]> git.proxmox.com Git - qemu.git/blob - hw/etraxfs_dma.c
ETRAX-FS: Make etraxfs_dmac_run local.
[qemu.git] / hw / etraxfs_dma.c
1 /*
2 * QEMU ETRAX DMA Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
29
30 #include "etraxfs_dma.h"
31
32 #define D(x)
33
34 #define RW_DATA 0x0
35 #define RW_SAVED_DATA 0x58
36 #define RW_SAVED_DATA_BUF 0x5c
37 #define RW_GROUP 0x60
38 #define RW_GROUP_DOWN 0x7c
39 #define RW_CMD 0x80
40 #define RW_CFG 0x84
41 #define RW_STAT 0x88
42 #define RW_INTR_MASK 0x8c
43 #define RW_ACK_INTR 0x90
44 #define R_INTR 0x94
45 #define R_MASKED_INTR 0x98
46 #define RW_STREAM_CMD 0x9c
47
48 #define DMA_REG_MAX 0x100
49
50 /* descriptors */
51
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 struct dma_descr_group *next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
71
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 struct dma_descr_context *next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 struct dma_descr_data *saved_data;
89 char *saved_data_buf;
90 } dma_descr_context;
91
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 struct dma_descr_data *next;
95 char *buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 char *after;
107 } dma_descr_data;
108
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
157 };
158
159 enum dma_ch_state
160 {
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
164 };
165
166 struct fs_dma_channel
167 {
168 int regmap;
169 qemu_irq *irq;
170 struct etraxfs_dma_client *client;
171
172
173 /* Internal status. */
174 int stream_cmd_src;
175 enum dma_ch_state state;
176
177 unsigned int input : 1;
178 unsigned int eol : 1;
179
180 struct dma_descr_group current_g;
181 struct dma_descr_context current_c;
182 struct dma_descr_data current_d;
183
184 /* Controll registers. */
185 uint32_t regs[DMA_REG_MAX];
186 };
187
188 struct fs_dma_ctrl
189 {
190 CPUState *env;
191 target_phys_addr_t base;
192
193 int nr_channels;
194 struct fs_dma_channel *channels;
195
196 QEMUBH *bh;
197 };
198
199 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
200 {
201 return ctrl->channels[c].regs[reg];
202 }
203
204 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
205 {
206 return channel_reg(ctrl, c, RW_CFG) & 2;
207 }
208
209 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
210 {
211 return (channel_reg(ctrl, c, RW_CFG) & 1)
212 && ctrl->channels[c].client;
213 }
214
215 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
216 {
217 /* Every channel has a 0x2000 ctrl register map. */
218 return (addr - base) >> 13;
219 }
220
221 #ifdef USE_THIS_DEAD_CODE
222 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
223 {
224 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
225
226 /* Load and decode. FIXME: handle endianness. */
227 cpu_physical_memory_read (addr,
228 (void *) &ctrl->channels[c].current_g,
229 sizeof ctrl->channels[c].current_g);
230 }
231
232 static void dump_c(int ch, struct dma_descr_context *c)
233 {
234 printf("%s ch=%d\n", __func__, ch);
235 printf("next=%p\n", c->next);
236 printf("saved_data=%p\n", c->saved_data);
237 printf("saved_data_buf=%p\n", c->saved_data_buf);
238 printf("eol=%x\n", (uint32_t) c->eol);
239 }
240
241 static void dump_d(int ch, struct dma_descr_data *d)
242 {
243 printf("%s ch=%d\n", __func__, ch);
244 printf("next=%p\n", d->next);
245 printf("buf=%p\n", d->buf);
246 printf("after=%p\n", d->after);
247 printf("intr=%x\n", (uint32_t) d->intr);
248 printf("out_eop=%x\n", (uint32_t) d->out_eop);
249 printf("in_eop=%x\n", (uint32_t) d->in_eop);
250 printf("eol=%x\n", (uint32_t) d->eol);
251 }
252 #endif
253
254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
255 {
256 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
257
258 /* Load and decode. FIXME: handle endianness. */
259 cpu_physical_memory_read (addr,
260 (void *) &ctrl->channels[c].current_c,
261 sizeof ctrl->channels[c].current_c);
262
263 D(dump_c(c, &ctrl->channels[c].current_c));
264 /* I guess this should update the current pos. */
265 ctrl->channels[c].regs[RW_SAVED_DATA] =
266 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
267 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
268 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
269 }
270
271 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
272 {
273 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
274
