]> git.proxmox.com Git - qemu.git/blob - hw/eepro100.c
qdev: register all types natively through QEMU Object Model
[qemu.git] / hw / eepro100.c
1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2011 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * Windows networking
28 *
29 * References:
30 *
31 * Intel 8255x 10/100 Mbps Ethernet Controller Family
32 * Open Source Software Developer Manual
33 *
34 * TODO:
35 * * PHY emulation should be separated from nic emulation.
36 * Most nic emulations could share the same phy code.
37 * * i82550 is untested. It is programmed like the i82559.
38 * * i82562 is untested. It is programmed like the i82559.
39 * * Power management (i82558 and later) is not implemented.
40 * * Wake-on-LAN is not implemented.
41 */
42
43 #include <stddef.h> /* offsetof */
44 #include "hw.h"
45 #include "pci.h"
46 #include "net.h"
47 #include "eeprom93xx.h"
48 #include "sysemu.h"
49 #include "dma.h"
50
51 /* QEMU sends frames smaller than 60 bytes to ethernet nics.
52 * Such frames are rejected by real nics and their emulations.
53 * To avoid this behaviour, other nic emulations pad received
54 * frames. The following definition enables this padding for
55 * eepro100, too. We keep the define around in case it might
56 * become useful the future if the core networking is ever
57 * changed to pad short packets itself. */
58 #define CONFIG_PAD_RECEIVED_FRAMES
59
60 #define KiB 1024
61
62 /* Debug EEPRO100 card. */
63 #if 0
64 # define DEBUG_EEPRO100
65 #endif
66
67 #ifdef DEBUG_EEPRO100
68 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
69 #else
70 #define logout(fmt, ...) ((void)0)
71 #endif
72
73 /* Set flags to 0 to disable debug output. */
74 #define INT 1 /* interrupt related actions */
75 #define MDI 1 /* mdi related actions */
76 #define OTHER 1
77 #define RXTX 1
78 #define EEPROM 1 /* eeprom related actions */
79
80 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
81
82 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
83
84 #define MAX_ETH_FRAME_SIZE 1514
85
86 /* This driver supports several different devices which are declared here. */
87 #define i82550 0x82550
88 #define i82551 0x82551
89 #define i82557A 0x82557a
90 #define i82557B 0x82557b
91 #define i82557C 0x82557c
92 #define i82558A 0x82558a
93 #define i82558B 0x82558b
94 #define i82559A 0x82559a
95 #define i82559B 0x82559b
96 #define i82559C 0x82559c
97 #define i82559ER 0x82559e
98 #define i82562 0x82562
99 #define i82801 0x82801
100
101 /* Use 64 word EEPROM. TODO: could be a runtime option. */
102 #define EEPROM_SIZE 64
103
104 #define PCI_MEM_SIZE (4 * KiB)
105 #define PCI_IO_SIZE 64
106 #define PCI_FLASH_SIZE (128 * KiB)
107
108 #define BIT(n) (1 << (n))
109 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
110
111 /* The SCB accepts the following controls for the Tx and Rx units: */
112 #define CU_NOP 0x0000 /* No operation. */
113 #define CU_START 0x0010 /* CU start. */
114 #define CU_RESUME 0x0020 /* CU resume. */
115 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
116 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
117 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
118 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
119 #define CU_SRESUME 0x00a0 /* CU static resume. */
120
121 #define RU_NOP 0x0000
122 #define RX_START 0x0001
123 #define RX_RESUME 0x0002
124 #define RU_ABORT 0x0004
125 #define RX_ADDR_LOAD 0x0006
126 #define RX_RESUMENR 0x0007
127 #define INT_MASK 0x0100
128 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
129
130 typedef struct {
131 const char *name;
132 const char *desc;
133 uint16_t device_id;
134 uint8_t revision;
135 uint16_t subsystem_vendor_id;
136 uint16_t subsystem_id;
137
138 uint32_t device;
139 uint8_t stats_size;
140 bool has_extended_tcb_support;
141 bool power_management;
142 } E100PCIDeviceInfo;
143
144 /* Offsets to the various registers.
145 All accesses need not be longword aligned. */
146 typedef enum {
147 SCBStatus = 0, /* Status Word. */
148 SCBAck = 1,
149 SCBCmd = 2, /* Rx/Command Unit command and status. */
150 SCBIntmask = 3,
151 SCBPointer = 4, /* General purpose pointer. */
152 SCBPort = 8, /* Misc. commands and operands. */
153 SCBflash = 12, /* Flash memory control. */
154 SCBeeprom = 14, /* EEPROM control. */
155 SCBCtrlMDI = 16, /* MDI interface control. */
156 SCBEarlyRx = 20, /* Early receive byte count. */
157 SCBFlow = 24, /* Flow Control. */
158 SCBpmdr = 27, /* Power Management Driver. */
159 SCBgctrl = 28, /* General Control. */
160 SCBgstat = 29, /* General Status. */
161 } E100RegisterOffset;
162
163 /* A speedo3 transmit buffer descriptor with two buffers... */
164 typedef struct {
165 uint16_t status;
166 uint16_t command;
167 uint32_t link; /* void * */
168 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
169 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
170 uint8_t tx_threshold; /* transmit threshold */
171 uint8_t tbd_count; /* TBD number */
172 #if 0
173 /* This constitutes two "TBD" entries: hdr and data */
174 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
175 int32_t tx_buf_size0; /* Length of Tx hdr. */
176 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
177 int32_t tx_buf_size1; /* Length of Tx data. */
178 #endif
179 } eepro100_tx_t;
180
181 /* Receive frame descriptor. */
182 typedef struct {
183 int16_t status;
184 uint16_t command;
185 uint32_t link; /* struct RxFD * */
186 uint32_t rx_buf_addr; /* void * */
187 uint16_t count;
188 uint16_t size;
189 /* Ethernet frame data follows. */
190 } eepro100_rx_t;
191
192 typedef enum {
193 COMMAND_EL = BIT(15),
194 COMMAND_S = BIT(14),
195 COMMAND_I = BIT(13),
196 COMMAND_NC = BIT(4),
197 COMMAND_SF = BIT(3),
198 COMMAND_CMD = BITS(2, 0),
199 } scb_command_bit;
200
201 typedef enum {
202 STATUS_C = BIT(15),
203 STATUS_OK = BIT(13),
204 } scb_status_bit;
205
206 typedef struct {
207 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
208 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
209 tx_multiple_collisions, tx_total_collisions;
210 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
211 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
212 rx_short_frame_errors;
213 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
214 uint16_t xmt_tco_frames, rcv_tco_frames;
215 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
216 uint32_t reserved[4];
217 } eepro100_stats_t;
218
219 typedef enum {
220 cu_idle = 0,
221 cu_suspended = 1,
222 cu_active = 2,
223 cu_lpq_active = 2,
224 cu_hqp_active = 3
225 } cu_state_t;
226
227 typedef enum {
228 ru_idle = 0,
229 ru_suspended = 1,
230 ru_no_resources = 2,
231 ru_ready = 4
232 } ru_state_t;
233
234 typedef struct {
235 PCIDevice dev;
236 /* Hash register (multicast mask array, multiple individual addresses). */
237 uint8_t mult[8];
238 MemoryRegion mmio_bar;
239 MemoryRegion io_bar;
240 MemoryRegion flash_bar;
241 NICState *nic;
242 NICConf conf;
243 uint8_t scb_stat; /* SCB stat/ack byte */
244 uint8_t int_stat; /* PCI interrupt status */
245 /* region must not be saved by nic_save. */
246 uint16_t mdimem[32];
247 eeprom_t *eeprom;
248 uint32_t device; /* device variant */
249 /* (cu_base + cu_offset) address the next command block in the command block list. */
250 uint32_t cu_base; /* CU base address */
251 uint32_t cu_offset; /* CU address offset */
252 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
253 uint32_t ru_base; /* RU base address */
254 uint32_t ru_offset; /* RU address offset */
255 uint32_t statsaddr; /* pointer to eepro100_stats_t */
256
257 /* Temporary status information (no need to save these values),
258 * used while processing CU commands. */
259 eepro100_tx_t tx; /* transmit buffer descriptor */
260 uint32_t cb_address; /* = cu_base + cu_offset */
261
262 /* Statistical counters. Also used for wake-up packet (i82559). */
263 eepro100_stats_t statistics;
264
265 /* Data in mem is always in the byte order of the controller (le).
