
112 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
113 #define CU_SRESUME 0x00a0 /* CU static resume. */
114
115 #define RU_NOP 0x0000
116 #define RX_START 0x0001
117 #define RX_RESUME 0x0002
118 #define RX_ABORT 0x0004
119 #define RX_ADDR_LOAD 0x0006
120 #define RX_RESUMENR 0x0007
121 #define INT_MASK 0x0100
122 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
123
124 /* Offsets to the various registers.
125 All accesses need not be longword aligned. */
126 enum speedo_offsets {
127 SCBStatus = 0,
128 SCBAck = 1,
129 SCBCmd = 2, /* Rx/Command Unit command and status. */
130 SCBIntmask = 3,
131 SCBPointer = 4, /* General purpose pointer. */
132 SCBPort = 8, /* Misc. commands and operands. */
133 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
134 SCBCtrlMDI = 16, /* MDI interface control. */
135 SCBEarlyRx = 20, /* Early receive byte count. */
136 SCBFlow = 24,
137 };
138
139 /* A speedo3 transmit buffer descriptor with two buffers... */
140 typedef struct {
141 uint16_t status;
142 uint16_t command;
143 uint32_t link; /* void * */
144 uint32_t tx_desc_addr; /* transmit buffer decsriptor array address. */
145 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
146 uint8_t tx_threshold; /* transmit threshold */
147 uint8_t tbd_count; /* TBD number */
148 //~ /* This constitutes two "TBD" entries: hdr and data */
149 //~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
150 //~ int32_t tx_buf_size0; /* Length of Tx hdr. */
151 //~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
152 //~ int32_t tx_buf_size1; /* Length of Tx data. */
153 } eepro100_tx_t;
154
155 /* Receive frame descriptor. */
156 typedef struct {
157 int16_t status;
158 uint16_t command;
159 uint32_t link; /* struct RxFD * */
160 uint32_t rx_buf_addr; /* void * */
161 uint16_t count;
162 uint16_t size;
163 char packet[MAX_ETH_FRAME_SIZE + 4];
164 } eepro100_rx_t;
165
166 typedef struct {
167 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
168 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
169 tx_multiple_collisions, tx_total_collisions;
170 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
171 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
172 rx_short_frame_errors;
173 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
174 uint16_t xmt_tco_frames, rcv_tco_frames;
175 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
176 uint32_t reserved[4];
177 } eepro100_stats_t;
178
179 typedef enum {
180 cu_idle = 0,
181 cu_suspended = 1,
182 cu_active = 2,
183 cu_lpq_active = 2,
184 cu_hqp_active = 3
185 } cu_state_t;
186
187 typedef enum {
188 ru_idle = 0,
189 ru_suspended = 1,
190 ru_no_resources = 2,
191 ru_ready = 4
192 } ru_state_t;
193
194 typedef struct {
195 PCIDevice dev;
196 uint8_t mult[8]; /* multicast mask array */
197 int mmio_index;
198 NICState *nic;
199 NICConf conf;
200 uint8_t scb_stat; /* SCB stat/ack byte */
201 uint8_t int_stat; /* PCI interrupt status */
202 /* region must not be saved by nic_save. */
203 uint32_t region[3]; /* PCI region addresses */
204 uint16_t mdimem[32];
205 eeprom_t *eeprom;
206 uint32_t device; /* device variant */
207 uint32_t pointer;
208 /* (cu_base + cu_offset) address the next command block in the command block list. */
209 uint32_t cu_base; /* CU base address */
210 uint32_t cu_offset; /* CU address offset */
211 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
212 uint32_t ru_base; /* RU base address */
213 uint32_t ru_offset; /* RU address offset */
214 uint32_t statsaddr; /* pointer to eepro100_stats_t */
215
216 /* Statistical counters. Also used for wake-up packet (i82559). */
217 eepro100_stats_t statistics;
218
219 #if 0
220 uint16_t status;
221 #endif
222
223 /* Configuration bytes. */
224 uint8_t configuration[22];
225
226 /* Data in mem is always in the byte order of the controller (le). */
227 uint8_t mem[PCI_MEM_SIZE];
228 /* vmstate for each particular nic */
229 VMStateDescription *vmstate;
230
231 /* Quasi static device properties (no need to save them). */
232 uint16_t stats_size;
233 bool has_extended_tcb_support;
234 } EEPRO100State;
235
236 /* Default values for MDI (PHY) registers */
237 static const uint16_t eepro100_mdi_default[] = {
238 /* MDI Registers 0 - 6, 7 */
239 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
240 /* MDI Registers 8 - 15 */
241 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
242 /* MDI Registers 16 - 31 */
243 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
244 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
245 };
246
247 /* Readonly mask for MDI (PHY) registers */
248 static const uint16_t eepro100_mdi_mask[] = {
249 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
250 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
251 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
252 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
253 };
254
255 /* XXX: optimize */
256 static void stl_le_phys(target_phys_addr_t addr, uint32_t val)
257 {
258 val = cpu_to_le32(val);
259 cpu_physical_memory_write(addr, (const uint8_t *)&val, sizeof(val));
260 }
261
262 #define POLYNOMIAL 0x04c11db6
263
264 /* From FreeBSD */
265 /* XXX: optimize */
266 static int compute_mcast_idx(const uint8_t * ep)
267 {
268 uint32_t crc;
269 int carry, i, j;
270 uint8_t b;
271
272 crc = 0xffffffff;
273 for (i = 0; i < 6; i++) {
274 b = *ep++;
275 for (j = 0; j < 8; j++) {
276 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
277 crc <<= 1;
278 b >>= 1;
279 if (carry) {
280 crc = ((crc ^ POLYNOMIAL) | carry);
281 }
282 }
283 }
284 return (crc >> 26);
285 }
286
287 #if defined(DEBUG_EEPRO100)
288 static const char *nic_dump(const uint8_t * buf, unsigned size)
289 {
290 static char dump[3 * 16 + 1];
291 char *p = &dump[0];
292 if (size > 16) {
293 size = 16;
294 }
295 while (size-- > 0) {
296 p += sprintf(p, " %02x", *buf++);
297 }
298 return dump;
299 }
300 #endif /* DEBUG_EEPRO100 */
301
302 enum scb_stat_ack {
303 stat_ack_not_ours = 0x00,
304 stat_ack_sw_gen = 0x04,
305 stat_ack_rnr = 0x10,
306 stat_ack_cu_idle = 0x20,
307 stat_ack_frame_rx = 0x40,
308 stat_ack_cu_cmd_done = 0x80,
309 stat_ack_not_present = 0xFF,
310 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
311 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
312 };
313
314 static void disable_interrupt(EEPRO100State * s)
315 {
316 if (s->int_stat) {
317 TRACE(INT, logout("interrupt disabled\n"));
318 qemu_irq_lower(s->dev.irq[0]);
319 s->int_stat = 0;
320 }
321 }
322
323 static void enable_interrupt(EEPRO100State * s)
324 {
325 if (!s->int_stat) {
326 TRACE(INT, logout("interrupt enabled\n"));
327 qemu_irq_raise(s->dev.irq[0]);
328 s->int_stat = 1;
329 }
330 }
331
332 static void eepro100_acknowledge(EEPRO100State * s)
333 {
334 s->scb_stat &= ~s->mem[SCBAck];
335 s->mem[SCBAck] = s->scb_stat;
336 if (s->scb_stat == 0) {
337 disable_interrupt(s);
338 }
339 }
340
341 static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
342 {
343 uint8_t mask = ~s->mem[SCBIntmask];
344 s->mem[SCBAck] |= stat;
345 stat = s->scb_stat = s->mem[SCBAck];
346 stat &= (mask | 0x0f);
347 //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
348 if (stat && (mask & 0x01)) {
349 /* SCB mask and SCB Bit M do not disable interrupt. */