275 /* Load and decode. FIXME: handle endianness. */
276 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
277 cpu_physical_memory_read (addr,
278 (void *) &ctrl->channels[c].current_d,
279 sizeof ctrl->channels[c].current_d);
280
281 D(dump_d(c, &ctrl->channels[c].current_d));
282 ctrl->channels[c].regs[RW_DATA] = addr;
283 }
284
285 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
286 {
287 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
288
289 /* Encode and store. FIXME: handle endianness. */
290 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
291 D(dump_d(c, &ctrl->channels[c].current_d));
292 cpu_physical_memory_write (addr,
293 (void *) &ctrl->channels[c].current_c,
294 sizeof ctrl->channels[c].current_c);
295 }
296
297 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
298 {
299 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
300
301 /* Encode and store. FIXME: handle endianness. */
302 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
303 cpu_physical_memory_write (addr,
304 (void *) &ctrl->channels[c].current_d,
305 sizeof ctrl->channels[c].current_d);
306 }
307
308 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
309 {
310 /* FIXME: */
311 }
312
313 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
314 {
315 if (ctrl->channels[c].client)
316 {
317 ctrl->channels[c].eol = 0;
318 ctrl->channels[c].state = RUNNING;
319 } else
320 printf("WARNING: starting DMA ch %d with no client\n", c);
321 }
322
323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
324 {
325 if (!channel_en(ctrl, c)
326 || channel_stopped(ctrl, c)
327 || ctrl->channels[c].state != RUNNING
328 /* Only reload the current data descriptor if it has eol set. */
329 || !ctrl->channels[c].current_d.eol) {
330 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
331 c, ctrl->channels[c].state,
332 channel_stopped(ctrl, c),
333 channel_en(ctrl,c),
334 ctrl->channels[c].eol));
335 D(dump_d(c, &ctrl->channels[c].current_d));
336 return;
337 }
338
339 /* Reload the current descriptor. */
340 channel_load_d(ctrl, c);
341
342 /* If the current descriptor cleared the eol flag and we had already
343 reached eol state, do the continue. */
344 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
345 D(printf("continue %d ok %p\n", c,
346 ctrl->channels[c].current_d.next));
347 ctrl->channels[c].regs[RW_SAVED_DATA] =
348 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
349 channel_load_d(ctrl, c);
350 channel_start(ctrl, c);
351 }
352 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
353 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
354 }
355
356 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
357 {
358 unsigned int cmd = v & ((1 << 10) - 1);
359
360 D(printf("%s ch=%d cmd=%x\n",
361 __func__, c, cmd));
362 if (cmd & regk_dma_load_d) {
363 channel_load_d(ctrl, c);
364 if (cmd & regk_dma_burst)
365 channel_start(ctrl, c);
366 }
367
368 if (cmd & regk_dma_load_c) {
369 channel_load_c(ctrl, c);
370 channel_start(ctrl, c);
371 }
372 }
373
374 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
375 {
376 D(printf("%s %d\n", __func__, c));
377 ctrl->channels[c].regs[R_INTR] &=
378 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
379
380 ctrl->channels[c].regs[R_MASKED_INTR] =
381 ctrl->channels[c].regs[R_INTR]
382 & ctrl->channels[c].regs[RW_INTR_MASK];
383
384 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
385 c,
386 ctrl->channels[c].regs[R_MASKED_INTR]));
387
388 if (ctrl->channels[c].regs[R_MASKED_INTR])
389 qemu_irq_raise(ctrl->channels[c].irq[0]);
390 else
391 qemu_irq_lower(ctrl->channels[c].irq[0]);
392 }
393
394 static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
395 {
396 uint32_t len;
397 uint32_t saved_data_buf;
398 unsigned char buf[2 * 1024];
399
400 while (ctrl->channels[c].eol != 1) {
401 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
402
403 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
404 c,
405 (uint32_t)ctrl->channels[c].current_d.buf,
406 (uint32_t)ctrl->channels[c].current_d.after,
407 saved_data_buf));
408
409 len = (uint32_t)(unsigned long)
410 ctrl->channels[c].current_d.after;
411 len -= saved_data_buf;
412
413 if (len > sizeof buf)
414 len = sizeof buf;
415 cpu_physical_memory_read (saved_data_buf, buf, len);
416
417 D(printf("channel %d pushes %x %u bytes\n", c,
418 saved_data_buf, len));
419
420 if (ctrl->channels[c].client->client.push)