266 * It must be dword aligned to allow direct access to 32 bit values. */
267 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
268
269 /* Configuration bytes. */
270 uint8_t configuration[22];
271
272 /* vmstate for each particular nic */
273 VMStateDescription *vmstate;
274
275 /* Quasi static device properties (no need to save them). */
276 uint16_t stats_size;
277 bool has_extended_tcb_support;
278 } EEPRO100State;
279
280 /* Word indices in EEPROM. */
281 typedef enum {
282 EEPROM_CNFG_MDIX = 0x03,
283 EEPROM_ID = 0x05,
284 EEPROM_PHY_ID = 0x06,
285 EEPROM_VENDOR_ID = 0x0c,
286 EEPROM_CONFIG_ASF = 0x0d,
287 EEPROM_DEVICE_ID = 0x23,
288 EEPROM_SMBUS_ADDR = 0x90,
289 } EEPROMOffset;
290
291 /* Bit values for EEPROM ID word. */
292 typedef enum {
293 EEPROM_ID_MDM = BIT(0), /* Modem */
294 EEPROM_ID_STB = BIT(1), /* Standby Enable */
295 EEPROM_ID_WMR = BIT(2), /* ??? */
296 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
297 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
298 EEPROM_ID_ALT = BIT(7), /* */
299 /* BITS(10, 8) device revision */
300 EEPROM_ID_BD = BIT(11), /* boot disable */
301 EEPROM_ID_ID = BIT(13), /* id bit */
302 /* BITS(15, 14) signature */
303 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
304 } eeprom_id_bit;
305
306 /* Default values for MDI (PHY) registers */
307 static const uint16_t eepro100_mdi_default[] = {
308 /* MDI Registers 0 - 6, 7 */
309 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
310 /* MDI Registers 8 - 15 */
311 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
312 /* MDI Registers 16 - 31 */
313 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
314 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
315 };
316
317 /* Readonly mask for MDI (PHY) registers */
318 static const uint16_t eepro100_mdi_mask[] = {
319 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
320 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
321 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
322 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
323 };
324
325 #define POLYNOMIAL 0x04c11db6
326
327 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
328
329 /* From FreeBSD */
330 /* XXX: optimize */
331 static unsigned compute_mcast_idx(const uint8_t * ep)
332 {
333 uint32_t crc;
334 int carry, i, j;
335 uint8_t b;
336
337 crc = 0xffffffff;
338 for (i = 0; i < 6; i++) {
339 b = *ep++;
340 for (j = 0; j < 8; j++) {
341 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
342 crc <<= 1;
343 b >>= 1;
344 if (carry) {
345 crc = ((crc ^ POLYNOMIAL) | carry);
346 }
347 }
348 }
349 return (crc & BITS(7, 2)) >> 2;
350 }
351
352 /* Read a 16 bit control/status (CSR) register. */
353 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
354 {
355 assert(!((uintptr_t)&s->mem[addr] & 1));
356 return le16_to_cpup((uint16_t *)&s->mem[addr]);
357 }
358
359 /* Read a 32 bit control/status (CSR) register. */
360 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
361 {
362 assert(!((uintptr_t)&s->mem[addr] & 3));
363 return le32_to_cpup((uint32_t *)&s->mem[addr]);
364 }
365
366 /* Write a 16 bit control/status (CSR) register. */
367 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
368 uint16_t val)
369 {
370 assert(!((uintptr_t)&s->mem[addr] & 1));
371 cpu_to_le16w((uint16_t *)&s->mem[addr], val);
372 }
373
374 /* Read a 32 bit control/status (CSR) register. */
375 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
376 uint32_t val)
377 {
378 assert(!((uintptr_t)&s->mem[addr] & 3));
379 cpu_to_le32w((uint32_t *)&s->mem[addr], val);
380 }
381
382 #if defined(DEBUG_EEPRO100)
383 static const char *nic_dump(const uint8_t * buf, unsigned size)
384 {
385 static char dump[3 * 16 + 1];
386 char *p = &dump[0];
387 if (size > 16) {
388 size = 16;
389 }
390 while (size-- > 0) {
391 p += sprintf(p, " %02x", *buf++);
392 }
393 return dump;
394 }
395 #endif /* DEBUG_EEPRO100 */
396
397 enum scb_stat_ack {
398 stat_ack_not_ours = 0x00,
399 stat_ack_sw_gen = 0x04,
400 stat_ack_rnr = 0x10,
401 stat_ack_cu_idle = 0x20,
402 stat_ack_frame_rx = 0x40,
403 stat_ack_cu_cmd_done = 0x80,
404 stat_ack_not_present = 0xFF,
405 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
406 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
407 };
408
409 static void disable_interrupt(EEPRO100State * s)
410 {
411 if (s->int_stat) {
412 TRACE(INT, logout("interrupt disabled\n"));
413 qemu_irq_lower(s->dev.irq[0]);
414 s->int_stat = 0;
415 }
416 }
417
418 static void enable_interrupt(EEPRO100State * s)
419 {
420 if (!s->int_stat) {
421 TRACE(INT, logout("interrupt enabled\n"));
422 qemu_irq_raise(s->dev.irq[0]);
423 s->int_stat = 1;
424 }
425 }
426
427 static void eepro100_acknowledge(EEPRO100State * s)
428 {
429 s->scb_stat &= ~s->mem[SCBAck];
430 s->mem[SCBAck] = s->scb_stat;
431 if (s->scb_stat == 0) {
432 disable_interrupt(s);
433 }
434 }
435
436 static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
437 {
438 uint8_t mask = ~s->mem[SCBIntmask];
439 s->mem[SCBAck] |= status;
440 status = s->scb_stat = s->mem[SCBAck];
441 status &= (mask | 0x0f);
442 #if 0
443 status &= (~s->mem[SCBIntmask] | 0x0xf);
444 #endif
445 if (status && (mask & 0x01)) {
446 /* SCB mask and SCB Bit M do not disable interrupt. */
447 enable_interrupt(s);
448 } else if (s->int_stat) {
449 disable_interrupt(s);
450 }
451 }
452
453 static void eepro100_cx_interrupt(EEPRO100State * s)
454 {
455 /* CU completed action command. */
456 /* Transmit not ok (82557 only, not in emulation). */
457 eepro100_interrupt(s, 0x80);
458 }
459
460 static void eepro100_cna_interrupt(EEPRO100State * s)
461 {
462 /* CU left the active state. */
463 eepro100_interrupt(s, 0x20);
464 }
465
466 static void eepro100_fr_interrupt(EEPRO100State * s)
467 {
468 /* RU received a complete frame. */
469 eepro100_interrupt(s, 0x40);
470 }
471
472 static void eepro100_rnr_interrupt(EEPRO100State * s)
473 {
474 /* RU is not ready. */
475 eepro100_interrupt(s, 0x10);
476 }
477
478 static void eepro100_mdi_interrupt(EEPRO100State * s)
479 {
480 /* MDI completed read or write cycle. */
481 eepro100_interrupt(s, 0x08);
482 }
483
484 static void eepro100_swi_interrupt(EEPRO100State * s)
485 {
486 /* Software has requested an interrupt. */
487 eepro100_interrupt(s, 0x04);
488 }
489
490 #if 0
491 static void eepro100_fcp_interrupt(EEPRO100State * s)
492 {
493 /* Flow control pause interrupt (82558 and later). */
494 eepro100_interrupt(s, 0x01);
495 }
496 #endif
497
498 static void e100_pci_reset(EEPRO100State * s)
499 {
500 E100PCIDeviceInfo *info = eepro100_get_class(s);
501 uint32_t device = s->device;
502 uint8_t *pci_conf = s->dev.config;
503
504 TRACE(OTHER, logout("%p\n", s));
505
506 /* PCI Status */
507 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
508 PCI_STATUS_FAST_BACK);
509 /* PCI Latency Timer */
510 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
511 /* Capability Pointer is set by PCI framework. */
512 /* Interrupt Line */
513 /* Interrupt Pin */
514 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
515 /* Minimum Grant */
516 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
517 /* Maximum Latency */
518 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
519
520 s->stats_size = info->stats_size;
521 s->has_extended_tcb_support = info->has_extended_tcb_support;
522
523 switch (device) {
524 case i82550:
525 case i82551:
526 case i82557A:
527 case i82557B:
528 case i82557C:
529 case i82558A:
530 case i82558B:
531 case i82559A:
532 case i82559B:
533 case i82559ER:
534 case i82562:
535 case i82801:
536 case i82559C:
537 break;
538 default:
539 logout("Device %X is undefined!\n", device);
540 }
541
542 /* Standard TxCB. */
543 s->configuration[6] |= BIT(4);
544
545 /* Standard statistical counters. */
546 s->configuration[6] |= BIT(5);
547
548 if (s->stats_size == 80) {
549 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
550 if (s->configuration[6] & BIT(2)) {
551 /* TCO statistical counters. */
552 assert(s->configuration[6] & BIT(5));
553 } else {
554 if (s->configuration[6] & BIT(5)) {
555 /* No extended statistical counters, i82557 compatible. */
556 s->stats_size = 64;
557 } else {
558 /* i82558 compatible. */
559 s->stats_size = 76;
560 }
561 }
562 } else {
563 if (s->configuration[6] & BIT(5)) {
564 /* No extended statistical counters. */
565 s->stats_size = 64;
566 }
567 }
568 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
569
570 if (info->power_management) {
571 /* Power Management Capabilities */
572 int cfg_offset = 0xdc;
573 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
574 cfg_offset, PCI_PM_SIZEOF);
575 assert(r >= 0);