350 enable_interrupt(s);
351 } else if (s->int_stat) {
352 disable_interrupt(s);
353 }
354 }
355
356 static void eepro100_cx_interrupt(EEPRO100State * s)
357 {
358 /* CU completed action command. */
359 /* Transmit not ok (82557 only, not in emulation). */
360 eepro100_interrupt(s, 0x80);
361 }
362
363 static void eepro100_cna_interrupt(EEPRO100State * s)
364 {
365 /* CU left the active state. */
366 eepro100_interrupt(s, 0x20);
367 }
368
369 static void eepro100_fr_interrupt(EEPRO100State * s)
370 {
371 /* RU received a complete frame. */
372 eepro100_interrupt(s, 0x40);
373 }
374
375 #if 0
376 static void eepro100_rnr_interrupt(EEPRO100State * s)
377 {
378 /* RU is not ready. */
379 eepro100_interrupt(s, 0x10);
380 }
381 #endif
382
383 static void eepro100_mdi_interrupt(EEPRO100State * s)
384 {
385 /* MDI completed read or write cycle. */
386 eepro100_interrupt(s, 0x08);
387 }
388
389 static void eepro100_swi_interrupt(EEPRO100State * s)
390 {
391 /* Software has requested an interrupt. */
392 eepro100_interrupt(s, 0x04);
393 }
394
395 #if 0
396 static void eepro100_fcp_interrupt(EEPRO100State * s)
397 {
398 /* Flow control pause interrupt (82558 and later). */
399 eepro100_interrupt(s, 0x01);
400 }
401 #endif
402
403 static void pci_reset(EEPRO100State * s)
404 {
405 uint32_t device = s->device;
406 uint8_t *pci_conf = s->dev.config;
407 bool power_management = 1;
408
409 TRACE(OTHER, logout("%p\n", s));
410
411 /* PCI Vendor ID */
412 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
413 /* PCI Device ID depends on device and is set below. */
414 /* PCI Command */
415 /* TODO: this is the default, do not override. */
416 PCI_CONFIG_16(PCI_COMMAND, 0x0000);
417 /* PCI Status */
418 /* TODO: this seems to make no sense. */
419 /* TODO: Value at RST# should be 0. */
420 PCI_CONFIG_16(PCI_STATUS,
421 PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_TARGET_ABORT);
422 /* PCI Revision ID */
423 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
424 /* TODO: this is the default, do not override. */
425 /* PCI Class Code */
426 PCI_CONFIG_8(PCI_CLASS_PROG, 0x00);
427 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
428 /* PCI Cache Line Size */
429 /* check cache line size!!! */
430 //~ PCI_CONFIG_8(0x0c, 0x00);
431 /* PCI Latency Timer */
432 PCI_CONFIG_8(PCI_LATENCY_TIMER, 0x20); // latency timer = 32 clocks
433 /* PCI Header Type */
434 /* BIST (built-in self test) */
435 #if defined(TARGET_I386)
436 // !!! workaround for buggy bios
437 //~ #define PCI_BASE_ADDRESS_MEM_PREFETCH 0
438 #endif
439 #if 0
440 /* PCI Base Address Registers */
441 /* CSR Memory Mapped Base Address */
442 PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
443 PCI_BASE_ADDRESS_SPACE_MEMORY |
444 PCI_BASE_ADDRESS_MEM_PREFETCH);
445 /* CSR I/O Mapped Base Address */
446 PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_SPACE_IO);
447 #if 0
448 /* Flash Memory Mapped Base Address */
449 PCI_CONFIG_32(PCI_BASE_ADDRESS_2,
450 0xfffe0000 | PCI_BASE_ADDRESS_SPACE_MEMORY);
451 #endif
452 #endif
453 /* Expansion ROM Base Address (depends on boot disable!!!) */
454 /* TODO: not needed, set when BAR is registered */
455 PCI_CONFIG_32(PCI_ROM_ADDRESS, PCI_BASE_ADDRESS_SPACE_MEMORY);
456 /* Capability Pointer */
457 /* TODO: revisions with power_management 1 use this but
458 * do not set new capability list bit in status register. */
459 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0xdc);
460 /* Interrupt Line */
461 /* Interrupt Pin */
462 /* TODO: RST# value should be 0 */
463 PCI_CONFIG_8(PCI_INTERRUPT_PIN, 1); // interrupt pin 0
464 /* Minimum Grant */
465 PCI_CONFIG_8(PCI_MIN_GNT, 0x08);
466 /* Maximum Latency */
467 PCI_CONFIG_8(PCI_MAX_LAT, 0x18);
468
469 switch (device) {
470 case i82550:
471 // TODO: check device id.
472 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
473 /* Revision ID: 0x0c, 0x0d, 0x0e. */
474 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
475 // TODO: check size of statistical counters.
476 s->stats_size = 80;
477 // TODO: check extended tcb support.
478 s->has_extended_tcb_support = 1;
479 break;
480 case i82551:
481 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
482 /* Revision ID: 0x0f, 0x10. */
483 PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
484 // TODO: check size of statistical counters.
485 s->stats_size = 80;
486 s->has_extended_tcb_support = 1;
487 break;
488 case i82557A:
489 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
490 PCI_CONFIG_8(PCI_REVISION_ID, 0x01);
491 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
492 power_management = 0;
493 break;
494 case i82557B:
495 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
496 PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
497 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
498 power_management = 0;
499 break;
500 case i82557C:
501 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
502 PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
503 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
504 power_management = 0;
505 break;
506 case i82558A:
507 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
508 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
509 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
510 PCI_CONFIG_8(PCI_REVISION_ID, 0x04);
511 s->stats_size = 76;
512 s->has_extended_tcb_support = 1;
513 break;
514 case i82558B:
515 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
516 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
517 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
518 PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
519 s->stats_size = 76;
520 s->has_extended_tcb_support = 1;
521 break;
522 case i82559A:
523 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
524 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
525 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
526 PCI_CONFIG_8(PCI_REVISION_ID, 0x06);
527 s->stats_size = 80;
528 s->has_extended_tcb_support = 1;
529 break;
530 case i82559B:
531 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
532 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
533 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
534 PCI_CONFIG_8(PCI_REVISION_ID, 0x07);
535 s->stats_size = 80;
536 s->has_extended_tcb_support = 1;
537 break;
538 case i82559C:
539 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
540 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
541 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
542 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
543 // TODO: Windows wants revision id 0x0c.
544 PCI_CONFIG_8(PCI_REVISION_ID, 0x0c);
545 #if EEPROM_SIZE > 0
546 PCI_CONFIG_16(PCI_SUBSYSTEM_VENDOR_ID, 0x8086);
547 PCI_CONFIG_16(PCI_SUBSYSTEM_ID, 0x0040);
548 #endif
549 s->stats_size = 80;
550 s->has_extended_tcb_support = 1;
551 break;
552 case i82559ER:
553 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
554 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
555 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
556 PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
557 s->stats_size = 80;
558 s->has_extended_tcb_support = 1;
559 break;
560 case i82562:
561 // TODO: check device id.
