]> git.proxmox.com Git - qemu.git/blob - hw/fw_cfg.c
fw_cfg: make calls typesafe
[qemu.git] / hw / fw_cfg.c
1 /*
2 * QEMU Firmware configuration device emulation
3 *
4 * Copyright (c) 2008 Gleb Natapov
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "sysemu.h"
26 #include "isa.h"
27 #include "fw_cfg.h"
28
29 /* debug firmware config */
30 //#define DEBUG_FW_CFG
31
32 #ifdef DEBUG_FW_CFG
33 #define FW_CFG_DPRINTF(fmt, ...) \
34 do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define FW_CFG_DPRINTF(fmt, ...)
37 #endif
38
39 #define FW_CFG_SIZE 2
40
41 typedef struct _FWCfgEntry {
42 uint32_t len;
43 uint8_t *data;
44 void *callback_opaque;
45 FWCfgCallback callback;
46 } FWCfgEntry;
47
48 struct _FWCfgState {
49 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
50 uint16_t cur_entry;
51 uint32_t cur_offset;
52 };
53
54 static void fw_cfg_write(FWCfgState *s, uint8_t value)
55 {
56 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
57 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
58
59 FW_CFG_DPRINTF("write %d\n", value);
60
61 if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
62 e->data[s->cur_offset++] = value;
63 if (s->cur_offset == e->len) {
64 e->callback(e->callback_opaque, e->data);
65 s->cur_offset = 0;
66 }
67 }
68 }
69
70 static int fw_cfg_select(FWCfgState *s, uint16_t key)
71 {
72 int ret;
73
74 s->cur_offset = 0;
75 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
76 s->cur_entry = FW_CFG_INVALID;
77 ret = 0;
78 } else {
79 s->cur_entry = key;
80 ret = 1;
81 }
82
83 FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
84
85 return ret;
86 }
87
88 static uint8_t fw_cfg_read(FWCfgState *s)
89 {
90 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
91 FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
92 uint8_t ret;
93
94 if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
95 ret = 0;
96 else
97 ret = e->data[s->cur_offset++];
98
99 FW_CFG_DPRINTF("read %d\n", ret);
100
101 return ret;
102 }
103
104 static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
105 {
106 return fw_cfg_read(opaque);
107 }
108
109 static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
110 {
111 fw_cfg_write(opaque, (uint8_t)value);
112 }
113
114 static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
115 {
116 fw_cfg_select(opaque, (uint16_t)value);
117 }
118
119 static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
120 {
121 return fw_cfg_read(opaque);
122 }
123
124 static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
125 uint32_t value)
126 {
127 fw_cfg_write(opaque, (uint8_t)value);
128 }
129
130 static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr,
131 uint32_t value)
132 {
133 fw_cfg_select(opaque, (uint16_t)value);
134 }
135
136 static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
137 NULL,
138 NULL,
139 NULL,
140 };
141
142 static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
143 NULL,
144 fw_cfg_mem_writew,
145 NULL,
146 };
147
148 static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
149 fw_cfg_mem_readb,
150 NULL,
151 NULL,
152 };
153
154 static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
155 fw_cfg_mem_writeb,
156 NULL,
157 NULL,
158 };
159
160 static void fw_cfg_reset(void *opaque)
161 {
162 FWCfgState *s = opaque;
163
164 fw_cfg_select(s, 0);
165 }
166
167 /* Save restore 32 bit int as uint16_t
168 This is a Big hack, but it is how the old state did it.
169 Or we broke compatibility in the state, or we can't use struct tm
170 */
171
172 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
173 {
174 uint32_t *v = pv;
175 *v = qemu_get_be16(f);
176 return 0;
177 }
178
179 static void put_unused(QEMUFile *f, void *pv, size_t size)
180 {
181 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibilty.\n");
182 fprintf(stderr, "This functions shouldn't be called.\n");
183 }
184
185 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
186 .name = "int32_as_uint16",
187 .get = get_uint32_as_uint16,
188 .put = put_unused,
189 };
190
191 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
192 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
193
194
195 static bool is_version_1(void *opaque, int version_id)
196 {
197 return version_id == 1;
198 }
199
200 static const VMStateDescription vmstate_fw_cfg = {
201 .name = "fw_cfg",
202 .version_id = 2,
203 .minimum_version_id = 1,
204 .minimum_version_id_old = 1,
205 .fields = (VMStateField []) {
206 VMSTATE_UINT16(cur_entry, FWCfgState),
207 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
208 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
209 VMSTATE_END_OF_LIST()
210 }
211 };
212
213 int fw_cfg_add_bytes(FWCfgState *s, uint16_t key, uint8_t *data, uint32_t len)
214 {
215 int arch = !!(key & FW_CFG_ARCH_LOCAL);
216
217 key &= FW_CFG_ENTRY_MASK;
218
219 if (key >= FW_CFG_MAX_ENTRY)
220 return 0;
221
222 s->entries[arch][key].data = data;
223 s->entries[arch][key].len = len;
224
225 return 1;
226 }
227
228 int fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
229 {
230 uint16_t *copy;
231
232 copy = qemu_malloc(sizeof(value));
233 *copy = cpu_to_le16(value);
234 return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
235 }
236
237 int fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
238 {
239 uint32_t *copy;
240
241 copy = qemu_malloc(sizeof(value));
242 *copy = cpu_to_le32(value);
243 return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
244 }
245
246 int fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
247 {
248 uint64_t *copy;
249
250 copy = qemu_malloc(sizeof(value));
251 *copy = cpu_to_le64(value);
252 return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
253 }
254
255 int fw_cfg_add_callback(FWCfgState *s, uint16_t key, FWCfgCallback callback,
256 void *callback_opaque, uint8_t *data, size_t len)
257 {
258 int arch = !!(key & FW_CFG_ARCH_LOCAL);
259
260 if (!(key & FW_CFG_WRITE_CHANNEL))
261 return 0;
262
263 key &= FW_CFG_ENTRY_MASK;
264
265 if (key >= FW_CFG_MAX_ENTRY || len > 65535)
266 return 0;
267
268 s->entries[arch][key].data = data;
269 s->entries[arch][key].len = len;
270 s->entries[arch][key].callback_opaque = callback_opaque;
271 s->entries[arch][key].callback = callback;
272
273 return 1;
274 }
275
276 FWCfgState *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
277 target_phys_addr_t ctl_addr, target_phys_addr_t data_addr)
278 {
279 FWCfgState *s;
280 int io_ctl_memory, io_data_memory;
281
282 s = qemu_mallocz(sizeof(FWCfgState));
283
284 if (ctl_port) {
285 register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
286 }
287 if (data_port) {
288 register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
289 register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
290 }
291 if (ctl_addr) {
292 io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
293 fw_cfg_ctl_mem_write, s);
294 cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
295 }
296 if (data_addr) {
297 io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
298 fw_cfg_data_mem_write, s);
299 cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
300 }
301 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
302 fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
303 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
304 fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
305 fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
306 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
307
308 vmstate_register(-1, &vmstate_fw_cfg, s);
309 qemu_register_reset(fw_cfg_reset, s);
310
311 return s;
312 }