576 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
577 #if 0 /* TODO: replace dummy code for power management emulation. */
578 /* TODO: Power Management Control / Status. */
579 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
580 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
581 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
582 #endif
583 }
584
585 #if EEPROM_SIZE > 0
586 if (device == i82557C || device == i82558B || device == i82559C) {
587 /*
588 TODO: get vendor id from EEPROM for i82557C or later.
589 TODO: get device id from EEPROM for i82557C or later.
590 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
591 TODO: header type is determined by EEPROM for i82559.
592 TODO: get subsystem id from EEPROM for i82557C or later.
593 TODO: get subsystem vendor id from EEPROM for i82557C or later.
594 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
595 TODO: capability pointer depends on EEPROM for i82558.
596 */
597 logout("Get device id and revision from EEPROM!!!\n");
598 }
599 #endif /* EEPROM_SIZE > 0 */
600 }
601
602 static void nic_selective_reset(EEPRO100State * s)
603 {
604 size_t i;
605 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
606 #if 0
607 eeprom93xx_reset(s->eeprom);
608 #endif
609 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
610 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
611 if (s->device == i82557B || s->device == i82557C)
612 eeprom_contents[5] = 0x0100;
613 eeprom_contents[EEPROM_PHY_ID] = 1;
614 uint16_t sum = 0;
615 for (i = 0; i < EEPROM_SIZE - 1; i++) {
616 sum += eeprom_contents[i];
617 }
618 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
619 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
620
621 memset(s->mem, 0, sizeof(s->mem));
622 e100_write_reg4(s, SCBCtrlMDI, BIT(21));
623
624 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
625 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
626 }
627
628 static void nic_reset(void *opaque)
629 {
630 EEPRO100State *s = opaque;
631 TRACE(OTHER, logout("%p\n", s));
632 /* TODO: Clearing of hash register for selective reset, too? */
633 memset(&s->mult[0], 0, sizeof(s->mult));
634 nic_selective_reset(s);
635 }
636
637 #if defined(DEBUG_EEPRO100)
638 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
639 "Command/Status",
640 "General Pointer",
641 "Port",
642 "EEPROM/Flash Control",
643 "MDI Control",
644 "Receive DMA Byte Count",
645 "Flow Control",
646 "General Status/Control"
647 };
648
649 static char *regname(uint32_t addr)
650 {
651 static char buf[32];
652 if (addr < PCI_IO_SIZE) {
653 const char *r = e100_reg[addr / 4];
654 if (r != 0) {
655 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
656 } else {
657 snprintf(buf, sizeof(buf), "0x%02x", addr);
658 }
659 } else {
660 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
661 }
662 return buf;
663 }
664 #endif /* DEBUG_EEPRO100 */
665
666 /*****************************************************************************
667 *
668 * Command emulation.
669 *
670 ****************************************************************************/
671
672 #if 0
673 static uint16_t eepro100_read_command(EEPRO100State * s)
674 {
675 uint16_t val = 0xffff;
676 TRACE(OTHER, logout("val=0x%04x\n", val));
677 return val;
678 }
679 #endif
680
681 /* Commands that can be put in a command list entry. */
682 enum commands {
683 CmdNOp = 0,
684 CmdIASetup = 1,
685 CmdConfigure = 2,
686 CmdMulticastList = 3,
687 CmdTx = 4,
688 CmdTDR = 5, /* load microcode */
689 CmdDump = 6,
690 CmdDiagnose = 7,
691
692 /* And some extra flags: */
693 CmdSuspend = 0x4000, /* Suspend after completion. */
694 CmdIntr = 0x2000, /* Interrupt after completion. */
695 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
696 };
697
698 static cu_state_t get_cu_state(EEPRO100State * s)
699 {
700 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
701 }
702
703 static void set_cu_state(EEPRO100State * s, cu_state_t state)
704 {
705 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
706 }
707
708 static ru_state_t get_ru_state(EEPRO100State * s)
709 {
710 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
711 }
712
713 static void set_ru_state(EEPRO100State * s, ru_state_t state)
714 {
715 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
716 }
717
718 static void dump_statistics(EEPRO100State * s)
719 {
720 /* Dump statistical data. Most data is never changed by the emulation
721 * and always 0, so we first just copy the whole block and then those
722 * values which really matter.
723 * Number of data should check configuration!!!
724 */
725 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
726 stl_le_pci_dma(&s->dev, s->statsaddr + 0,
727 s->statistics.tx_good_frames);
728 stl_le_pci_dma(&s->dev, s->statsaddr + 36,
729 s->statistics.rx_good_frames);
730 stl_le_pci_dma(&s->dev, s->statsaddr + 48,
731 s->statistics.rx_resource_errors);
732 stl_le_pci_dma(&s->dev, s->statsaddr + 60,
733 s->statistics.rx_short_frame_errors);
734 #if 0
735 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames);
736 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames);
737 missing("CU dump statistical counters");
738 #endif
739 }
740
741 static void read_cb(EEPRO100State *s)
742 {
743 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
744 s->tx.status = le16_to_cpu(s->tx.status);
745 s->tx.command = le16_to_cpu(s->tx.command);
746 s->tx.link = le32_to_cpu(s->tx.link);
747 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
748 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
749 }
750
751 static void tx_command(EEPRO100State *s)
752 {
753 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr);
754 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff);
755 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
756 uint8_t buf[2600];
757 uint16_t size = 0;
758 uint32_t tbd_address = s->cb_address + 0x10;
759 TRACE(RXTX, logout
760 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
761 tbd_array, tcb_bytes, s->tx.tbd_count));
762
763 if (tcb_bytes > 2600) {
764 logout("TCB byte count too large, using 2600\n");
765 tcb_bytes = 2600;
766 }
767 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
768 logout
769 ("illegal values of TBD array address and TCB byte count!\n");
770 }
771 assert(tcb_bytes <= sizeof(buf));
772 while (size < tcb_bytes) {
773 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
774 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
775 #if 0
776 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
777 #endif
778 tbd_address += 8;
779 TRACE(RXTX, logout
780 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
781 tx_buffer_address, tx_buffer_size));
782 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
783 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size);
784 size += tx_buffer_size;
785 }
786 if (tbd_array == 0xffffffff) {
787 /* Simplified mode. Was already handled by code above. */
788 } else {
789 /* Flexible mode. */
790 uint8_t tbd_count = 0;
791 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
792 /* Extended Flexible TCB. */
793 for (; tbd_count < 2; tbd_count++) {
794 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev,
795 tbd_address);
796 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev,
797 tbd_address + 4);
798 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev,
799 tbd_address + 6);
800 tbd_address += 8;
801 TRACE(RXTX, logout
802 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
803 tx_buffer_address, tx_buffer_size));
804 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
805 pci_dma_read(&s->dev, tx_buffer_address,
806 &buf[size], tx_buffer_size);
807 size += tx_buffer_size;
808 if (tx_buffer_el & 1) {
809 break;
810 }
811 }
812 }
813 tbd_address = tbd_array;
814 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
815 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address);
816 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4);
817 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6);
818 tbd_address += 8;
819 TRACE(RXTX, logout
820 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
821 tx_buffer_address, tx_buffer_size));
822 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
823 pci_dma_read(&s->dev, tx_buffer_address,
824 &buf[size], tx_buffer_size);
825 size += tx_buffer_size;
826 if (tx_buffer_el & 1) {
827 break;
828 }
829 }
830 }
831 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
832 qemu_send_packet(&s->nic->nc, buf, size);
833 s->statistics.tx_good_frames++;
834 /* Transmit with bad status would raise an CX/TNO interrupt.