562 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
563 /* TODO: wrong revision id. */
564 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
565 s->stats_size = 80;
566 s->has_extended_tcb_support = 1;
567 break;
568 default:
569 logout("Device %X is undefined!\n", device);
570 }
571
572 s->configuration[6] |= BIT(5);
573
574 if (s->stats_size == 80) {
575 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
576 if (s->configuration[6] & BIT(2)) {
577 /* TCO statistical counters. */
578 assert(s->configuration[6] & BIT(5));
579 } else {
580 if (s->configuration[6] & BIT(5)) {
581 /* No extended statistical counters, i82557 compatible. */
582 s->stats_size = 64;
583 } else {
584 /* i82558 compatible. */
585 s->stats_size = 76;
586 }
587 }
588 } else {
589 if (s->configuration[6] & BIT(5)) {
590 /* No extended statistical counters. */
591 s->stats_size = 64;
592 }
593 }
594 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
595
596 if (power_management) {
597 /* Power Management Capabilities */
598 PCI_CONFIG_8(0xdc, 0x01);
599 /* Next Item Pointer */
600 /* Capability ID */
601 PCI_CONFIG_16(0xde, 0x7e21);
602 /* TODO: Power Management Control / Status. */
603 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
604 }
605
606 #if EEPROM_SIZE > 0
607 if (device == i82557C || device == i82558B || device == i82559C) {
608 // TODO: get vendor id from EEPROM for i82557C or later.
609 // TODO: get device id from EEPROM for i82557C or later.
610 // TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
611 // TODO: header type is determined by EEPROM for i82559.
612 // TODO: get subsystem id from EEPROM for i82557C or later.
613 // TODO: get subsystem vendor id from EEPROM for i82557C or later.
614 // TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
615 // TODO: capability pointer depends on EEPROM for i82558.
616 logout("Get device id and revision from EEPROM!!!\n");
617 }
618 #endif /* EEPROM_SIZE > 0 */
619 }
620
621 static void nic_selective_reset(EEPRO100State * s)
622 {
623 size_t i;
624 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
625 //~ eeprom93xx_reset(s->eeprom);
626 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
627 eeprom_contents[0xa] = 0x4000;
628 if (s->device == i82557B || s->device == i82557C)
629 eeprom_contents[5] = 0x0100;
630 uint16_t sum = 0;
631 for (i = 0; i < EEPROM_SIZE - 1; i++) {
632 sum += eeprom_contents[i];
633 }
634 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
635 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
636
637 memset(s->mem, 0, sizeof(s->mem));
638 uint32_t val = BIT(21);
639 memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
640
641 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
642 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
643 }
644
645 static void nic_reset(void *opaque)
646 {
647 EEPRO100State *s = opaque;
648 TRACE(OTHER, logout("%p\n", s));
649 nic_selective_reset(s);
650 }
651
652 #if defined(DEBUG_EEPRO100)
653 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
654 "Command/Status",
655 "General Pointer",
656 "Port",
657 "EEPROM/Flash Control",
658 "MDI Control",
659 "Receive DMA Byte Count",
660 "Flow Control",
661 "General Status/Control"
662 };
663
664 static char *regname(uint32_t addr)
665 {
666 static char buf[32];
667 if (addr < PCI_IO_SIZE) {
668 const char *r = e100_reg[addr / 4];
669 if (r != 0) {
670 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
671 } else {
672 snprintf(buf, sizeof(buf), "0x%02x", addr);
673 }
674 } else {
675 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
676 }
677 return buf;
678 }
679 #endif /* DEBUG_EEPRO100 */
680
681 #if 0
682 static uint16_t eepro100_read_status(EEPRO100State * s)
683 {
684 uint16_t val = s->status;
685 TRACE(OTHER, logout("val=0x%04x\n", val));
686 return val;
687 }
688
689 static void eepro100_write_status(EEPRO100State * s, uint16_t val)
690 {
691 TRACE(OTHER, logout("val=0x%04x\n", val));
692 s->status = val;
693 }
694 #endif
695
696 /*****************************************************************************
697 *
698 * Command emulation.
699 *
700 ****************************************************************************/
701
702 #if 0
703 static uint16_t eepro100_read_command(EEPRO100State * s)
704 {
705 uint16_t val = 0xffff;
706 //~ TRACE(OTHER, logout("val=0x%04x\n", val));
707 return val;
708 }
709 #endif
710
711 /* Commands that can be put in a command list entry. */
712 enum commands {
713 CmdNOp = 0,
714 CmdIASetup = 1,
715 CmdConfigure = 2,
716 CmdMulticastList = 3,
717 CmdTx = 4,
718 CmdTDR = 5, /* load microcode */
719 CmdDump = 6,
720 CmdDiagnose = 7,
721
722 /* And some extra flags: */
723 CmdSuspend = 0x4000, /* Suspend after completion. */
724 CmdIntr = 0x2000, /* Interrupt after completion. */
725 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
726 };
727
728 static cu_state_t get_cu_state(EEPRO100State * s)
729 {
730 return ((s->mem[SCBStatus] >> 6) & 0x03);
731 }
732
733 static void set_cu_state(EEPRO100State * s, cu_state_t state)
734 {
735 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
736 }
737
738 static ru_state_t get_ru_state(EEPRO100State * s)
739 {
740 return ((s->mem[SCBStatus] >> 2) & 0x0f);
741 }
742
743 static void set_ru_state(EEPRO100State * s, ru_state_t state)
744 {
745 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
746 }
747
748 static void dump_statistics(EEPRO100State * s)
749 {
750 /* Dump statistical data. Most data is never changed by the emulation
751 * and always 0, so we first just copy the whole block and then those
752 * values which really matter.
753 * Number of data should check configuration!!!
754 */
755 cpu_physical_memory_write(s->statsaddr,
756 (uint8_t *) & s->statistics, s->stats_size);
757 stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
758 stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
759 stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
760 stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
761 //~ stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
762 //~ stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
763 //~ missing("CU dump statistical counters");
764 }
765
766 static void action_command(EEPRO100State *s)
767 {
768 for (;;) {
769 uint32_t cb_address = s->cu_base + s->cu_offset;
770 eepro100_tx_t tx;
771 cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
772 uint16_t status = le16_to_cpu(tx.status);
773 uint16_t command = le16_to_cpu(tx.command);
774 logout
775 ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
776 val, status, command, tx.link);
777 bool bit_el = ((command & 0x8000) != 0);
778 bool bit_s = ((command & 0x4000) != 0);
779 bool bit_i = ((command & 0x2000) != 0);
780 bool bit_nc = ((command & 0x0010) != 0);
781 bool success = true;
782 //~ bool bit_sf = ((command & 0x0008) != 0);
783 uint16_t cmd = command & 0x0007;
784 s->cu_offset = le32_to_cpu(tx.link);
785 switch (cmd) {
786 case CmdNOp:
787 /* Do nothing. */
788 break;
789 case CmdIASetup:
790 cpu_physical_memory_read(cb_address + 8, &s->conf.macaddr.a[0], 6);
791 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)));
792 break;
793 case CmdConfigure:
794 cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
795 sizeof(s->configuration));
796 TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)));
797 break;
798 case CmdMulticastList:
799 //~ missing("multicast list");
800 break;
801 case CmdTx:
802 (void)0;
803 uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
804 uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
805 TRACE(RXTX, logout
806 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
807 tbd_array, tcb_bytes, tx.tbd_count));
808
809 if (bit_nc) {
810 missing("CmdTx: NC = 0");
811 success = false;
812 break;
813 }
814 //~ assert(!bit_sf);
815 if (tcb_bytes > 2600) {
816 logout("TCB byte count too large, using 2600\n");
817 tcb_bytes = 2600;
818 }
819 /* Next assertion fails for local configuration. */
820 //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
821 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
822 logout
823 ("illegal values of TBD array address and TCB byte count!\n");
824 }
825 // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes
826 uint8_t buf[2600];
827 uint16_t size = 0;
828 uint32_t tbd_address = cb_address + 0x10;
829 assert(tcb_bytes <= sizeof(buf));
830 while (size < tcb_bytes) {
831 uint32_t tx_buffer_address = ldl_phys(tbd_address);
832 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
833 //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
834 tbd_address += 8;
835 TRACE(RXTX, logout
836 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
837 tx_buffer_address, tx_buffer_size));
838 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
839 cpu_physical_memory_read(tx_buffer_address, &buf[size],
840 tx_buffer_size);
841 size += tx_buffer_size;
842 }
843 if (tbd_array == 0xffffffff) {
844 /* Simplified mode. Was already handled by code above. */
845 } else {
846 /* Flexible mode. */
847 uint8_t tbd_count = 0;
848 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
849 /* Extended Flexible TCB. */
850 for (; tbd_count < 2; tbd_count++) {
851 uint32_t tx_buffer_address = ldl_phys(tbd_address);
852 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
853 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
854 tbd_address += 8;
855 TRACE(RXTX, logout
856 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
857 tx_buffer_address, tx_buffer_size));
858 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
859 cpu_physical_memory_read(tx_buffer_address, &buf[size],
860 tx_buffer_size);
861 size += tx_buffer_size;
862 if (tx_buffer_el & 1) {
863 break;
864 }
865 }
866 }
867 tbd_address = tbd_array;
868 for (; tbd_count < tx.tbd_count; tbd_count++) {
869 uint32_t tx_buffer_address = ldl_phys(tbd_address);
870 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
871 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
872 tbd_address += 8;
873 TRACE(RXTX, logout
874 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
875 tx_buffer_address, tx_buffer_size));
876 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
877 cpu_physical_memory_read(tx_buffer_address, &buf[size],
878 tx_buffer_size);
879 size += tx_buffer_size;
880 if (tx_buffer_el & 1) {
881 break;
882 }
883 }
884 }
885 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
886 qemu_send_packet(&s->nic->nc, buf, size);
887 s->statistics.tx_good_frames++;
888 /* Transmit with bad status would raise an CX/TNO interrupt.
