]> git.proxmox.com Git - qemu.git/blob - hw/esp.c
sun4u: implement interrupt clearing registers
[qemu.git] / hw / esp.c
1 /*
2 * QEMU ESP/NCR53C9x emulation
3 *
4 * Copyright (c) 2005-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysbus.h"
26 #include "scsi.h"
27 #include "esp.h"
28 #include "trace.h"
29
30 /*
31 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
32 * also produced as NCR89C100. See
33 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
34 * and
35 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
36 */
37
38 #define ESP_ERROR(fmt, ...) \
39 do { printf("ESP ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0)
40
41 #define ESP_REGS 16
42 #define TI_BUFSZ 16
43
44 typedef struct ESPState ESPState;
45
46 struct ESPState {
47 SysBusDevice busdev;
48 MemoryRegion iomem;
49 uint8_t rregs[ESP_REGS];
50 uint8_t wregs[ESP_REGS];
51 qemu_irq irq;
52 uint32_t it_shift;
53 int32_t ti_size;
54 uint32_t ti_rptr, ti_wptr;
55 uint32_t status;
56 uint32_t dma;
57 uint8_t ti_buf[TI_BUFSZ];
58 SCSIBus bus;
59 SCSIDevice *current_dev;
60 SCSIRequest *current_req;
61 uint8_t cmdbuf[TI_BUFSZ];
62 uint32_t cmdlen;
63 uint32_t do_cmd;
64
65 /* The amount of data left in the current DMA transfer. */
66 uint32_t dma_left;
67 /* The size of the current DMA transfer. Zero if no transfer is in
68 progress. */
69 uint32_t dma_counter;
70 int dma_enabled;
71
72 uint32_t async_len;
73 uint8_t *async_buf;
74
75 ESPDMAMemoryReadWriteFunc dma_memory_read;
76 ESPDMAMemoryReadWriteFunc dma_memory_write;
77 void *dma_opaque;
78 void (*dma_cb)(ESPState *s);
79 };
80
81 #define ESP_TCLO 0x0
82 #define ESP_TCMID 0x1
83 #define ESP_FIFO 0x2
84 #define ESP_CMD 0x3
85 #define ESP_RSTAT 0x4
86 #define ESP_WBUSID 0x4
87 #define ESP_RINTR 0x5
88 #define ESP_WSEL 0x5
89 #define ESP_RSEQ 0x6
90 #define ESP_WSYNTP 0x6
91 #define ESP_RFLAGS 0x7
92 #define ESP_WSYNO 0x7
93 #define ESP_CFG1 0x8
94 #define ESP_RRES1 0x9
95 #define ESP_WCCF 0x9
96 #define ESP_RRES2 0xa
97 #define ESP_WTEST 0xa
98 #define ESP_CFG2 0xb
99 #define ESP_CFG3 0xc
100 #define ESP_RES3 0xd
101 #define ESP_TCHI 0xe
102 #define ESP_RES4 0xf
103
104 #define CMD_DMA 0x80
105 #define CMD_CMD 0x7f
106
107 #define CMD_NOP 0x00
108 #define CMD_FLUSH 0x01
109 #define CMD_RESET 0x02
110 #define CMD_BUSRESET 0x03
111 #define CMD_TI 0x10
112 #define CMD_ICCS 0x11
113 #define CMD_MSGACC 0x12
114 #define CMD_PAD 0x18
115 #define CMD_SATN 0x1a
116 #define CMD_SEL 0x41
117 #define CMD_SELATN 0x42
118 #define CMD_SELATNS 0x43
119 #define CMD_ENSEL 0x44
120
121 #define STAT_DO 0x00
122 #define STAT_DI 0x01
123 #define STAT_CD 0x02
124 #define STAT_ST 0x03
125 #define STAT_MO 0x06
126 #define STAT_MI 0x07
127 #define STAT_PIO_MASK 0x06
128
129 #define STAT_TC 0x10
130 #define STAT_PE 0x20
131 #define STAT_GE 0x40
132 #define STAT_INT 0x80
133
134 #define BUSID_DID 0x07
135
136 #define INTR_FC 0x08
137 #define INTR_BS 0x10
138 #define INTR_DC 0x20
139 #define INTR_RST 0x80
140
141 #define SEQ_0 0x0
142 #define SEQ_CD 0x4
143
144 #define CFG1_RESREPT 0x40
145
146 #define TCHI_FAS100A 0x4
147
148 static void esp_raise_irq(ESPState *s)
149 {
150 if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