835 * (82557 only). Emulation never has bad status. */
836 #if 0
837 eepro100_cx_interrupt(s);
838 #endif
839 }
840
841 static void set_multicast_list(EEPRO100State *s)
842 {
843 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
844 uint16_t i;
845 memset(&s->mult[0], 0, sizeof(s->mult));
846 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
847 for (i = 0; i < multicast_count; i += 6) {
848 uint8_t multicast_addr[6];
849 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
850 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
851 unsigned mcast_idx = compute_mcast_idx(multicast_addr);
852 assert(mcast_idx < 64);
853 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
854 }
855 }
856
857 static void action_command(EEPRO100State *s)
858 {
859 for (;;) {
860 bool bit_el;
861 bool bit_s;
862 bool bit_i;
863 bool bit_nc;
864 uint16_t ok_status = STATUS_OK;
865 s->cb_address = s->cu_base + s->cu_offset;
866 read_cb(s);
867 bit_el = ((s->tx.command & COMMAND_EL) != 0);
868 bit_s = ((s->tx.command & COMMAND_S) != 0);
869 bit_i = ((s->tx.command & COMMAND_I) != 0);
870 bit_nc = ((s->tx.command & COMMAND_NC) != 0);
871 #if 0
872 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
873 #endif
874 s->cu_offset = s->tx.link;
875 TRACE(OTHER,
876 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
877 s->tx.status, s->tx.command, s->tx.link));
878 switch (s->tx.command & COMMAND_CMD) {
879 case CmdNOp:
880 /* Do nothing. */
881 break;
882 case CmdIASetup:
883 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
884 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
885 break;
886 case CmdConfigure:
887 pci_dma_read(&s->dev, s->cb_address + 8,
888 &s->configuration[0], sizeof(s->configuration));
889 TRACE(OTHER, logout("configuration: %s\n",
890 nic_dump(&s->configuration[0], 16)));
891 TRACE(OTHER, logout("configuration: %s\n",
892 nic_dump(&s->configuration[16],
893 ARRAY_SIZE(s->configuration) - 16)));
894 if (s->configuration[20] & BIT(6)) {
895 TRACE(OTHER, logout("Multiple IA bit\n"));
896 }
897 break;
898 case CmdMulticastList:
899 set_multicast_list(s);
900 break;
901 case CmdTx:
902 if (bit_nc) {
903 missing("CmdTx: NC = 0");
904 ok_status = 0;
905 break;
906 }
907 tx_command(s);
908 break;
909 case CmdTDR:
910 TRACE(OTHER, logout("load microcode\n"));
911 /* Starting with offset 8, the command contains
912 * 64 dwords microcode which we just ignore here. */
913 break;
914 case CmdDiagnose:
915 TRACE(OTHER, logout("diagnose\n"));
916 /* Make sure error flag is not set. */
917 s->tx.status = 0;
918 break;
919 default:
920 missing("undefined command");
921 ok_status = 0;
922 break;
923 }
924 /* Write new status. */
925 stw_le_pci_dma(&s->dev, s->cb_address,
926 s->tx.status | ok_status | STATUS_C);
927 if (bit_i) {
928 /* CU completed action. */
929 eepro100_cx_interrupt(s);
930 }
931 if (bit_el) {
932 /* CU becomes idle. Terminate command loop. */
933 set_cu_state(s, cu_idle);
934 eepro100_cna_interrupt(s);
935 break;
936 } else if (bit_s) {
937 /* CU becomes suspended. Terminate command loop. */
938 set_cu_state(s, cu_suspended);
939 eepro100_cna_interrupt(s);
940 break;
941 } else {
942 /* More entries in list. */
943 TRACE(OTHER, logout("CU list with at least one more entry\n"));
944 }
945 }
946 TRACE(OTHER, logout("CU list empty\n"));
947 /* List is empty. Now CU is idle or suspended. */
948 }
949
950 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
951 {
952 cu_state_t cu_state;
953 switch (val) {
954 case CU_NOP:
955 /* No operation. */
956 break;
957 case CU_START:
958 cu_state = get_cu_state(s);
959 if (cu_state != cu_idle && cu_state != cu_suspended) {
960 /* Intel documentation says that CU must be idle or suspended
961 * for the CU start command. */
962 logout("unexpected CU state is %u\n", cu_state);
963 }
964 set_cu_state(s, cu_active);
965 s->cu_offset = e100_read_reg4(s, SCBPointer);
966 action_command(s);
967 break;
968 case CU_RESUME:
969 if (get_cu_state(s) != cu_suspended) {
970 logout("bad CU resume from CU state %u\n", get_cu_state(s));
971 /* Workaround for bad Linux eepro100 driver which resumes
972 * from idle state. */
973 #if 0
974 missing("cu resume");
975 #endif
976 set_cu_state(s, cu_suspended);
977 }
978 if (get_cu_state(s) == cu_suspended) {
979 TRACE(OTHER, logout("CU resuming\n"));
980 set_cu_state(s, cu_active);
981 action_command(s);
982 }
983 break;
984 case CU_STATSADDR:
985 /* Load dump counters address. */
986 s->statsaddr = e100_read_reg4(s, SCBPointer);
987 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
988 if (s->statsaddr & 3) {
989 /* Memory must be Dword aligned. */
990 logout("unaligned dump counters address\n");
991 /* Handling of misaligned addresses is undefined.
992 * Here we align the address by ignoring the lower bits. */
993 /* TODO: Test unaligned dump counter address on real hardware. */
994 s->statsaddr &= ~3;
995 }
996 break;
997 case CU_SHOWSTATS:
998 /* Dump statistical counters. */
999 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
1000 dump_statistics(s);
1001 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005);
1002 break;
1003 case CU_CMD_BASE:
1004 /* Load CU base. */
1005 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
1006 s->cu_base = e100_read_reg4(s, SCBPointer);
1007 break;
1008 case CU_DUMPSTATS:
1009 /* Dump and reset statistical counters. */
1010 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
1011 dump_statistics(s);
1012 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007);
1013 memset(&s->statistics, 0, sizeof(s->statistics));
1014 break;
1015 case CU_SRESUME:
1016 /* CU static resume. */
1017 missing("CU static resume");
1018 break;
1019 default:
1020 missing("Undefined CU command");
1021 }
1022 }
1023
1024 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1025 {
1026 switch (val) {
1027 case RU_NOP:
1028 /* No operation. */
1029 break;
1030 case RX_START:
1031 /* RU start. */
1032 if (get_ru_state(s) != ru_idle) {
1033 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1034 #if 0
1035 assert(!"wrong RU state");
1036 #endif
1037 }
1038 set_ru_state(s, ru_ready);
1039 s->ru_offset = e100_read_reg4(s, SCBPointer);
1040 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1041 break;
1042 case RX_RESUME:
1043 /* Restart RU. */
1044 if (get_ru_state(s) != ru_suspended) {
1045 logout("RU state is %u, should be %u\n", get_ru_state(s),
1046 ru_suspended);
1047 #if 0
1048 assert(!"wrong RU state");
1049 #endif
1050 }
1051 set_ru_state(s, ru_ready);
1052 break;
1053 case RU_ABORT:
1054 /* RU abort. */
1055 if (get_ru_state(s) == ru_ready) {
1056 eepro100_rnr_interrupt(s);
1057 }
1058 set_ru_state(s, ru_idle);
1059 break;
1060 case RX_ADDR_LOAD:
1061 /* Load RU base. */
1062 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1063 s->ru_base = e100_read_reg4(s, SCBPointer);
1064 break;
1065 default:
1066 logout("val=0x%02x (undefined RU command)\n", val);
1067 missing("Undefined SU command");
1068 }
1069 }
1070
1071 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1072 {
1073 eepro100_ru_command(s, val & 0x0f);
1074 eepro100_cu_command(s, val & 0xf0);
1075 if ((val) == 0) {
1076 TRACE(OTHER, logout("val=0x%02x\n", val));
1077 }
1078 /* Clear command byte after command was accepted. */
1079 s->mem[SCBCmd] = 0;
1080 }
1081
1082 /*****************************************************************************
1083 *
1084 * EEPROM emulation.