889 * (82557 only). Emulation never has bad status. */
890 //~ eepro100_cx_interrupt(s);
891 break;
892 case CmdTDR:
893 TRACE(OTHER, logout("load microcode\n"));
894 /* Starting with offset 8, the command contains
895 * 64 dwords microcode which we just ignore here. */
896 break;
897 default:
898 missing("undefined command");
899 success = false;
900 break;
901 }
902 /* Write new status. */
903 stw_phys(cb_address, status | 0x8000 | (success ? 0x2000 : 0));
904 if (bit_i) {
905 /* CU completed action. */
906 eepro100_cx_interrupt(s);
907 }
908 if (bit_el) {
909 /* CU becomes idle. Terminate command loop. */
910 set_cu_state(s, cu_idle);
911 eepro100_cna_interrupt(s);
912 break;
913 } else if (bit_s) {
914 /* CU becomes suspended. Terminate command loop. */
915 set_cu_state(s, cu_suspended);
916 eepro100_cna_interrupt(s);
917 break;
918 } else {
919 /* More entries in list. */
920 TRACE(OTHER, logout("CU list with at least one more entry\n"));
921 }
922 }
923 TRACE(OTHER, logout("CU list empty\n"));
924 /* List is empty. Now CU is idle or suspended. */
925 }
926
927 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
928 {
929 switch (val) {
930 case CU_NOP:
931 /* No operation. */
932 break;
933 case CU_START:
934 if (get_cu_state(s) != cu_idle) {
935 /* Intel documentation says that CU must be idle for the CU
936 * start command. Intel driver for Linux also starts the CU
937 * from suspended state. */
938 logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
939 //~ assert(!"wrong CU state");
940 }
941 set_cu_state(s, cu_active);
942 s->cu_offset = s->pointer;
943 action_command(s);
944 break;
945 case CU_RESUME:
946 if (get_cu_state(s) != cu_suspended) {
947 logout("bad CU resume from CU state %u\n", get_cu_state(s));
948 /* Workaround for bad Linux eepro100 driver which resumes
949 * from idle state. */
950 //~ missing("cu resume");
951 set_cu_state(s, cu_suspended);
952 }
953 if (get_cu_state(s) == cu_suspended) {
954 TRACE(OTHER, logout("CU resuming\n"));
955 set_cu_state(s, cu_active);
956 action_command(s);
957 }
958 break;
959 case CU_STATSADDR:
960 /* Load dump counters address. */
961 s->statsaddr = s->pointer;
962 TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
963 break;
964 case CU_SHOWSTATS:
965 /* Dump statistical counters. */
966 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
967 dump_statistics(s);
968 stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
969 break;
970 case CU_CMD_BASE:
971 /* Load CU base. */
972 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
973 s->cu_base = s->pointer;
974 break;
975 case CU_DUMPSTATS:
976 /* Dump and reset statistical counters. */
977 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
978 dump_statistics(s);
979 stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
980 memset(&s->statistics, 0, sizeof(s->statistics));
981 break;
982 case CU_SRESUME:
983 /* CU static resume. */
984 missing("CU static resume");
985 break;
986 default:
987 missing("Undefined CU command");
988 }
989 }
990
991 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
992 {
993 switch (val) {
994 case RU_NOP:
995 /* No operation. */
996 break;
997 case RX_START:
998 /* RU start. */
999 if (get_ru_state(s) != ru_idle) {
1000 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1001 //~ assert(!"wrong RU state");
1002 }
1003 set_ru_state(s, ru_ready);
1004 s->ru_offset = s->pointer;
1005 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1006 break;
1007 case RX_RESUME:
1008 /* Restart RU. */
1009 if (get_ru_state(s) != ru_suspended) {
1010 logout("RU state is %u, should be %u\n", get_ru_state(s),
1011 ru_suspended);
1012 //~ assert(!"wrong RU state");
1013 }
1014 set_ru_state(s, ru_ready);
1015 break;
1016 case RX_ADDR_LOAD:
1017 /* Load RU base. */
1018 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1019 s->ru_base = s->pointer;
1020 break;
1021 default:
1022 logout("val=0x%02x (undefined RU command)\n", val);
1023 missing("Undefined SU command");
1024 }
1025 }
1026
1027 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1028 {
1029 eepro100_ru_command(s, val & 0x0f);
1030 eepro100_cu_command(s, val & 0xf0);
1031 if ((val) == 0) {
1032 TRACE(OTHER, logout("val=0x%02x\n", val));
1033 }
1034 /* Clear command byte after command was accepted. */
1035 s->mem[SCBCmd] = 0;
1036 }
1037
1038 /*****************************************************************************
1039 *
1040 * EEPROM emulation.
1041 *
1042 ****************************************************************************/
1043
1044 #define EEPROM_CS 0x02
1045 #define EEPROM_SK 0x01
1046 #define EEPROM_DI 0x04
1047 #define EEPROM_DO 0x08
1048
1049 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1050 {
1051 uint16_t val;
1052 memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
1053 if (eeprom93xx_read(s->eeprom)) {
1054 val |= EEPROM_DO;
1055 } else {
1056 val &= ~EEPROM_DO;
1057 }
1058 TRACE(EEPROM, logout("val=0x%04x\n", val));
1059 return val;
1060 }
1061
1062 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1063 {
1064 TRACE(EEPROM, logout("val=0x%02x\n", val));
1065
1066 /* mask unwriteable bits */
1067 //~ val = SET_MASKED(val, 0x31, eeprom->value);
1068
1069 int eecs = ((val & EEPROM_CS) != 0);
1070 int eesk = ((val & EEPROM_SK) != 0);
1071 int eedi = ((val & EEPROM_DI) != 0);
1072 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1073 }
1074
1075 static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
1076 {
1077 s->pointer = le32_to_cpu(val);
1078 TRACE(OTHER, logout("val=0x%08x\n", val));
1079 }
1080
1081 /*****************************************************************************
1082 *
1083 * MDI emulation.