151 s->rregs[ESP_RSTAT] |= STAT_INT;
152 qemu_irq_raise(s->irq);
153 trace_esp_raise_irq();
154 }
155 }
156
157 static void esp_lower_irq(ESPState *s)
158 {
159 if (s->rregs[ESP_RSTAT] & STAT_INT) {
160 s->rregs[ESP_RSTAT] &= ~STAT_INT;
161 qemu_irq_lower(s->irq);
162 trace_esp_lower_irq();
163 }
164 }
165
166 static void esp_dma_enable(void *opaque, int irq, int level)
167 {
168 DeviceState *d = opaque;
169 ESPState *s = container_of(d, ESPState, busdev.qdev);
170
171 if (level) {
172 s->dma_enabled = 1;
173 trace_esp_dma_enable();
174 if (s->dma_cb) {
175 s->dma_cb(s);
176 s->dma_cb = NULL;
177 }
178 } else {
179 trace_esp_dma_disable();
180 s->dma_enabled = 0;
181 }
182 }
183
184 static void esp_request_cancelled(SCSIRequest *req)
185 {
186 ESPState *s = DO_UPCAST(ESPState, busdev.qdev, req->bus->qbus.parent);
187
188 if (req == s->current_req) {
189 scsi_req_unref(s->current_req);
190 s->current_req = NULL;
191 s->current_dev = NULL;
192 }
193 }
194
195 static uint32_t get_cmd(ESPState *s, uint8_t *buf)
196 {
197 uint32_t dmalen;
198 int target;
199
200 target = s->wregs[ESP_WBUSID] & BUSID_DID;
201 if (s->dma) {
202 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
203 s->dma_memory_read(s->dma_opaque, buf, dmalen);
204 } else {
205 dmalen = s->ti_size;
206 memcpy(buf, s->ti_buf, dmalen);
207 buf[0] = buf[2] >> 5;
208 }
209 trace_esp_get_cmd(dmalen, target);
210
211 s->ti_size = 0;
212 s->ti_rptr = 0;
213 s->ti_wptr = 0;
214
215 if (s->current_req) {
216 /* Started a new command before the old one finished. Cancel it. */
217 scsi_req_cancel(s->current_req);
218 s->async_len = 0;
219 }
220
221 s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
222 if (!s->current_dev) {
223 // No such drive
224 s->rregs[ESP_RSTAT] = 0;
225 s->rregs[ESP_RINTR] = INTR_DC;
226 s->rregs[ESP_RSEQ] = SEQ_0;
227 esp_raise_irq(s);
228 return 0;
229 }
230 return dmalen;
231 }
232
233 static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid)
234 {
235 int32_t datalen;
236 int lun;
237 SCSIDevice *current_lun;
238
239 trace_esp_do_busid_cmd(busid);
240 lun = busid & 7;
241 current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun);
242 s->current_req = scsi_req_new(current_lun, 0, lun, buf, NULL);
243 datalen = scsi_req_enqueue(s->current_req);
244 s->ti_size = datalen;
245 if (datalen != 0) {
246 s->rregs[ESP_RSTAT] = STAT_TC;
247 s->dma_left = 0;
248 s->dma_counter = 0;
249 if (datalen > 0) {
250 s->rregs[ESP_RSTAT] |= STAT_DI;
251 } else {
252 s->rregs[ESP_RSTAT] |= STAT_DO;
253 }
254 scsi_req_continue(s->current_req);
255 }
256 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
257 s->rregs[ESP_RSEQ] = SEQ_CD;
258 esp_raise_irq(s);
259 }
260
261 static void do_cmd(ESPState *s, uint8_t *buf)
262 {
263 uint8_t busid = buf[0];
264
265 do_busid_cmd(s, &buf[1], busid);
266 }
267
268 static void handle_satn(ESPState *s)
269 {
270 uint8_t buf[32];
271 int len;
272
273 if (!s->dma_enabled) {
274 s->dma_cb = handle_satn;
275 return;
276 }
277 len = get_cmd(s, buf);
278 if (len)
279 do_cmd(s, buf);
280 }
281
282 static void handle_s_without_atn(ESPState *s)
283 {
284 uint8_t buf[32];
285 int len;
286
287 if (!s->dma_enabled) {