421 ctrl->channels[c].client->client.push(
422 ctrl->channels[c].client->client.opaque,
423 buf, len);
424 else
425 printf("WARNING: DMA ch%d dataloss,"
426 " no attached client.\n", c);
427
428 saved_data_buf += len;
429
430 if (saved_data_buf == (uint32_t)(unsigned long)
431 ctrl->channels[c].current_d.after) {
432 /* Done. Step to next. */
433 if (ctrl->channels[c].current_d.out_eop) {
434 /* TODO: signal eop to the client. */
435 D(printf("signal eop\n"));
436 }
437 if (ctrl->channels[c].current_d.intr) {
438 /* TODO: signal eop to the client. */
439 /* data intr. */
440 D(printf("signal intr\n"));
441 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
442 channel_update_irq(ctrl, c);
443 }
444 if (ctrl->channels[c].current_d.eol) {
445 D(printf("channel %d EOL\n", c));
446 ctrl->channels[c].eol = 1;
447
448 /* Mark the context as disabled. */
449 ctrl->channels[c].current_c.dis = 1;
450 channel_store_c(ctrl, c);
451
452 channel_stop(ctrl, c);
453 } else {
454 ctrl->channels[c].regs[RW_SAVED_DATA] =
455 (uint32_t)(unsigned long)ctrl->
456 channels[c].current_d.next;
457 /* Load new descriptor. */
458 channel_load_d(ctrl, c);
459 saved_data_buf = (uint32_t)(unsigned long)
460 ctrl->channels[c].current_d.buf;
461 }
462
463 channel_store_d(ctrl, c);
464 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
465 saved_data_buf;
466 D(dump_d(c, &ctrl->channels[c].current_d));
467 }
468 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
469 }
470 }
471
472 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
473 unsigned char *buf, int buflen, int eop)
474 {
475 uint32_t len;
476 uint32_t saved_data_buf;
477
478 if (ctrl->channels[c].eol == 1)
479 return 0;
480
481 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
482 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
483 len -= saved_data_buf;
484
485 if (len > buflen)
486 len = buflen;
487
488 cpu_physical_memory_write (saved_data_buf, buf, len);
489 saved_data_buf += len;
490
491 if (saved_data_buf ==
492 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
493 || eop) {
494 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
495
496 D(printf("in dscr end len=%d\n",
497 ctrl->channels[c].current_d.after
498 - ctrl->channels[c].current_d.buf));
499 ctrl->channels[c].current_d.after =
500 (void *)(unsigned long) saved_data_buf;
501
502 /* Done. Step to next. */
503 if (ctrl->channels[c].current_d.intr) {
504 /* TODO: signal eop to the client. */
505 /* data intr. */
506 ctrl->channels[c].regs[R_INTR] |= 3;
507 }
508 if (eop) {
509 ctrl->channels[c].current_d.in_eop = 1;
510 ctrl->channels[c].regs[R_INTR] |= 8;
511 }
512 if (r_intr != ctrl->channels[c].regs[R_INTR])
513 channel_update_irq(ctrl, c);
514
515 channel_store_d(ctrl, c);
516 D(dump_d(c, &ctrl->channels[c].current_d));
517
518 if (ctrl->channels[c].current_d.eol) {
519 D(printf("channel %d EOL\n", c));
520 ctrl->channels[c].eol = 1;
521
522 /* Mark the context as disabled. */
523 ctrl->channels[c].current_c.dis = 1;
524 channel_store_c(ctrl, c);
525
526 channel_stop(ctrl, c);
527 } else {
528 ctrl->channels[c].regs[RW_SAVED_DATA] =
529 (uint32_t)(unsigned long)ctrl->
530 channels[c].current_d.next;
531 /* Load new descriptor. */
532 channel_load_d(ctrl, c);
533 saved_data_buf = (uint32_t)(unsigned long)
534 ctrl->channels[c].current_d.buf;
535 }
536 }
537
538 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
539 return len;
540 }
541
542 static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
543 {
544 if (ctrl->channels[c].client->client.pull)
545 ctrl->channels[c].client->client.pull(
546 ctrl->channels[c].client->client.opaque);
547 }
548
549 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
550 {
551 struct fs_dma_ctrl *ctrl = opaque;
552 CPUState *env = ctrl->env;
553 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
554 addr);
555 return 0;
556 }
557
558 static uint32_t
559 dma_readl (void *opaque, target_phys_addr_t addr)
560 {
561 struct fs_dma_ctrl *ctrl = opaque;
562 int c;
563 uint32_t r = 0;
564
565 /* Make addr relative to this instances base. */
566 c = fs_channel(ctrl->base, addr);
567 addr &= 0x1fff;
568 switch (addr)
569 {
570 case RW_STAT:
571 r = ctrl->channels[c].state & 7;
572 r |= ctrl->channels[c].eol << 5;
573 r |= ctrl->channels[c].stream_cmd_src << 8;
574 break;
575
576 default:
577 r = ctrl->channels[c].regs[addr];