1084 *
1085 ****************************************************************************/
1086
1087 #if defined(DEBUG_EEPRO100)
1088 static const char * const mdi_op_name[] = {
1089 "opcode 0",
1090 "write",
1091 "read",
1092 "opcode 3"
1093 };
1094
1095 static const char * const mdi_reg_name[] = {
1096 "Control",
1097 "Status",
1098 "PHY Identification (Word 1)",
1099 "PHY Identification (Word 2)",
1100 "Auto-Negotiation Advertisement",
1101 "Auto-Negotiation Link Partner Ability",
1102 "Auto-Negotiation Expansion"
1103 };
1104
1105 static const char *reg2name(uint8_t reg)
1106 {
1107 static char buffer[10];
1108 const char *p = buffer;
1109 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1110 p = mdi_reg_name[reg];
1111 } else {
1112 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1113 }
1114 return p;
1115 }
1116 #endif /* DEBUG_EEPRO100 */
1117
1118 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1119 {
1120 uint32_t val;
1121 memcpy(&val, &s->mem[0x10], sizeof(val));
1122
1123 #ifdef DEBUG_EEPRO100
1124 uint8_t raiseint = (val & BIT(29)) >> 29;
1125 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1126 uint8_t phy = (val & BITS(25, 21)) >> 21;
1127 uint8_t reg = (val & BITS(20, 16)) >> 16;
1128 uint16_t data = (val & BITS(15, 0));
1129 #endif
1130 /* Emulation takes no time to finish MDI transaction. */
1131 val |= BIT(28);
1132 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1133 val, raiseint, mdi_op_name[opcode], phy,
1134 reg2name(reg), data));
1135 return val;
1136 }
1137
1138 static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
1139 {
1140 uint8_t raiseint = (val & BIT(29)) >> 29;
1141 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1142 uint8_t phy = (val & BITS(25, 21)) >> 21;
1143 uint8_t reg = (val & BITS(20, 16)) >> 16;
1144 uint16_t data = (val & BITS(15, 0));
1145 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1146 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1147 if (phy != 1) {
1148 /* Unsupported PHY address. */
1149 //~ logout("phy must be 1 but is %u\n", phy);
1150 data = 0;
1151 } else if (opcode != 1 && opcode != 2) {
1152 /* Unsupported opcode. */
1153 logout("opcode must be 1 or 2 but is %u\n", opcode);
1154 data = 0;
1155 } else if (reg > 6) {
1156 /* Unsupported register. */
1157 logout("register must be 0...6 but is %u\n", reg);
1158 data = 0;
1159 } else {
1160 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1161 val, raiseint, mdi_op_name[opcode], phy,
1162 reg2name(reg), data));
1163 if (opcode == 1) {
1164 /* MDI write */
1165 switch (reg) {
1166 case 0: /* Control Register */
1167 if (data & 0x8000) {
1168 /* Reset status and control registers to default. */
1169 s->mdimem[0] = eepro100_mdi_default[0];
1170 s->mdimem[1] = eepro100_mdi_default[1];
1171 data = s->mdimem[reg];
1172 } else {
1173 /* Restart Auto Configuration = Normal Operation */
1174 data &= ~0x0200;
1175 }
1176 break;
1177 case 1: /* Status Register */
1178 missing("not writable");
1179 data = s->mdimem[reg];
1180 break;
1181 case 2: /* PHY Identification Register (Word 1) */
1182 case 3: /* PHY Identification Register (Word 2) */
1183 missing("not implemented");
1184 break;
1185 case 4: /* Auto-Negotiation Advertisement Register */
1186 case 5: /* Auto-Negotiation Link Partner Ability Register */
1187 break;
1188 case 6: /* Auto-Negotiation Expansion Register */
1189 default:
1190 missing("not implemented");
1191 }
1192 s->mdimem[reg] = data;
1193 } else if (opcode == 2) {
1194 /* MDI read */
1195 switch (reg) {
1196 case 0: /* Control Register */
1197 if (data & 0x8000) {
1198 /* Reset status and control registers to default. */
1199 s->mdimem[0] = eepro100_mdi_default[0];
1200 s->mdimem[1] = eepro100_mdi_default[1];
1201 }
1202 break;
1203 case 1: /* Status Register */
1204 s->mdimem[reg] |= 0x0020;
1205 break;
1206 case 2: /* PHY Identification Register (Word 1) */
1207 case 3: /* PHY Identification Register (Word 2) */
1208 case 4: /* Auto-Negotiation Advertisement Register */
1209 break;
1210 case 5: /* Auto-Negotiation Link Partner Ability Register */
1211 s->mdimem[reg] = 0x41fe;
1212 break;
1213 case 6: /* Auto-Negotiation Expansion Register */
1214 s->mdimem[reg] = 0x0001;
1215 break;
1216 }
1217 data = s->mdimem[reg];
1218 }
1219 /* Emulation takes no time to finish MDI transaction.
1220 * Set MDI bit in SCB status register. */
1221 s->mem[SCBAck] |= 0x08;
1222 val |= BIT(28);
1223 if (raiseint) {
1224 eepro100_mdi_interrupt(s);
1225 }
1226 }
1227 val = (val & 0xffff0000) + data;
1228 memcpy(&s->mem[0x10], &val, sizeof(val));
1229 }
1230
1231 /*****************************************************************************
1232 *
1233 * Port emulation.
1234 *
1235 ****************************************************************************/
1236
1237 #define PORT_SOFTWARE_RESET 0
1238 #define PORT_SELFTEST 1
1239 #define PORT_SELECTIVE_RESET 2
1240 #define PORT_DUMP 3
1241 #define PORT_SELECTION_MASK 3
1242
1243 typedef struct {
1244 uint32_t st_sign; /* Self Test Signature */
1245 uint32_t st_result; /* Self Test Results */
1246 } eepro100_selftest_t;
1247
1248 static uint32_t eepro100_read_port(EEPRO100State * s)
1249 {
1250 return 0;
1251 }
1252
1253 static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1254 {
1255 val = le32_to_cpu(val);
1256 uint32_t address = (val & ~PORT_SELECTION_MASK);
1257 uint8_t selection = (val & PORT_SELECTION_MASK);
1258 switch (selection) {
1259 case PORT_SOFTWARE_RESET:
1260 nic_reset(s);
1261 break;
1262 case PORT_SELFTEST:
1263 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1264 eepro100_selftest_t data;
1265 cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1266 data.st_sign = 0xffffffff;
1267 data.st_result = 0;
1268 cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1269 break;
1270 case PORT_SELECTIVE_RESET:
1271 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1272 nic_selective_reset(s);
1273 break;
1274 default:
1275 logout("val=0x%08x\n", val);
1276 missing("unknown port selection");
1277 }
1278 }
1279
1280 /*****************************************************************************
1281 *
1282 * General hardware emulation.
