]> git.proxmox.com Git - qemu.git/blob - hw/hpet.c
Merge remote branch 'qmp/for-anthony' into staging
[qemu.git] / hw / hpet.c
1 /*
2 * High Precisition Event Timer emulation
3 *
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
6 *
7 * Authors: Beth Kon <bkon@us.ibm.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * *****************************************************************
23 *
24 * This driver attempts to emulate an HPET device in software.
25 */
26
27 #include "hw.h"
28 #include "pc.h"
29 #include "console.h"
30 #include "qemu-timer.h"
31 #include "hpet_emul.h"
32 #include "sysbus.h"
33 #include "mc146818rtc.h"
34
35 //#define HPET_DEBUG
36 #ifdef HPET_DEBUG
37 #define DPRINTF printf
38 #else
39 #define DPRINTF(...)
40 #endif
41
42 #define HPET_MSI_SUPPORT 0
43
44 struct HPETState;
45 typedef struct HPETTimer { /* timers */
46 uint8_t tn; /*timer number*/
47 QEMUTimer *qemu_timer;
48 struct HPETState *state;
49 /* Memory-mapped, software visible timer registers */
50 uint64_t config; /* configuration/cap */
51 uint64_t cmp; /* comparator */
52 uint64_t fsb; /* FSB route */
53 /* Hidden register state */
54 uint64_t period; /* Last value written to comparator */
55 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
56 * mode. Next pop will be actual timer expiration.
57 */
58 } HPETTimer;
59
60 typedef struct HPETState {
61 SysBusDevice busdev;
62 uint64_t hpet_offset;
63 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
64 uint32_t flags;
65 uint8_t rtc_irq_level;
66 uint8_t num_timers;
67 HPETTimer timer[HPET_MAX_TIMERS];
68
69 /* Memory-mapped, software visible registers */
70 uint64_t capability; /* capabilities */
71 uint64_t config; /* configuration */
72 uint64_t isr; /* interrupt status reg */
73 uint64_t hpet_counter; /* main counter */
74 uint8_t hpet_id; /* instance id */
75 } HPETState;
76
77 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
78
79 static uint32_t hpet_in_legacy_mode(HPETState *s)
80 {
81 return s->config & HPET_CFG_LEGACY;
82 }
83
84 static uint32_t timer_int_route(struct HPETTimer *timer)
85 {
86 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
87 }
88
89 static uint32_t timer_fsb_route(HPETTimer *t)
90 {
91 return t->config & HPET_TN_FSB_ENABLE;
92 }
93
94 static uint32_t hpet_enabled(HPETState *s)
95 {
96 return s->config & HPET_CFG_ENABLE;
97 }
98
99 static uint32_t timer_is_periodic(HPETTimer *t)
100 {
101 return t->config & HPET_TN_PERIODIC;
102 }
103
104 static uint32_t timer_enabled(HPETTimer *t)
105 {
106 return t->config & HPET_TN_ENABLE;
107 }
108
109 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
110 {
111 return ((int32_t)(b) - (int32_t)(a) < 0);
112 }
113
114 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
115 {
116 return ((int64_t)(b) - (int64_t)(a) < 0);
117 }
118
119 static uint64_t ticks_to_ns(uint64_t value)
120 {
121 return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
122 }
123
124 static uint64_t ns_to_ticks(uint64_t value)
125 {
126 return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
127 }
128
129 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
130 {
131 new &= mask;
132 new |= old & ~mask;
133 return new;
134 }
135
136 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
137 {
138 return (!(old & mask) && (new & mask));
139 }
140
141 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
142 {
143 return ((old & mask) && !(new & mask));
144 }
145
146 static uint64_t hpet_get_ticks(HPETState *s)
147 {
148 return ns_to_ticks(qemu_get_clock(vm_clock) + s->hpet_offset);
149 }
150
151 /*
152 * calculate diff between comparator value and current ticks
153 */
154 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
155 {
156
157 if (t->config & HPET_TN_32BIT) {
158 uint32_t diff, cmp;
159
160 cmp = (uint32_t)t->cmp;
161 diff = cmp - (uint32_t)current;
162 diff = (int32_t)diff > 0 ? diff : (uint32_t)0;
163 return (uint64_t)diff;
164 } else {
165 uint64_t diff, cmp;
166
167 cmp = t->cmp;
168 diff = cmp - current;
169 diff = (int64_t)diff > 0 ? diff : (uint64_t)0;
170 return diff;
171 }
172 }
173
174 static void update_irq(struct HPETTimer *timer, int set)
175 {
176 uint64_t mask;
177 HPETState *s;
178 int route;
179
180 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