288 s->dma_cb = handle_s_without_atn;
289 return;
290 }
291 len = get_cmd(s, buf);
292 if (len) {
293 do_busid_cmd(s, buf, 0);
294 }
295 }
296
297 static void handle_satn_stop(ESPState *s)
298 {
299 if (!s->dma_enabled) {
300 s->dma_cb = handle_satn_stop;
301 return;
302 }
303 s->cmdlen = get_cmd(s, s->cmdbuf);
304 if (s->cmdlen) {
305 trace_esp_handle_satn_stop(s->cmdlen);
306 s->do_cmd = 1;
307 s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
308 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
309 s->rregs[ESP_RSEQ] = SEQ_CD;
310 esp_raise_irq(s);
311 }
312 }
313
314 static void write_response(ESPState *s)
315 {
316 trace_esp_write_response(s->status);
317 s->ti_buf[0] = s->status;
318 s->ti_buf[1] = 0;
319 if (s->dma) {
320 s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
321 s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
322 s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
323 s->rregs[ESP_RSEQ] = SEQ_CD;
324 } else {
325 s->ti_size = 2;
326 s->ti_rptr = 0;
327 s->ti_wptr = 0;
328 s->rregs[ESP_RFLAGS] = 2;
329 }
330 esp_raise_irq(s);
331 }
332
333 static void esp_dma_done(ESPState *s)
334 {
335 s->rregs[ESP_RSTAT] |= STAT_TC;
336 s->rregs[ESP_RINTR] = INTR_BS;
337 s->rregs[ESP_RSEQ] = 0;
338 s->rregs[ESP_RFLAGS] = 0;
339 s->rregs[ESP_TCLO] = 0;
340 s->rregs[ESP_TCMID] = 0;
341 esp_raise_irq(s);
342 }
343
344 static void esp_do_dma(ESPState *s)
345 {
346 uint32_t len;
347 int to_device;
348
349 to_device = (s->ti_size < 0);
350 len = s->dma_left;
351 if (s->do_cmd) {
352 trace_esp_do_dma(s->cmdlen, len);
353 s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
354 s->ti_size = 0;
355 s->cmdlen = 0;
356 s->do_cmd = 0;
357 do_cmd(s, s->cmdbuf);
358 return;
359 }
360 if (s->async_len == 0) {
361 /* Defer until data is available. */
362 return;
363 }
364 if (len > s->async_len) {
365 len = s->async_len;
366 }
367 if (to_device) {
368 s->dma_memory_read(s->dma_opaque, s->async_buf, len);
369 } else {
370 s->dma_memory_write(s->dma_opaque, s->async_buf, len);
371 }
372 s->dma_left -= len;
373 s->async_buf += len;
374 s->async_len -= len;
375 if (to_device)
376 s->ti_size += len;
377 else
378 s->ti_size -= len;
379 if (s->async_len == 0) {
380 scsi_req_continue(s->current_req);
381 /* If there is still data to be read from the device then
382 complete the DMA operation immediately. Otherwise defer
383 until the scsi layer has completed. */
384 if (to_device || s->dma_left != 0 || s->ti_size == 0) {
385 return;
386 }
387 }
388
389 /* Partially filled a scsi buffer. Complete immediately. */
390 esp_dma_done(s);
391 }
392
393 static void esp_command_complete(SCSIRequest *req, uint32_t status,
394 size_t resid)
395 {
396 ESPState *s = DO_UPCAST(ESPState, busdev.qdev, req->bus->qbus.parent);
397
398 trace_esp_command_complete();
399 if (s->ti_size != 0) {
400 trace_esp_command_complete_unexpected();
401 }
402 s->ti_size = 0;
403 s->dma_left = 0;
404 s->async_len = 0;
405 if (status) {
406 trace_esp_command_complete_fail();
407 }
408 s->status = status;
409 s->rregs[ESP_RSTAT] = STAT_ST;
410 esp_dma_done(s);
411 if (s->current_req) {
412 scsi_req_unref(s->current_req);
413 s->current_req = NULL;