1085 *
1086 ****************************************************************************/
1087
1088 #define EEPROM_CS 0x02
1089 #define EEPROM_SK 0x01
1090 #define EEPROM_DI 0x04
1091 #define EEPROM_DO 0x08
1092
1093 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1094 {
1095 uint16_t val = e100_read_reg2(s, SCBeeprom);
1096 if (eeprom93xx_read(s->eeprom)) {
1097 val |= EEPROM_DO;
1098 } else {
1099 val &= ~EEPROM_DO;
1100 }
1101 TRACE(EEPROM, logout("val=0x%04x\n", val));
1102 return val;
1103 }
1104
1105 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1106 {
1107 TRACE(EEPROM, logout("val=0x%02x\n", val));
1108
1109 /* mask unwritable bits */
1110 #if 0
1111 val = SET_MASKED(val, 0x31, eeprom->value);
1112 #endif
1113
1114 int eecs = ((val & EEPROM_CS) != 0);
1115 int eesk = ((val & EEPROM_SK) != 0);
1116 int eedi = ((val & EEPROM_DI) != 0);
1117 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1118 }
1119
1120 /*****************************************************************************
1121 *
1122 * MDI emulation.
1123 *
1124 ****************************************************************************/
1125
1126 #if defined(DEBUG_EEPRO100)
1127 static const char * const mdi_op_name[] = {
1128 "opcode 0",
1129 "write",
1130 "read",
1131 "opcode 3"
1132 };
1133
1134 static const char * const mdi_reg_name[] = {
1135 "Control",
1136 "Status",
1137 "PHY Identification (Word 1)",
1138 "PHY Identification (Word 2)",
1139 "Auto-Negotiation Advertisement",
1140 "Auto-Negotiation Link Partner Ability",
1141 "Auto-Negotiation Expansion"
1142 };
1143
1144 static const char *reg2name(uint8_t reg)
1145 {
1146 static char buffer[10];
1147 const char *p = buffer;
1148 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1149 p = mdi_reg_name[reg];
1150 } else {
1151 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1152 }
1153 return p;
1154 }
1155 #endif /* DEBUG_EEPRO100 */
1156
1157 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1158 {
1159 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1160
1161 #ifdef DEBUG_EEPRO100
1162 uint8_t raiseint = (val & BIT(29)) >> 29;
1163 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1164 uint8_t phy = (val & BITS(25, 21)) >> 21;
1165 uint8_t reg = (val & BITS(20, 16)) >> 16;
1166 uint16_t data = (val & BITS(15, 0));
1167 #endif
1168 /* Emulation takes no time to finish MDI transaction. */
1169 val |= BIT(28);
1170 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1171 val, raiseint, mdi_op_name[opcode], phy,
1172 reg2name(reg), data));
1173 return val;
1174 }
1175
1176 static void eepro100_write_mdi(EEPRO100State *s)
1177 {
1178 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1179 uint8_t raiseint = (val & BIT(29)) >> 29;
1180 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1181 uint8_t phy = (val & BITS(25, 21)) >> 21;
1182 uint8_t reg = (val & BITS(20, 16)) >> 16;
1183 uint16_t data = (val & BITS(15, 0));
1184 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1185 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1186 if (phy != 1) {
1187 /* Unsupported PHY address. */
1188 #if 0
1189 logout("phy must be 1 but is %u\n", phy);
1190 #endif
1191 data = 0;
1192 } else if (opcode != 1 && opcode != 2) {
1193 /* Unsupported opcode. */
1194 logout("opcode must be 1 or 2 but is %u\n", opcode);
1195 data = 0;
1196 } else if (reg > 6) {
1197 /* Unsupported register. */
1198 logout("register must be 0...6 but is %u\n", reg);
1199 data = 0;
1200 } else {
1201 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1202 val, raiseint, mdi_op_name[opcode], phy,
1203 reg2name(reg), data));
1204 if (opcode == 1) {
1205 /* MDI write */
1206 switch (reg) {
1207 case 0: /* Control Register */
1208 if (data & 0x8000) {
1209 /* Reset status and control registers to default. */
1210 s->mdimem[0] = eepro100_mdi_default[0];
1211 s->mdimem[1] = eepro100_mdi_default[1];
1212 data = s->mdimem[reg];
1213 } else {
1214 /* Restart Auto Configuration = Normal Operation */
1215 data &= ~0x0200;
1216 }
1217 break;
1218 case 1: /* Status Register */
1219 missing("not writable");
1220 data = s->mdimem[reg];
1221 break;
1222 case 2: /* PHY Identification Register (Word 1) */
1223 case 3: /* PHY Identification Register (Word 2) */
1224 missing("not implemented");
1225 break;
1226 case 4: /* Auto-Negotiation Advertisement Register */
1227 case 5: /* Auto-Negotiation Link Partner Ability Register */
1228 break;
1229 case 6: /* Auto-Negotiation Expansion Register */
1230 default:
1231 missing("not implemented");
1232 }
1233 s->mdimem[reg] = data;
1234 } else if (opcode == 2) {
1235 /* MDI read */
1236 switch (reg) {
1237 case 0: /* Control Register */
1238 if (data & 0x8000) {
1239 /* Reset status and control registers to default. */
1240 s->mdimem[0] = eepro100_mdi_default[0];
1241 s->mdimem[1] = eepro100_mdi_default[1];
1242 }
1243 break;
1244 case 1: /* Status Register */
1245 s->mdimem[reg] |= 0x0020;
1246 break;
1247 case 2: /* PHY Identification Register (Word 1) */
1248 case 3: /* PHY Identification Register (Word 2) */
1249 case 4: /* Auto-Negotiation Advertisement Register */
1250 break;
1251 case 5: /* Auto-Negotiation Link Partner Ability Register */
1252 s->mdimem[reg] = 0x41fe;
1253 break;
1254 case 6: /* Auto-Negotiation Expansion Register */
1255 s->mdimem[reg] = 0x0001;
1256 break;
1257 }
1258 data = s->mdimem[reg];
1259 }
1260 /* Emulation takes no time to finish MDI transaction.
1261 * Set MDI bit in SCB status register. */
1262 s->mem[SCBAck] |= 0x08;
1263 val |= BIT(28);
1264 if (raiseint) {
1265 eepro100_mdi_interrupt(s);
1266 }
1267 }
1268 val = (val & 0xffff0000) + data;
1269 e100_write_reg4(s, SCBCtrlMDI, val);
1270 }
1271
1272 /*****************************************************************************
1273 *
1274 * Port emulation.
1275 *
1276 ****************************************************************************/
1277
1278 #define PORT_SOFTWARE_RESET 0
1279 #define PORT_SELFTEST 1
1280 #define PORT_SELECTIVE_RESET 2
1281 #define PORT_DUMP 3
1282 #define PORT_SELECTION_MASK 3
1283
1284 typedef struct {
1285 uint32_t st_sign; /* Self Test Signature */
1286 uint32_t st_result; /* Self Test Results */
1287 } eepro100_selftest_t;
1288
1289 static uint32_t eepro100_read_port(EEPRO100State * s)
1290 {
1291 return 0;
1292 }
1293
1294 static void eepro100_write_port(EEPRO100State *s)
1295 {
1296 uint32_t val = e100_read_reg4(s, SCBPort);
1297 uint32_t address = (val & ~PORT_SELECTION_MASK);
1298 uint8_t selection = (val & PORT_SELECTION_MASK);
1299 switch (selection) {
1300 case PORT_SOFTWARE_RESET:
1301 nic_reset(s);
1302 break;
1303 case PORT_SELFTEST:
1304 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1305 eepro100_selftest_t data;
1306 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
1307 data.st_sign = 0xffffffff;
1308 data.st_result = 0;
1309 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
1310 break;
1311 case PORT_SELECTIVE_RESET:
1312 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1313 nic_selective_reset(s);
1314 break;
1315 default:
1316 logout("val=0x%08x\n", val);
1317 missing("unknown port selection");
1318 }
1319 }
1320
1321 /*****************************************************************************
1322 *
1323 * General hardware emulation.