1283 *
1284 ****************************************************************************/
1285
1286 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1287 {
1288 uint8_t val;
1289 if (addr <= sizeof(s->mem) - sizeof(val)) {
1290 memcpy(&val, &s->mem[addr], sizeof(val));
1291 }
1292
1293 switch (addr) {
1294 case SCBStatus:
1295 //~ val = eepro100_read_status(s);
1296 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1297 break;
1298 case SCBAck:
1299 //~ val = eepro100_read_status(s);
1300 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1301 break;
1302 case SCBCmd:
1303 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1304 //~ val = eepro100_read_command(s);
1305 break;
1306 case SCBIntmask:
1307 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1308 break;
1309 case SCBPort + 3:
1310 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1311 break;
1312 case SCBeeprom:
1313 val = eepro100_read_eeprom(s);
1314 break;
1315 case 0x1b: /* PMDR (power management driver register) */
1316 val = 0;
1317 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1318 break;
1319 case 0x1d: /* general status register */
1320 /* 100 Mbps full duplex, valid link */
1321 val = 0x07;
1322 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1323 break;
1324 default:
1325 logout("addr=%s val=0x%02x\n", regname(addr), val);
1326 missing("unknown byte read");
1327 }
1328 return val;
1329 }
1330
1331 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1332 {
1333 uint16_t val;
1334 if (addr <= sizeof(s->mem) - sizeof(val)) {
1335 memcpy(&val, &s->mem[addr], sizeof(val));
1336 }
1337
1338 switch (addr) {
1339 case SCBStatus:
1340 //~ val = eepro100_read_status(s);
1341 case SCBCmd:
1342 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1343 break;
1344 case SCBeeprom:
1345 val = eepro100_read_eeprom(s);
1346 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1347 break;
1348 default:
1349 logout("addr=%s val=0x%04x\n", regname(addr), val);
1350 missing("unknown word read");
1351 }
1352 return val;
1353 }
1354
1355 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1356 {
1357 uint32_t val;
1358 if (addr <= sizeof(s->mem) - sizeof(val)) {
1359 memcpy(&val, &s->mem[addr], sizeof(val));
1360 }
1361
1362 switch (addr) {
1363 case SCBStatus:
1364 //~ val = eepro100_read_status(s);
1365 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1366 break;
1367 case SCBPointer:
1368 //~ val = eepro100_read_pointer(s);
1369 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1370 break;
1371 case SCBPort:
1372 val = eepro100_read_port(s);
1373 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1374 break;
1375 case SCBCtrlMDI:
1376 val = eepro100_read_mdi(s);
1377 break;
1378 default:
1379 logout("addr=%s val=0x%08x\n", regname(addr), val);
1380 missing("unknown longword read");
1381 }
1382 return val;
1383 }
1384
1385 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1386 {
1387 if (addr <= sizeof(s->mem) - sizeof(val)) {
1388 memcpy(&s->mem[addr], &val, sizeof(val));
1389 }
1390
1391 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1392
1393 switch (addr) {
1394 case SCBStatus:
1395 //~ eepro100_write_status(s, val);
1396 break;
1397 case SCBAck:
1398 eepro100_acknowledge(s);
1399 break;
1400 case SCBCmd:
1401 eepro100_write_command(s, val);
1402 break;
1403 case SCBIntmask:
1404 if (val & BIT(1)) {
1405 eepro100_swi_interrupt(s);
1406 }
1407 eepro100_interrupt(s, 0);
1408 break;
1409 case SCBPort + 3:
1410 case SCBFlow: /* does not exist on 82557 */
1411 case SCBFlow + 1:
1412 case SCBFlow + 2:
1413 case SCBFlow + 3:
1414 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1415 break;
1416 case SCBeeprom:
1417 eepro100_write_eeprom(s->eeprom, val);
1418 break;
1419 default:
1420 logout("addr=%s val=0x%02x\n", regname(addr), val);
1421 missing("unknown byte write");
1422 }
1423 }
1424
1425 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1426 {
1427 if (addr <= sizeof(s->mem) - sizeof(val)) {
1428 memcpy(&s->mem[addr], &val, sizeof(val));
1429 }
1430
1431 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1432
1433 switch (addr) {
1434 case SCBStatus:
1435 //~ eepro100_write_status(s, val);
1436 eepro100_acknowledge(s);
1437 break;
1438 case SCBCmd:
1439 eepro100_write_command(s, val);
1440 eepro100_write1(s, SCBIntmask, val >> 8);
1441 break;
1442 case SCBeeprom:
1443 eepro100_write_eeprom(s->eeprom, val);
1444 break;
1445 default:
1446 logout("addr=%s val=0x%04x\n", regname(addr), val);
1447 missing("unknown word write");
1448 }
1449 }
1450
1451 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1452 {
1453 if (addr <= sizeof(s->mem) - sizeof(val)) {
1454 memcpy(&s->mem[addr], &val, sizeof(val));
1455 }
1456
1457 switch (addr) {
1458 case SCBPointer:
1459 eepro100_write_pointer(s, val);
1460 break;
1461 case SCBPort:
1462 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1463 eepro100_write_port(s, val);
1464 break;
1465 case SCBCtrlMDI:
1466 eepro100_write_mdi(s, val);
1467 break;
1468 default:
1469 logout("addr=%s val=0x%08x\n", regname(addr), val);
1470 missing("unknown longword write");
1471 }
1472 }
1473
1474 /*****************************************************************************
1475 *
1476 * Port mapped I/O.
1477 *
1478 ****************************************************************************/
1479
1480 static uint32_t ioport_read1(void *opaque, uint32_t addr)
1481 {
1482 EEPRO100State *s = opaque;
1483 //~ logout("addr=%s\n", regname(addr));
1484 return eepro100_read1(s, addr - s->region[1]);
1485 }
1486
1487 static uint32_t ioport_read2(void *opaque, uint32_t addr)
1488 {
1489 EEPRO100State *s = opaque;
1490 return eepro100_read2(s, addr - s->region[1]);
1491 }
1492
1493 static uint32_t ioport_read4(void *opaque, uint32_t addr)
1494 {
1495 EEPRO100State *s = opaque;
1496 return eepro100_read4(s, addr - s->region[1]);
1497 }
1498
1499 static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1500 {
1501 EEPRO100State *s = opaque;
1502 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1503 eepro100_write1(s, addr - s->region[1], val);
1504 }
1505
1506 static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1507 {
1508 EEPRO100State *s = opaque;
1509 eepro100_write2(s, addr - s->region[1], val);
1510 }
1511
1512 static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1513 {
1514 EEPRO100State *s = opaque;
1515 eepro100_write4(s, addr - s->region[1], val);
1516 }
1517
1518 /***********************************************************/
1519 /* PCI EEPRO100 definitions */
1520
1521 static void pci_map(PCIDevice * pci_dev, int region_num,
1522 pcibus_t addr, pcibus_t size, int type)
1523 {
1524 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1525
1526 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1527 "size=0x%08"FMT_PCIBUS", type=%d\n",
1528 region_num, addr, size, type));
1529
1530 assert(region_num == 1);
1531 register_ioport_write(addr, size, 1, ioport_write1, s);
1532 register_ioport_read(addr, size, 1, ioport_read1, s);
1533 register_ioport_write(addr, size, 2, ioport_write2, s);
1534 register_ioport_read(addr, size, 2, ioport_read2, s);
1535 register_ioport_write(addr, size, 4, ioport_write4, s);
1536 register_ioport_read(addr, size, 4, ioport_read4, s);
1537
1538 s->region[region_num] = addr;
1539 }
1540
1541 /*****************************************************************************
1542 *
1543 * Memory mapped I/O.
1544 *
1545 ****************************************************************************/
1546
1547 static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1548 {
1549 EEPRO100State *s = opaque;
1550 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1551 eepro100_write1(s, addr, val);
1552 }
1553
1554 static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1555 {
1556 EEPRO100State *s = opaque;
1557 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1558 eepro100_write2(s, addr, val);
1559 }
1560
1561 static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1562 {
1563 EEPRO100State *s = opaque;
1564 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1565 eepro100_write4(s, addr, val);
1566 }
1567
1568 static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1569 {
1570 EEPRO100State *s = opaque;
1571 //~ logout("addr=%s\n", regname(addr));
1572 return eepro100_read1(s, addr);
1573 }
1574
1575 static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1576 {
1577 EEPRO100State *s = opaque;
1578 //~ logout("addr=%s\n", regname(addr));
1579 return eepro100_read2(s, addr);
1580 }
1581
1582 static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1583 {
1584 EEPRO100State *s = opaque;
1585 //~ logout("addr=%s\n", regname(addr));
1586 return eepro100_read4(s, addr);
1587 }
1588
1589 static CPUWriteMemoryFunc * const pci_mmio_write[] = {
1590 pci_mmio_writeb,
1591 pci_mmio_writew,
1592 pci_mmio_writel
1593 };
1594
1595 static CPUReadMemoryFunc * const pci_mmio_read[] = {
1596 pci_mmio_readb,
1597 pci_mmio_readw,
1598 pci_mmio_readl
1599 };
1600
1601 static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1602 pcibus_t addr, pcibus_t size, int type)
1603 {
1604 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1605
1606 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1607 "size=0x%08"FMT_PCIBUS", type=%d\n",
1608 region_num, addr, size, type));
1609
1610 if (region_num == 0) {
1611 /* Map control / status registers. */
1612 cpu_register_physical_memory(addr, size, s->mmio_index);
1613 s->region[region_num] = addr;
1614 }
1615 }
1616
1617 static int nic_can_receive(VLANClientState *nc)
1618 {
1619 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1620 TRACE(RXTX, logout("%p\n", s));
1621 return get_ru_state(s) == ru_ready;
1622 //~ return !eepro100_buffer_full(s);
1623 }
1624
1625 static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
1626 {
1627 /* TODO:
1628 * - Magic packets should set bit 30 in power management driver register.