578 D(printf ("%s c=%d addr=%x\n",
579 __func__, c, addr));
580 break;
581 }
582 return r;
583 }
584
585 static void
586 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
587 {
588 struct fs_dma_ctrl *ctrl = opaque;
589 CPUState *env = ctrl->env;
590 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
591 addr);
592 }
593
594 static void
595 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
596 {
597 if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
598 if (ctrl->channels[c].regs[RW_CFG] & 2)
599 ctrl->channels[c].state = STOPPED;
600 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
601 ctrl->channels[c].state = RST;
602 }
603 }
604
605 static void
606 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
607 {
608 struct fs_dma_ctrl *ctrl = opaque;
609 int c;
610
611 /* Make addr relative to this instances base. */
612 c = fs_channel(ctrl->base, addr);
613 addr &= 0x1fff;
614 switch (addr)
615 {
616 case RW_DATA:
617 ctrl->channels[c].regs[addr] = value;
618 break;
619
620 case RW_CFG:
621 ctrl->channels[c].regs[addr] = value;
622 dma_update_state(ctrl, c);
623 break;
624 case RW_CMD:
625 /* continue. */
626 if (value & ~1)
627 printf("Invalid store to ch=%d RW_CMD %x\n",
628 c, value);
629 ctrl->channels[c].regs[addr] = value;
630 channel_continue(ctrl, c);
631 break;
632
633 case RW_SAVED_DATA:
634 case RW_SAVED_DATA_BUF:
635 case RW_GROUP:
636 case RW_GROUP_DOWN:
637 ctrl->channels[c].regs[addr] = value;
638 break;
639
640 case RW_ACK_INTR:
641 case RW_INTR_MASK:
642 ctrl->channels[c].regs[addr] = value;
643 channel_update_irq(ctrl, c);
644 if (addr == RW_ACK_INTR)
645 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
646 break;
647
648 case RW_STREAM_CMD:
649 if (value & ~1023)
650 printf("Invalid store to ch=%d "
651 "RW_STREAMCMD %x\n",
652 c, value);
653 ctrl->channels[c].regs[addr] = value;
654 D(printf("stream_cmd ch=%d\n", c));
655 channel_stream_cmd(ctrl, c, value);
656 break;
657
658 default:
659 D(printf ("%s c=%d %x %x\n", __func__, c, addr));
660 break;
661 }
662 }
663
664 static CPUReadMemoryFunc *dma_read[] = {
665 &dma_rinvalid,
666 &dma_rinvalid,
667 &dma_readl,
668 };
669
670 static CPUWriteMemoryFunc *dma_write[] = {
671 &dma_winvalid,
672 &dma_winvalid,
673 &dma_writel,
674 };
675
676 static void etraxfs_dmac_run(void *opaque)
677 {
678 struct fs_dma_ctrl *ctrl = opaque;
679 int i;
680 int p = 0;
681
682 for (i = 0;
683 i < ctrl->nr_channels;
684 i++)
685 {
686 if (ctrl->channels[i].state == RUNNING)
687 {
688 p++;
689 if (ctrl->channels[i].input)
690 channel_in_run(ctrl, i);
691 else
692 channel_out_run(ctrl, i);
693 }
694 }
695 }
696
697 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
698 void *buf, int len, int eop)
699 {
700 return channel_in_process(client->ctrl, client->channel,
701 buf, len, eop);
702 }
703
704 /* Connect an IRQ line with a channel. */
705 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
706 {
707 struct fs_dma_ctrl *ctrl = opaque;
708 ctrl->channels[c].irq = line;
709 ctrl->channels[c].input = input;
710 }
711
712 void etraxfs_dmac_connect_client(void *opaque, int c,
713 struct etraxfs_dma_client *cl)
714 {
715 struct fs_dma_ctrl *ctrl = opaque;
716 cl->ctrl = ctrl;
717 cl->channel = c;
718 ctrl->channels[c].client = cl;
719 }
720
721
722 static void DMA_run(void *opaque)
723 {
724 struct fs_dma_ctrl *etraxfs_dmac = opaque;
725 if (vm_running)
726 etraxfs_dmac_run(etraxfs_dmac);
727 qemu_bh_schedule_idle(etraxfs_dmac->bh);
728 }
729
730 void *etraxfs_dmac_init(CPUState *env,
731 target_phys_addr_t base, int nr_channels)
732 {
733 struct fs_dma_ctrl *ctrl = NULL;
734 int i;
735
736 ctrl = qemu_mallocz(sizeof *ctrl);
737 if (!ctrl)
738 return NULL;
739
740 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
741 qemu_bh_schedule_idle(ctrl->bh);
742
743 ctrl->base = base;
744 ctrl->env = env;
745 ctrl->nr_channels = nr_channels;
746 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
747 if (!ctrl->channels)
748 goto err;
749
750 for (i = 0; i < nr_channels; i++)
751 {
752 ctrl->channels[i].regmap = cpu_register_io_memory(0,
753 dma_read,
754 dma_write,
755 ctrl);
756 cpu_register_physical_memory (base + i * 0x2000,
757 sizeof ctrl->channels[i].regs,
758 ctrl->channels[i].regmap);
759 }
760
761 return ctrl;
762 err:
763 qemu_free(ctrl->channels);
764 qemu_free(ctrl);
765 return NULL;
766 }