1324 *
1325 ****************************************************************************/
1326
1327 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1328 {
1329 uint8_t val = 0;
1330 if (addr <= sizeof(s->mem) - sizeof(val)) {
1331 val = s->mem[addr];
1332 }
1333
1334 switch (addr) {
1335 case SCBStatus:
1336 case SCBAck:
1337 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1338 break;
1339 case SCBCmd:
1340 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1341 #if 0
1342 val = eepro100_read_command(s);
1343 #endif
1344 break;
1345 case SCBIntmask:
1346 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1347 break;
1348 case SCBPort + 3:
1349 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1350 break;
1351 case SCBeeprom:
1352 val = eepro100_read_eeprom(s);
1353 break;
1354 case SCBCtrlMDI:
1355 case SCBCtrlMDI + 1:
1356 case SCBCtrlMDI + 2:
1357 case SCBCtrlMDI + 3:
1358 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1359 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1360 break;
1361 case SCBpmdr: /* Power Management Driver Register */
1362 val = 0;
1363 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1364 break;
1365 case SCBgctrl: /* General Control Register */
1366 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1367 break;
1368 case SCBgstat: /* General Status Register */
1369 /* 100 Mbps full duplex, valid link */
1370 val = 0x07;
1371 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1372 break;
1373 default:
1374 logout("addr=%s val=0x%02x\n", regname(addr), val);
1375 missing("unknown byte read");
1376 }
1377 return val;
1378 }
1379
1380 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1381 {
1382 uint16_t val = 0;
1383 if (addr <= sizeof(s->mem) - sizeof(val)) {
1384 val = e100_read_reg2(s, addr);
1385 }
1386
1387 switch (addr) {
1388 case SCBStatus:
1389 case SCBCmd:
1390 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1391 break;
1392 case SCBeeprom:
1393 val = eepro100_read_eeprom(s);
1394 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1395 break;
1396 case SCBCtrlMDI:
1397 case SCBCtrlMDI + 2:
1398 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1399 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1400 break;
1401 default:
1402 logout("addr=%s val=0x%04x\n", regname(addr), val);
1403 missing("unknown word read");
1404 }
1405 return val;
1406 }
1407
1408 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1409 {
1410 uint32_t val = 0;
1411 if (addr <= sizeof(s->mem) - sizeof(val)) {
1412 val = e100_read_reg4(s, addr);
1413 }
1414
1415 switch (addr) {
1416 case SCBStatus:
1417 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1418 break;
1419 case SCBPointer:
1420 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1421 break;
1422 case SCBPort:
1423 val = eepro100_read_port(s);
1424 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1425 break;
1426 case SCBflash:
1427 val = eepro100_read_eeprom(s);
1428 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1429 break;
1430 case SCBCtrlMDI:
1431 val = eepro100_read_mdi(s);
1432 break;
1433 default:
1434 logout("addr=%s val=0x%08x\n", regname(addr), val);
1435 missing("unknown longword read");
1436 }
1437 return val;
1438 }
1439
1440 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1441 {
1442 /* SCBStatus is readonly. */
1443 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1444 s->mem[addr] = val;
1445 }
1446
1447 switch (addr) {
1448 case SCBStatus:
1449 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1450 break;
1451 case SCBAck:
1452 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1453 eepro100_acknowledge(s);
1454 break;
1455 case SCBCmd:
1456 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1457 eepro100_write_command(s, val);
1458 break;
1459 case SCBIntmask:
1460 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1461 if (val & BIT(1)) {
1462 eepro100_swi_interrupt(s);
1463 }
1464 eepro100_interrupt(s, 0);
1465 break;
1466 case SCBPointer:
1467 case SCBPointer + 1:
1468 case SCBPointer + 2:
1469 case SCBPointer + 3:
1470 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1471 break;
1472 case SCBPort:
1473 case SCBPort + 1:
1474 case SCBPort + 2:
1475 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1476 break;
1477 case SCBPort + 3:
1478 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1479 eepro100_write_port(s);
1480 break;
1481 case SCBFlow: /* does not exist on 82557 */
1482 case SCBFlow + 1:
1483 case SCBFlow + 2:
1484 case SCBpmdr: /* does not exist on 82557 */
1485 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1486 break;
1487 case SCBeeprom:
1488 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1489 eepro100_write_eeprom(s->eeprom, val);
1490 break;
1491 case SCBCtrlMDI:
1492 case SCBCtrlMDI + 1:
1493 case SCBCtrlMDI + 2:
1494 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1495 break;
1496 case SCBCtrlMDI + 3:
1497 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1498 eepro100_write_mdi(s);
1499 break;
1500 default:
1501 logout("addr=%s val=0x%02x\n", regname(addr), val);
1502 missing("unknown byte write");
1503 }
1504 }
1505
1506 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1507 {
1508 /* SCBStatus is readonly. */
1509 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1510 e100_write_reg2(s, addr, val);
1511 }
1512
1513 switch (addr) {
1514 case SCBStatus:
1515 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1516 s->mem[SCBAck] = (val >> 8);
1517 eepro100_acknowledge(s);
1518 break;
1519 case SCBCmd:
1520 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1521 eepro100_write_command(s, val);
1522 eepro100_write1(s, SCBIntmask, val >> 8);
1523 break;
1524 case SCBPointer:
1525 case SCBPointer + 2:
1526 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1527 break;
1528 case SCBPort:
1529 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1530 break;
1531 case SCBPort + 2:
1532 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1533 eepro100_write_port(s);
1534 break;
1535 case SCBeeprom:
1536 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1537 eepro100_write_eeprom(s->eeprom, val);
1538 break;
1539 case SCBCtrlMDI:
1540 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1541 break;
1542 case SCBCtrlMDI + 2:
1543 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1544 eepro100_write_mdi(s);
1545 break;
1546 default:
1547 logout("addr=%s val=0x%04x\n", regname(addr), val);
1548 missing("unknown word write");
1549 }
1550 }
1551
1552 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1553 {
1554 if (addr <= sizeof(s->mem) - sizeof(val)) {
1555 e100_write_reg4(s, addr, val);
1556 }
1557
1558 switch (addr) {
1559 case SCBPointer:
1560 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1561 break;
1562 case SCBPort:
1563 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1564 eepro100_write_port(s);
1565 break;
1566 case SCBflash:
1567 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1568 val = val >> 16;
1569 eepro100_write_eeprom(s->eeprom, val);
1570 break;
1571 case SCBCtrlMDI:
1572 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1573 eepro100_write_mdi(s);
1574 break;
1575 default:
1576 logout("addr=%s val=0x%08x\n", regname(addr), val);
1577 missing("unknown longword write");
1578 }
1579 }
1580
1581 static uint64_t eepro100_read(void *opaque, target_phys_addr_t addr,
1582 unsigned size)
1583 {
1584 EEPRO100State *s = opaque;
1585
1586 switch (size) {
1587 case 1: return eepro100_read1(s, addr);
1588 case 2: return eepro100_read2(s, addr);
1589 case 4: return eepro100_read4(s, addr);
1590 default: abort();
1591 }
1592 }
1593
1594 static void eepro100_write(void *opaque, target_phys_addr_t addr,
1595 uint64_t data, unsigned size)
1596 {
1597 EEPRO100State *s = opaque;
1598
1599 switch (size) {
1600 case 1: return eepro100_write1(s, addr, data);
1601 case 2: return eepro100_write2(s, addr, data);
1602 case 4: return eepro100_write4(s, addr, data);
1603 default: abort();
1604 }
1605 }
1606
1607 static const MemoryRegionOps eepro100_ops = {
1608 .read = eepro100_read,
1609 .write = eepro100_write,
1610 .endianness = DEVICE_LITTLE_ENDIAN,
1611 };
1612
1613 static int nic_can_receive(VLANClientState *nc)
1614 {
1615 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1616 TRACE(RXTX, logout("%p\n", s));
1617 return get_ru_state(s) == ru_ready;
1618 #if 0
1619 return !eepro100_buffer_full(s);
1620 #endif
1621 }
1622
1623 static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
1624 {
1625 /* TODO:
1626 * - Magic packets should set bit 30 in power management driver register.