1629 * - Interesting packets should set bit 29 in power management driver register.
1630 */
1631 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1632 uint16_t rfd_status = 0xa000;
1633 static const uint8_t broadcast_macaddr[6] =
1634 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1635
1636 /* TODO: check multiple IA bit. */
1637 if (s->configuration[20] & BIT(6)) {
1638 missing("Multiple IA bit");
1639 return -1;
1640 }
1641
1642 if (s->configuration[8] & 0x80) {
1643 /* CSMA is disabled. */
1644 logout("%p received while CSMA is disabled\n", s);
1645 return -1;
1646 } else if (size < 64 && (s->configuration[7] & 1)) {
1647 /* Short frame and configuration byte 7/0 (discard short receive) set:
1648 * Short frame is discarded */
1649 logout("%p received short frame (%zu byte)\n", s, size);
1650 s->statistics.rx_short_frame_errors++;
1651 //~ return -1;
1652 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1653 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1654 * Long frames are discarded. */
1655 logout("%p received long frame (%zu byte), ignored\n", s, size);
1656 return -1;
1657 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { // !!!
1658 /* Frame matches individual address. */
1659 /* TODO: check configuration byte 15/4 (ignore U/L). */
1660 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1661 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1662 /* Broadcast frame. */
1663 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1664 rfd_status |= 0x0002;
1665 } else if (buf[0] & 0x01) { // !!!
1666 /* Multicast frame. */
1667 TRACE(RXTX, logout("%p received multicast, len=%zu\n", s, size));
1668 /* TODO: check multicast all bit. */
1669 if (s->configuration[21] & BIT(3)) {
1670 missing("Multicast All bit");
1671 }
1672 int mcast_idx = compute_mcast_idx(buf);
1673 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
1674 return size;
1675 }
1676 rfd_status |= 0x0002;
1677 } else if (s->configuration[15] & 1) {
1678 /* Promiscuous: receive all. */
1679 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1680 rfd_status |= 0x0004;
1681 } else {
1682 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1683 nic_dump(buf, size)));
1684 return size;
1685 }
1686
1687 if (get_ru_state(s) != ru_ready) {
1688 /* No resources available. */
1689 logout("no resources, state=%u\n", get_ru_state(s));
1690 s->statistics.rx_resource_errors++;
1691 //~ assert(!"no resources");
1692 return -1;
1693 }
1694 //~ !!!
1695 //~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1696 eepro100_rx_t rx;
1697 cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1698 offsetof(eepro100_rx_t, packet));
1699 uint16_t rfd_command = le16_to_cpu(rx.command);
1700 uint16_t rfd_size = le16_to_cpu(rx.size);
1701
1702 if (size > rfd_size) {
1703 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1704 "(%zu bytes); data truncated\n", rfd_size, size);
1705 size = rfd_size;
1706 }
1707 if (size < 64) {
1708 rfd_status |= 0x0080;
1709 }
1710 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1711 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1712 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1713 rfd_status);
1714 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1715 /* Early receive interrupt not supported. */
1716 //~ eepro100_er_interrupt(s);
1717 /* Receive CRC Transfer not supported. */
1718 if (s->configuration[18] & 4) {
1719 missing("Receive CRC Transfer");
1720 return -1;
1721 }
1722 /* TODO: check stripping enable bit. */
1723 //~ assert(!(s->configuration[17] & 1));
1724 cpu_physical_memory_write(s->ru_base + s->ru_offset +
1725 offsetof(eepro100_rx_t, packet), buf, size);
1726 s->statistics.rx_good_frames++;
1727 eepro100_fr_interrupt(s);
1728 s->ru_offset = le32_to_cpu(rx.link);
1729 if (rfd_command & 0x8000) {
1730 /* EL bit is set, so this was the last frame. */
1731 logout("receive: Running out of frames\n");
1732 set_ru_state(s, ru_suspended);
1733 }
1734 if (rfd_command & 0x4000) {
1735 /* S bit is set. */
1736 set_ru_state(s, ru_suspended);
1737 }
1738 return size;
1739 }
1740
1741 static const VMStateDescription vmstate_eepro100 = {
1742 .version_id = 3,
1743 .minimum_version_id = 2,
1744 .minimum_version_id_old = 2,
1745 .fields = (VMStateField []) {
1746 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1747 VMSTATE_UNUSED(32),
1748 VMSTATE_BUFFER(mult, EEPRO100State),
1749 VMSTATE_BUFFER(mem, EEPRO100State),
1750 /* Save all members of struct between scb_stat and mem. */
1751 VMSTATE_UINT8(scb_stat, EEPRO100State),
1752 VMSTATE_UINT8(int_stat, EEPRO100State),
1753 VMSTATE_UNUSED(3*4),
1754 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1755 VMSTATE_UNUSED(19*4),
1756 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1757 /* The eeprom should be saved and restored by its own routines. */
1758 VMSTATE_UINT32(device, EEPRO100State),
1759 /* TODO check device. */
1760 VMSTATE_UINT32(pointer, EEPRO100State),
1761 VMSTATE_UINT32(cu_base, EEPRO100State),
1762 VMSTATE_UINT32(cu_offset, EEPRO100State),
1763 VMSTATE_UINT32(ru_base, EEPRO100State),
1764 VMSTATE_UINT32(ru_offset, EEPRO100State),
1765 VMSTATE_UINT32(statsaddr, EEPRO100State),
1766 /* Save eepro100_stats_t statistics. */
1767 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1768 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1769 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1770 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1771 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1772 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1773 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1774 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1775 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1776 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1777 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1778 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1779 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1780 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1781 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1782 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1783 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1784 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1785 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1786 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1787 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1788 #if 0
1789 VMSTATE_UINT16(status, EEPRO100State),
1790 #endif
1791 /* Configuration bytes. */
1792 VMSTATE_BUFFER(configuration, EEPRO100State),
1793 VMSTATE_END_OF_LIST()
1794 }
1795 };
1796
1797 static void nic_cleanup(VLANClientState *nc)
1798 {
1799 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1800
1801 s->nic = NULL;
1802 }
1803
1804 static int pci_nic_uninit(PCIDevice *pci_dev)
1805 {
1806 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1807
1808 cpu_unregister_io_memory(s->mmio_index);