414 s->current_dev = NULL;
415 }
416 }
417
418 static void esp_transfer_data(SCSIRequest *req, uint32_t len)
419 {
420 ESPState *s = DO_UPCAST(ESPState, busdev.qdev, req->bus->qbus.parent);
421
422 trace_esp_transfer_data(s->dma_left, s->ti_size);
423 s->async_len = len;
424 s->async_buf = scsi_req_get_buf(req);
425 if (s->dma_left) {
426 esp_do_dma(s);
427 } else if (s->dma_counter != 0 && s->ti_size <= 0) {
428 /* If this was the last part of a DMA transfer then the
429 completion interrupt is deferred to here. */
430 esp_dma_done(s);
431 }
432 }
433
434 static void handle_ti(ESPState *s)
435 {
436 uint32_t dmalen, minlen;
437
438 dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
439 if (dmalen==0) {
440 dmalen=0x10000;
441 }
442 s->dma_counter = dmalen;
443
444 if (s->do_cmd)
445 minlen = (dmalen < 32) ? dmalen : 32;
446 else if (s->ti_size < 0)
447 minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
448 else
449 minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
450 trace_esp_handle_ti(minlen);
451 if (s->dma) {
452 s->dma_left = minlen;
453 s->rregs[ESP_RSTAT] &= ~STAT_TC;
454 esp_do_dma(s);
455 } else if (s->do_cmd) {
456 trace_esp_handle_ti_cmd(s->cmdlen);
457 s->ti_size = 0;
458 s->cmdlen = 0;
459 s->do_cmd = 0;
460 do_cmd(s, s->cmdbuf);
461 return;
462 }
463 }
464
465 static void esp_hard_reset(DeviceState *d)
466 {
467 ESPState *s = container_of(d, ESPState, busdev.qdev);
468
469 memset(s->rregs, 0, ESP_REGS);
470 memset(s->wregs, 0, ESP_REGS);
471 s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
472 s->ti_size = 0;
473 s->ti_rptr = 0;
474 s->ti_wptr = 0;
475 s->dma = 0;
476 s->do_cmd = 0;
477 s->dma_cb = NULL;
478
479 s->rregs[ESP_CFG1] = 7;
480 }
481
482 static void esp_soft_reset(DeviceState *d)
483 {
484 ESPState *s = container_of(d, ESPState, busdev.qdev);
485
486 qemu_irq_lower(s->irq);
487 esp_hard_reset(d);
488 }
489
490 static void parent_esp_reset(void *opaque, int irq, int level)
491 {
492 if (level) {
493 esp_soft_reset(opaque);
494 }
495 }
496
497 static void esp_gpio_demux(void *opaque, int irq, int level)
498 {
499 switch (irq) {
500 case 0:
501 parent_esp_reset(opaque, irq, level);
502 break;
503 case 1:
504 esp_dma_enable(opaque, irq, level);
505 break;
506 }
507 }
508
509 static uint64_t esp_mem_read(void *opaque, target_phys_addr_t addr,
510 unsigned size)
511 {
512 ESPState *s = opaque;
513 uint32_t saddr, old_val;
514
515 saddr = addr >> s->it_shift;
516 trace_esp_mem_readb(saddr, s->rregs[saddr]);
517 switch (saddr) {
518 case ESP_FIFO:
519 if (s->ti_size > 0) {
520 s->ti_size--;
521 if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
522 /* Data out. */
523 ESP_ERROR("PIO data read not implemented\n");
524 s->rregs[ESP_FIFO] = 0;
525 } else {
526 s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
527 }
528 esp_raise_irq(s);
529 }
530 if (s->ti_size == 0) {
531 s->ti_rptr = 0;
532 s->ti_wptr = 0;
533 }
534 break;
535 case ESP_RINTR:
536 /* Clear sequence step, interrupt register and all status bits
537 except TC */
538 old_val = s->rregs[ESP_RINTR];
539 s->rregs[ESP_RINTR] = 0;
540 s->rregs[ESP_RSTAT] &= ~STAT_TC;
541 s->rregs[ESP_RSEQ] = SEQ_CD;
542 esp_lower_irq(s);
543