1627 * - Interesting packets should set bit 29 in power management driver register.
1628 */
1629 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1630 uint16_t rfd_status = 0xa000;
1631 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1632 uint8_t min_buf[60];
1633 #endif
1634 static const uint8_t broadcast_macaddr[6] =
1635 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1636
1637 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1638 /* Pad to minimum Ethernet frame length */
1639 if (size < sizeof(min_buf)) {
1640 memcpy(min_buf, buf, size);
1641 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1642 buf = min_buf;
1643 size = sizeof(min_buf);
1644 }
1645 #endif
1646
1647 if (s->configuration[8] & 0x80) {
1648 /* CSMA is disabled. */
1649 logout("%p received while CSMA is disabled\n", s);
1650 return -1;
1651 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1652 } else if (size < 64 && (s->configuration[7] & BIT(0))) {
1653 /* Short frame and configuration byte 7/0 (discard short receive) set:
1654 * Short frame is discarded */
1655 logout("%p received short frame (%zu byte)\n", s, size);
1656 s->statistics.rx_short_frame_errors++;
1657 return -1;
1658 #endif
1659 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
1660 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1661 * Long frames are discarded. */
1662 logout("%p received long frame (%zu byte), ignored\n", s, size);
1663 return -1;
1664 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
1665 /* Frame matches individual address. */
1666 /* TODO: check configuration byte 15/4 (ignore U/L). */
1667 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1668 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1669 /* Broadcast frame. */
1670 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1671 rfd_status |= 0x0002;
1672 } else if (buf[0] & 0x01) {
1673 /* Multicast frame. */
1674 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1675 if (s->configuration[21] & BIT(3)) {
1676 /* Multicast all bit is set, receive all multicast frames. */
1677 } else {
1678 unsigned mcast_idx = compute_mcast_idx(buf);
1679 assert(mcast_idx < 64);
1680 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1681 /* Multicast frame is allowed in hash table. */
1682 } else if (s->configuration[15] & BIT(0)) {
1683 /* Promiscuous: receive all. */
1684 rfd_status |= 0x0004;
1685 } else {
1686 TRACE(RXTX, logout("%p multicast ignored\n", s));
1687 return -1;
1688 }
1689 }
1690 /* TODO: Next not for promiscuous mode? */
1691 rfd_status |= 0x0002;
1692 } else if (s->configuration[15] & BIT(0)) {
1693 /* Promiscuous: receive all. */
1694 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1695 rfd_status |= 0x0004;
1696 } else if (s->configuration[20] & BIT(6)) {
1697 /* Multiple IA bit set. */
1698 unsigned mcast_idx = compute_mcast_idx(buf);
1699 assert(mcast_idx < 64);
1700 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1701 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
1702 } else {
1703 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
1704 return -1;
1705 }
1706 } else {
1707 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1708 nic_dump(buf, size)));
1709 return size;
1710 }
1711
1712 if (get_ru_state(s) != ru_ready) {
1713 /* No resources available. */
1714 logout("no resources, state=%u\n", get_ru_state(s));
1715 /* TODO: RNR interrupt only at first failed frame? */
1716 eepro100_rnr_interrupt(s);
1717 s->statistics.rx_resource_errors++;
1718 #if 0
1719 assert(!"no resources");
1720 #endif
1721 return -1;
1722 }
1723 /* !!! */
1724 eepro100_rx_t rx;
1725 pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
1726 &rx, sizeof(eepro100_rx_t));
1727 uint16_t rfd_command = le16_to_cpu(rx.command);
1728 uint16_t rfd_size = le16_to_cpu(rx.size);
1729
1730 if (size > rfd_size) {
1731 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1732 "(%zu bytes); data truncated\n", rfd_size, size);
1733 size = rfd_size;
1734 }
1735 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1736 if (size < 64) {
1737 rfd_status |= 0x0080;
1738 }
1739 #endif
1740 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1741 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1742 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1743 offsetof(eepro100_rx_t, status), rfd_status);
1744 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1745 offsetof(eepro100_rx_t, count), size);
1746 /* Early receive interrupt not supported. */
1747 #if 0
1748 eepro100_er_interrupt(s);
1749 #endif
1750 /* Receive CRC Transfer not supported. */
1751 if (s->configuration[18] & BIT(2)) {
1752 missing("Receive CRC Transfer");
1753 return -1;
1754 }
1755 /* TODO: check stripping enable bit. */
1756 #if 0
1757 assert(!(s->configuration[17] & BIT(0)));
1758 #endif
1759 pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
1760 sizeof(eepro100_rx_t), buf, size);
1761 s->statistics.rx_good_frames++;
1762 eepro100_fr_interrupt(s);
1763 s->ru_offset = le32_to_cpu(rx.link);
1764 if (rfd_command & COMMAND_EL) {
1765 /* EL bit is set, so this was the last frame. */
1766 logout("receive: Running out of frames\n");
1767 set_ru_state(s, ru_suspended);
1768 }
1769 if (rfd_command & COMMAND_S) {
1770 /* S bit is set. */
1771 set_ru_state(s, ru_suspended);
1772 }
1773 return size;
1774 }
1775
1776 static const VMStateDescription vmstate_eepro100 = {
1777 .version_id = 3,
1778 .minimum_version_id = 2,
1779 .minimum_version_id_old = 2,
1780 .fields = (VMStateField []) {
1781 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1782 VMSTATE_UNUSED(32),
1783 VMSTATE_BUFFER(mult, EEPRO100State),
1784 VMSTATE_BUFFER(mem, EEPRO100State),
1785 /* Save all members of struct between scb_stat and mem. */
1786 VMSTATE_UINT8(scb_stat, EEPRO100State),
1787 VMSTATE_UINT8(int_stat, EEPRO100State),
1788 VMSTATE_UNUSED(3*4),
1789 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1790 VMSTATE_UNUSED(19*4),
1791 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1792 /* The eeprom should be saved and restored by its own routines. */
1793 VMSTATE_UINT32(device, EEPRO100State),
1794 /* TODO check device. */
1795 VMSTATE_UINT32(cu_base, EEPRO100State),
1796 VMSTATE_UINT32(cu_offset, EEPRO100State),
1797 VMSTATE_UINT32(ru_base, EEPRO100State),
1798 VMSTATE_UINT32(ru_offset, EEPRO100State),
1799 VMSTATE_UINT32(statsaddr, EEPRO100State),
1800 /* Save eepro100_stats_t statistics. */
1801 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1802 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1803 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1804 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1805 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1806 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1807 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1808 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1809 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1810 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1811 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1812 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1813 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1814 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1815 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1816 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1817 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1818 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1819 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1820 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1821 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1822 /* Configuration bytes. */
1823 VMSTATE_BUFFER(configuration, EEPRO100State),
1824 VMSTATE_END_OF_LIST()
1825 }
1826 };
1827
1828 static void nic_cleanup(VLANClientState *nc)
1829 {
1830 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1831
1832 s->nic = NULL;
1833 }
1834
1835 static int pci_nic_uninit(PCIDevice *pci_dev)
1836 {
1837 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1838
1839 memory_region_destroy(&s->mmio_bar);
1840 memory_region_destroy(&s->io_bar);
1841 memory_region_destroy(&s->flash_bar);
1842 vmstate_unregister(&pci_dev->qdev, s->vmstate, s);