1809 vmstate_unregister(s->vmstate, s);
1810 eeprom93xx_free(s->eeprom);
1811 qemu_del_vlan_client(&s->nic->nc);
1812 return 0;
1813 }
1814
1815 static NetClientInfo net_eepro100_info = {
1816 .type = NET_CLIENT_TYPE_NIC,
1817 .size = sizeof(NICState),
1818 .can_receive = nic_can_receive,
1819 .receive = nic_receive,
1820 .cleanup = nic_cleanup,
1821 };
1822
1823 static int nic_init(PCIDevice *pci_dev, uint32_t device)
1824 {
1825 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1826
1827 TRACE(OTHER, logout("\n"));
1828
1829 s->device = device;
1830
1831 pci_reset(s);
1832
1833 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1834 * i82559 and later support 64 or 256 word EEPROM. */
1835 s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1836
1837 /* Handler for memory-mapped I/O */
1838 s->mmio_index =
1839 cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
1840
1841 pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
1842 PCI_BASE_ADDRESS_SPACE_MEMORY |
1843 PCI_BASE_ADDRESS_MEM_PREFETCH, pci_mmio_map);
1844 pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_BASE_ADDRESS_SPACE_IO,
1845 pci_map);
1846 pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
1847 pci_mmio_map);
1848
1849 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1850 logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1851 assert(s->region[1] == 0);
1852
1853 nic_reset(s);
1854
1855 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1856 pci_dev->qdev.info->name, pci_dev->qdev.id, s);
1857
1858 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1859 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1860
1861 qemu_register_reset(nic_reset, s);
1862
1863 s->vmstate = qemu_malloc(sizeof(vmstate_eepro100));
1864 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1865 s->vmstate->name = s->nic->nc.model;
1866 vmstate_register(-1, s->vmstate, s);
1867
1868 if (!pci_dev->qdev.hotplugged) {
1869 static int loaded = 0;
1870 if (!loaded) {
1871 char fname[32];
1872 snprintf(fname, sizeof(fname), "pxe-%s.bin", s->nic->nc.model);
1873 rom_add_option(fname);
1874 loaded = 1;
1875 }
1876 }
1877 return 0;
1878 }
1879
1880 static int pci_i82550_init(PCIDevice *pci_dev)
1881 {
1882 return nic_init(pci_dev, i82550);
1883 }
1884
1885 static int pci_i82551_init(PCIDevice *pci_dev)
1886 {
1887 return nic_init(pci_dev, i82551);
1888 }
1889
1890 static int pci_i82557a_init(PCIDevice *pci_dev)
1891 {
1892 return nic_init(pci_dev, i82557A);
1893 }
1894
1895 static int pci_i82557b_init(PCIDevice *pci_dev)
1896 {
1897 return nic_init(pci_dev, i82557B);
1898 }
1899
1900 static int pci_i82557c_init(PCIDevice *pci_dev)
1901 {
1902 return nic_init(pci_dev, i82557C);
1903 }
1904
1905 static int pci_i82558a_init(PCIDevice *pci_dev)
1906 {
1907 return nic_init(pci_dev, i82558A);
1908 }
1909
1910 static int pci_i82558b_init(PCIDevice *pci_dev)
1911 {
1912 return nic_init(pci_dev, i82558B);
1913 }
1914
1915 static int pci_i82559a_init(PCIDevice *pci_dev)
1916 {
1917 return nic_init(pci_dev, i82559A);
1918 }
1919
1920 static int pci_i82559b_init(PCIDevice *pci_dev)
1921 {
1922 return nic_init(pci_dev, i82559B);
1923 }
1924
1925 static int pci_i82559c_init(PCIDevice *pci_dev)
1926 {
1927 return nic_init(pci_dev, i82559C);
1928 }
1929
1930 static int pci_i82559er_init(PCIDevice *pci_dev)
1931 {
1932 return nic_init(pci_dev, i82559ER);
1933 }
1934
1935 static int pci_i82562_init(PCIDevice *pci_dev)
1936 {
1937 return nic_init(pci_dev, i82562);
1938 }
1939
1940 static PCIDeviceInfo eepro100_info[] = {
1941 {
1942 .qdev.name = "i82550",
1943 .qdev.size = sizeof(EEPRO100State),
1944 .init = pci_i82550_init,
1945 .exit = pci_nic_uninit,
1946 .qdev.props = (Property[]) {
1947 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1948 DEFINE_PROP_END_OF_LIST(),
1949 },
1950 },{
1951 .qdev.name = "i82551",
1952 .qdev.size = sizeof(EEPRO100State),
1953 .init = pci_i82551_init,
1954 .exit = pci_nic_uninit,
1955 .qdev.props = (Property[]) {
1956 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1957 DEFINE_PROP_END_OF_LIST(),
1958 },
1959 },{
1960 .qdev.name = "i82557a",
1961 .qdev.size = sizeof(EEPRO100State),
1962 .init = pci_i82557a_init,
1963 .exit = pci_nic_uninit,
1964 .qdev.props = (Property[]) {
1965 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1966 DEFINE_PROP_END_OF_LIST(),
1967 },
1968 },{
1969 .qdev.name = "i82557b",
1970 .qdev.size = sizeof(EEPRO100State),
1971 .init = pci_i82557b_init,
1972 .exit = pci_nic_uninit,
1973 .qdev.props = (Property[]) {
1974 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1975 DEFINE_PROP_END_OF_LIST(),
1976 },
1977 },{
1978 .qdev.name = "i82557c",
1979 .qdev.size = sizeof(EEPRO100State),
1980 .init = pci_i82557c_init,
1981 .exit = pci_nic_uninit,
1982 .qdev.props = (Property[]) {
1983 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1984 DEFINE_PROP_END_OF_LIST(),
1985 },
1986 },{
1987 .qdev.name = "i82558a",
1988 .qdev.size = sizeof(EEPRO100State),
1989 .init = pci_i82558a_init,
1990 .exit = pci_nic_uninit,
1991 .qdev.props = (Property[]) {
1992 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1993 DEFINE_PROP_END_OF_LIST(),
1994 },
1995 },{
1996 .qdev.name = "i82558b",
1997 .qdev.size = sizeof(EEPRO100State),
1998 .init = pci_i82558b_init,
1999 .exit = pci_nic_uninit,
2000 .qdev.props = (Property[]) {
2001 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2002 DEFINE_PROP_END_OF_LIST(),
2003 },
2004 },{
2005 .qdev.name = "i82559a",
2006 .qdev.size = sizeof(EEPRO100State),
2007 .init = pci_i82559a_init,
2008 .exit = pci_nic_uninit,
2009 .qdev.props = (Property[]) {
2010 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2011 DEFINE_PROP_END_OF_LIST(),
2012 },
2013 },{
2014 .qdev.name = "i82559b",
2015 .qdev.size = sizeof(EEPRO100State),
2016 .init = pci_i82559b_init,
2017 .exit = pci_nic_uninit,
2018 .qdev.props = (Property[]) {
2019 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2020 DEFINE_PROP_END_OF_LIST(),
2021 },
2022 },{
2023 .qdev.name = "i82559c",
2024 .qdev.size = sizeof(EEPRO100State),
2025 .init = pci_i82559c_init,
2026 .exit = pci_nic_uninit,
2027 .qdev.props = (Property[]) {
2028 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2029 DEFINE_PROP_END_OF_LIST(),
2030 },
2031 },{
2032 .qdev.name = "i82559er",
2033 .qdev.size = sizeof(EEPRO100State),
2034 .init = pci_i82559er_init,
2035 .exit = pci_nic_uninit,
2036 .qdev.props = (Property[]) {
2037 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2038 DEFINE_PROP_END_OF_LIST(),
2039 },
2040 },{
2041 .qdev.name = "i82562",
2042 .qdev.size = sizeof(EEPRO100State),
2043 .init = pci_i82562_init,
2044 .exit = pci_nic_uninit,
2045 .qdev.props = (Property[]) {
2046 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2047 DEFINE_PROP_END_OF_LIST(),
2048 },
2049 },{
2050 /* end of list */
2051 }
2052 };
2053
2054 static void eepro100_register_devices(void)
2055 {
2056 pci_qdev_register_many(eepro100_info);
2057 }
2058
2059 device_init(eepro100_register_devices)