544 return old_val;
545 default:
546 break;
547 }
548 return s->rregs[saddr];
549 }
550
551 static void esp_mem_write(void *opaque, target_phys_addr_t addr,
552 uint64_t val, unsigned size)
553 {
554 ESPState *s = opaque;
555 uint32_t saddr;
556
557 saddr = addr >> s->it_shift;
558 trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
559 switch (saddr) {
560 case ESP_TCLO:
561 case ESP_TCMID:
562 s->rregs[ESP_RSTAT] &= ~STAT_TC;
563 break;
564 case ESP_FIFO:
565 if (s->do_cmd) {
566 s->cmdbuf[s->cmdlen++] = val & 0xff;
567 } else if (s->ti_size == TI_BUFSZ - 1) {
568 ESP_ERROR("fifo overrun\n");
569 } else {
570 s->ti_size++;
571 s->ti_buf[s->ti_wptr++] = val & 0xff;
572 }
573 break;
574 case ESP_CMD:
575 s->rregs[saddr] = val;
576 if (val & CMD_DMA) {
577 s->dma = 1;
578 /* Reload DMA counter. */
579 s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
580 s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
581 } else {
582 s->dma = 0;
583 }
584 switch(val & CMD_CMD) {
585 case CMD_NOP:
586 trace_esp_mem_writeb_cmd_nop(val);
587 break;
588 case CMD_FLUSH:
589 trace_esp_mem_writeb_cmd_flush(val);
590 //s->ti_size = 0;
591 s->rregs[ESP_RINTR] = INTR_FC;
592 s->rregs[ESP_RSEQ] = 0;
593 s->rregs[ESP_RFLAGS] = 0;
594 break;
595 case CMD_RESET:
596 trace_esp_mem_writeb_cmd_reset(val);
597 esp_soft_reset(&s->busdev.qdev);
598 break;
599 case CMD_BUSRESET:
600 trace_esp_mem_writeb_cmd_bus_reset(val);
601 s->rregs[ESP_RINTR] = INTR_RST;
602 if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
603 esp_raise_irq(s);
604 }
605 break;
606 case CMD_TI:
607 handle_ti(s);
608 break;
609 case CMD_ICCS:
610 trace_esp_mem_writeb_cmd_iccs(val);
611 write_response(s);
612 s->rregs[ESP_RINTR] = INTR_FC;
613 s->rregs[ESP_RSTAT] |= STAT_MI;
614 break;
615 case CMD_MSGACC:
616 trace_esp_mem_writeb_cmd_msgacc(val);
617 s->rregs[ESP_RINTR] = INTR_DC;
618 s->rregs[ESP_RSEQ] = 0;
619 s->rregs[ESP_RFLAGS] = 0;
620 esp_raise_irq(s);
621 break;
622 case CMD_PAD:
623 trace_esp_mem_writeb_cmd_pad(val);
624 s->rregs[ESP_RSTAT] = STAT_TC;
625 s->rregs[ESP_RINTR] = INTR_FC;
626 s->rregs[ESP_RSEQ] = 0;
627 break;
628 case CMD_SATN:
629 trace_esp_mem_writeb_cmd_satn(val);
630 break;
631 case CMD_SEL:
632 trace_esp_mem_writeb_cmd_sel(val);
633 handle_s_without_atn(s);
634 break;
635 case CMD_SELATN:
636 trace_esp_mem_writeb_cmd_selatn(val);
637 handle_satn(s);
638 break;
639 case CMD_SELATNS:
640 trace_esp_mem_writeb_cmd_selatns(val);
641 handle_satn_stop(s);
642 break;
643 case CMD_ENSEL:
644 trace_esp_mem_writeb_cmd_ensel(val);
645 s->rregs[ESP_RINTR] = 0;
646 break;
647 default:
648 ESP_ERROR("Unhandled ESP command (%2.2x)\n", (unsigned)val);
649 break;
650 }
651 break;
652 case ESP_WBUSID ... ESP_WSYNO:
653 break;
654 case ESP_CFG1:
655 s->rregs[saddr] = val;
656 break;
657 case ESP_WCCF ... ESP_WTEST:
658 break;
659 case ESP_CFG2 ... ESP_RES4:
660 s->rregs[saddr] = val;
661 break;
662 default:
663 ESP_ERROR("invalid write of 0x%02x at [0x%x]\n", (unsigned)val, saddr);
664 return;
665 }
666 s->wregs[saddr] = val;
667 }
668
669 static bool esp_mem_accepts(void *opaque, target_phys_addr_t addr,
670 unsigned size, bool is_write)
671 {