1843 eeprom93xx_free(&pci_dev->qdev, s->eeprom);
1844 qemu_del_vlan_client(&s->nic->nc);
1845 return 0;
1846 }
1847
1848 static NetClientInfo net_eepro100_info = {
1849 .type = NET_CLIENT_TYPE_NIC,
1850 .size = sizeof(NICState),
1851 .can_receive = nic_can_receive,
1852 .receive = nic_receive,
1853 .cleanup = nic_cleanup,
1854 };
1855
1856 static int e100_nic_init(PCIDevice *pci_dev)
1857 {
1858 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1859 E100PCIDeviceInfo *info = eepro100_get_class(s);
1860
1861 TRACE(OTHER, logout("\n"));
1862
1863 s->device = info->device;
1864
1865 e100_pci_reset(s);
1866
1867 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1868 * i82559 and later support 64 or 256 word EEPROM. */
1869 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
1870
1871 /* Handler for memory-mapped I/O */
1872 memory_region_init_io(&s->mmio_bar, &eepro100_ops, s, "eepro100-mmio",
1873 PCI_MEM_SIZE);
1874 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
1875 memory_region_init_io(&s->io_bar, &eepro100_ops, s, "eepro100-io",
1876 PCI_IO_SIZE);
1877 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
1878 /* FIXME: flash aliases to mmio?! */
1879 memory_region_init_io(&s->flash_bar, &eepro100_ops, s, "eepro100-flash",
1880 PCI_FLASH_SIZE);
1881 pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
1882
1883 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1884 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1885
1886 nic_reset(s);
1887
1888 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1889 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
1890
1891 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1892 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1893
1894 qemu_register_reset(nic_reset, s);
1895
1896 s->vmstate = g_malloc(sizeof(vmstate_eepro100));
1897 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1898 s->vmstate->name = s->nic->nc.model;
1899 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s);
1900
1901 add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
1902
1903 return 0;
1904 }
1905
1906 static E100PCIDeviceInfo e100_devices[] = {
1907 {
1908 .name = "i82550",
1909 .desc = "Intel i82550 Ethernet",
1910 .device = i82550,
1911 /* TODO: check device id. */
1912 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1913 /* Revision ID: 0x0c, 0x0d, 0x0e. */
1914 .revision = 0x0e,
1915 /* TODO: check size of statistical counters. */
1916 .stats_size = 80,
1917 /* TODO: check extended tcb support. */
1918 .has_extended_tcb_support = true,
1919 .power_management = true,
1920 },{
1921 .name = "i82551",
1922 .desc = "Intel i82551 Ethernet",
1923 .device = i82551,
1924 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1925 /* Revision ID: 0x0f, 0x10. */
1926 .revision = 0x0f,
1927 /* TODO: check size of statistical counters. */
1928 .stats_size = 80,
1929 .has_extended_tcb_support = true,
1930 .power_management = true,
1931 },{
1932 .name = "i82557a",
1933 .desc = "Intel i82557A Ethernet",
1934 .device = i82557A,
1935 .device_id = PCI_DEVICE_ID_INTEL_82557,
1936 .revision = 0x01,
1937 .power_management = false,
1938 },{
1939 .name = "i82557b",
1940 .desc = "Intel i82557B Ethernet",
1941 .device = i82557B,
1942 .device_id = PCI_DEVICE_ID_INTEL_82557,
1943 .revision = 0x02,
1944 .power_management = false,
1945 },{
1946 .name = "i82557c",
1947 .desc = "Intel i82557C Ethernet",
1948 .device = i82557C,
1949 .device_id = PCI_DEVICE_ID_INTEL_82557,
1950 .revision = 0x03,
1951 .power_management = false,
1952 },{
1953 .name = "i82558a",
1954 .desc = "Intel i82558A Ethernet",
1955 .device = i82558A,
1956 .device_id = PCI_DEVICE_ID_INTEL_82557,
1957 .revision = 0x04,
1958 .stats_size = 76,
1959 .has_extended_tcb_support = true,
1960 .power_management = true,
1961 },{
1962 .name = "i82558b",
1963 .desc = "Intel i82558B Ethernet",
1964 .device = i82558B,
1965 .device_id = PCI_DEVICE_ID_INTEL_82557,
1966 .revision = 0x05,
1967 .stats_size = 76,
1968 .has_extended_tcb_support = true,
1969 .power_management = true,
1970 },{
1971 .name = "i82559a",
1972 .desc = "Intel i82559A Ethernet",
1973 .device = i82559A,
1974 .device_id = PCI_DEVICE_ID_INTEL_82557,
1975 .revision = 0x06,
1976 .stats_size = 80,
1977 .has_extended_tcb_support = true,
1978 .power_management = true,
1979 },{
1980 .name = "i82559b",
1981 .desc = "Intel i82559B Ethernet",
1982 .device = i82559B,
1983 .device_id = PCI_DEVICE_ID_INTEL_82557,
1984 .revision = 0x07,
1985 .stats_size = 80,
1986 .has_extended_tcb_support = true,
1987 .power_management = true,
1988 },{
1989 .name = "i82559c",
1990 .desc = "Intel i82559C Ethernet",
1991 .device = i82559C,
1992 .device_id = PCI_DEVICE_ID_INTEL_82557,
1993 #if 0
1994 .revision = 0x08,
1995 #endif
1996 /* TODO: Windows wants revision id 0x0c. */
1997 .revision = 0x0c,
1998 #if EEPROM_SIZE > 0
1999 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
2000 .subsystem_id = 0x0040,
2001 #endif
2002 .stats_size = 80,
2003 .has_extended_tcb_support = true,
2004 .power_management = true,
2005 },{
2006 .name = "i82559er",
2007 .desc = "Intel i82559ER Ethernet",
2008 .device = i82559ER,
2009 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2010 .revision = 0x09,
2011 .stats_size = 80,
2012 .has_extended_tcb_support = true,
2013 .power_management = true,
2014 },{
2015 .name = "i82562",
2016 .desc = "Intel i82562 Ethernet",
2017 .device = i82562,
2018 /* TODO: check device id. */
2019 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2020 /* TODO: wrong revision id. */
2021 .revision = 0x0e,
2022 .stats_size = 80,
2023 .has_extended_tcb_support = true,
2024 .power_management = true,
2025 },{
2026 /* Toshiba Tecra 8200. */
2027 .name = "i82801",
2028 .desc = "Intel i82801 Ethernet",
2029 .device = i82801,
2030 .device_id = 0x2449,
2031 .revision = 0x03,
2032 .stats_size = 80,
2033 .has_extended_tcb_support = true,
2034 .power_management = true,
2035 }
2036 };
2037
2038 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
2039 {
2040 E100PCIDeviceInfo *info = NULL;
2041 int i;
2042
2043 /* This is admittedly awkward but also temporary. QOM allows for
2044 * parameterized typing and for subclassing both of which would suitable
2045 * handle what's going on here. But class_data is already being used as
2046 * a stop-gap hack to allow incremental qdev conversion so we cannot use it
2047 * right now. Once we merge the final QOM series, we can come back here and
2048 * do this in a much more elegant fashion.
2049 */
2050 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2051 if (strcmp(e100_devices[i].name, typename) == 0) {
2052 info = &e100_devices[i];
2053 break;
2054 }
2055 }
2056 assert(info != NULL);
2057
2058 return info;
2059 }
2060
2061 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
2062 {
2063 return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
2064 }
2065
2066 static Property e100_properties[] = {
2067 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2068 DEFINE_PROP_END_OF_LIST(),
2069 };
2070
2071 static void eepro100_class_init(ObjectClass *klass, void *data)
2072 {
2073 DeviceClass *dc = DEVICE_CLASS(klass);
2074 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2075 E100PCIDeviceInfo *info;
2076
2077 info = eepro100_get_class_by_name(object_class_get_name(klass));
2078
2079 dc->props = e100_properties;
2080 dc->desc = info->desc;
2081 k->vendor_id = PCI_VENDOR_ID_INTEL;
2082 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
2083 k->romfile = "pxe-eepro100.rom";
2084 k->init = e100_nic_init;
2085 k->exit = pci_nic_uninit;
2086 k->device_id = info->device_id;
2087 k->revision = info->revision;
2088 k->subsystem_vendor_id = info->subsystem_vendor_id;
2089 k->subsystem_id = info->subsystem_id;
2090 }
2091
2092 static void eepro100_register_devices(void)
2093 {
2094 size_t i;
2095 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2096 TypeInfo type_info = {};
2097 E100PCIDeviceInfo *info = &e100_devices[i];
2098
2099 type_info.name = info->name;
2100 type_info.parent = TYPE_PCI_DEVICE;
2101 type_info.class_init = eepro100_class_init;
2102 type_info.instance_size = sizeof(EEPRO100State);
2103
2104 type_register(&type_info);
2105 }
2106 }
2107
2108 device_init(eepro100_register_devices)