672 return (size == 1) || (is_write && size == 4);
673 }
674
675 static const MemoryRegionOps esp_mem_ops = {
676 .read = esp_mem_read,
677 .write = esp_mem_write,
678 .endianness = DEVICE_NATIVE_ENDIAN,
679 .valid.accepts = esp_mem_accepts,
680 };
681
682 static const VMStateDescription vmstate_esp = {
683 .name ="esp",
684 .version_id = 3,
685 .minimum_version_id = 3,
686 .minimum_version_id_old = 3,
687 .fields = (VMStateField []) {
688 VMSTATE_BUFFER(rregs, ESPState),
689 VMSTATE_BUFFER(wregs, ESPState),
690 VMSTATE_INT32(ti_size, ESPState),
691 VMSTATE_UINT32(ti_rptr, ESPState),
692 VMSTATE_UINT32(ti_wptr, ESPState),
693 VMSTATE_BUFFER(ti_buf, ESPState),
694 VMSTATE_UINT32(status, ESPState),
695 VMSTATE_UINT32(dma, ESPState),
696 VMSTATE_BUFFER(cmdbuf, ESPState),
697 VMSTATE_UINT32(cmdlen, ESPState),
698 VMSTATE_UINT32(do_cmd, ESPState),
699 VMSTATE_UINT32(dma_left, ESPState),
700 VMSTATE_END_OF_LIST()
701 }
702 };
703
704 void esp_init(target_phys_addr_t espaddr, int it_shift,
705 ESPDMAMemoryReadWriteFunc dma_memory_read,
706 ESPDMAMemoryReadWriteFunc dma_memory_write,
707 void *dma_opaque, qemu_irq irq, qemu_irq *reset,
708 qemu_irq *dma_enable)
709 {
710 DeviceState *dev;
711 SysBusDevice *s;
712 ESPState *esp;
713
714 dev = qdev_create(NULL, "esp");
715 esp = DO_UPCAST(ESPState, busdev.qdev, dev);
716 esp->dma_memory_read = dma_memory_read;
717 esp->dma_memory_write = dma_memory_write;
718 esp->dma_opaque = dma_opaque;
719 esp->it_shift = it_shift;
720 /* XXX for now until rc4030 has been changed to use DMA enable signal */
721 esp->dma_enabled = 1;
722 qdev_init_nofail(dev);
723 s = sysbus_from_qdev(dev);
724 sysbus_connect_irq(s, 0, irq);
725 sysbus_mmio_map(s, 0, espaddr);
726 *reset = qdev_get_gpio_in(dev, 0);
727 *dma_enable = qdev_get_gpio_in(dev, 1);
728 }
729
730 static const struct SCSIBusInfo esp_scsi_info = {
731 .tcq = false,
732 .max_target = ESP_MAX_DEVS,
733 .max_lun = 7,
734
735 .transfer_data = esp_transfer_data,
736 .complete = esp_command_complete,
737 .cancel = esp_request_cancelled
738 };
739
740 static int esp_init1(SysBusDevice *dev)
741 {
742 ESPState *s = FROM_SYSBUS(ESPState, dev);
743
744 sysbus_init_irq(dev, &s->irq);
745 assert(s->it_shift != -1);
746
747 memory_region_init_io(&s->iomem, &esp_mem_ops, s,
748 "esp", ESP_REGS << s->it_shift);
749 sysbus_init_mmio(dev, &s->iomem);
750
751 qdev_init_gpio_in(&dev->qdev, esp_gpio_demux, 2);
752
753 scsi_bus_new(&s->bus, &dev->qdev, &esp_scsi_info);
754 return scsi_bus_legacy_handle_cmdline(&s->bus);
755 }
756
757 static Property esp_properties[] = {
758 {.name = NULL},
759 };
760
761 static void esp_class_init(ObjectClass *klass, void *data)
762 {
763 DeviceClass *dc = DEVICE_CLASS(klass);
764 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
765
766 k->init = esp_init1;
767 dc->reset = esp_hard_reset;
768 dc->vmsd = &vmstate_esp;
769 dc->props = esp_properties;
770 }
771
772 static TypeInfo esp_info = {
773 .name = "esp",
774 .parent = TYPE_SYS_BUS_DEVICE,
775 .instance_size = sizeof(ESPState),
776 .class_init = esp_class_init,
777 };
778
779 static void esp_register_types(void)
780 {
781 type_register_static(&esp_info);
782 }
783
784 type_init(esp_register_types)