181 /* if LegacyReplacementRoute bit is set, HPET specification requires
182 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
183 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
184 */
185 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
186 } else {
187 route = timer_int_route(timer);
188 }
189 s = timer->state;
190 mask = 1 << timer->tn;
191 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
192 s->isr &= ~mask;
193 if (!timer_fsb_route(timer)) {
194 qemu_irq_lower(s->irqs[route]);
195 }
196 } else if (timer_fsb_route(timer)) {
197 stl_phys(timer->fsb >> 32, timer->fsb & 0xffffffff);
198 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
199 s->isr |= mask;
200 qemu_irq_raise(s->irqs[route]);
201 } else {
202 s->isr &= ~mask;
203 qemu_irq_pulse(s->irqs[route]);
204 }
205 }
206
207 static void hpet_pre_save(void *opaque)
208 {
209 HPETState *s = opaque;
210
211 /* save current counter value */
212 s->hpet_counter = hpet_get_ticks(s);
213 }
214
215 static int hpet_pre_load(void *opaque)
216 {
217 HPETState *s = opaque;
218
219 /* version 1 only supports 3, later versions will load the actual value */
220 s->num_timers = HPET_MIN_TIMERS;
221 return 0;
222 }
223
224 static int hpet_post_load(void *opaque, int version_id)
225 {
226 HPETState *s = opaque;
227
228 /* Recalculate the offset between the main counter and guest time */
229 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
230
231 /* Push number of timers into capability returned via HPET_ID */
232 s->capability &= ~HPET_ID_NUM_TIM_MASK;
233 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
234 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
235
236 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
237 s->flags &= ~(1 << HPET_MSI_SUPPORT);
238 if (s->timer[0].config & HPET_TN_FSB_CAP) {
239 s->flags |= 1 << HPET_MSI_SUPPORT;
240 }
241 return 0;
242 }
243
244 static const VMStateDescription vmstate_hpet_timer = {
245 .name = "hpet_timer",
246 .version_id = 1,
247 .minimum_version_id = 1,
248 .minimum_version_id_old = 1,
249 .fields = (VMStateField []) {
250 VMSTATE_UINT8(tn, HPETTimer),
251 VMSTATE_UINT64(config, HPETTimer),
252 VMSTATE_UINT64(cmp, HPETTimer),
253 VMSTATE_UINT64(fsb, HPETTimer),
254 VMSTATE_UINT64(period, HPETTimer),
255 VMSTATE_UINT8(wrap_flag, HPETTimer),
256 VMSTATE_TIMER(qemu_timer, HPETTimer),
257 VMSTATE_END_OF_LIST()
258 }
259 };
260
261 static const VMStateDescription vmstate_hpet = {
262 .name = "hpet",
263 .version_id = 2,
264 .minimum_version_id = 1,
265 .minimum_version_id_old = 1,
266 .pre_save = hpet_pre_save,
267 .pre_load = hpet_pre_load,
268 .post_load = hpet_post_load,
269 .fields = (VMStateField []) {
270 VMSTATE_UINT64(config, HPETState),
271 VMSTATE_UINT64(isr, HPETState),
272 VMSTATE_UINT64(hpet_counter, HPETState),
273 VMSTATE_UINT8_V(num_timers, HPETState, 2),
274 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
275 vmstate_hpet_timer, HPETTimer),
276 VMSTATE_END_OF_LIST()
277 }
278 };
279
280 /*
281 * timer expiration callback
282 */
283 static void hpet_timer(void *opaque)
284 {
285 HPETTimer *t = opaque;
286 uint64_t diff;
287
288 uint64_t period = t->period;
289 uint64_t cur_tick = hpet_get_ticks(t->state);
290
291 if (timer_is_periodic(t) && period != 0) {
292 if (t->config & HPET_TN_32BIT) {
293 while (hpet_time_after(cur_tick, t->cmp)) {
294 t->cmp = (uint32_t)(t->cmp + t->period);
295 }
296 } else {
297 while (hpet_time_after64(cur_tick, t->cmp)) {
298 t->cmp += period;
299 }
300 }
301 diff = hpet_calculate_diff(t, cur_tick);
302 qemu_mod_timer(t->qemu_timer,
303 qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
304 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
305 if (t->wrap_flag) {
306 diff = hpet_calculate_diff(t, cur_tick);
307 qemu_mod_timer(t->qemu_timer, qemu_get_clock(vm_clock) +
308 (int64_t)ticks_to_ns(diff));
309 t->wrap_flag = 0;
310 }
311 }
312 update_irq(t, 1);
313 }
314
315 static void hpet_set_timer(HPETTimer *t)
316 {
317 uint64_t diff;
318 uint32_t wrap_diff; /* how many ticks until we wrap? */
319 uint64_t cur_tick = hpet_get_ticks(t->state);
320
321 /* whenever new timer is being set up, make sure wrap_flag is 0 */
322 t->wrap_flag = 0;
323 diff = hpet_calculate_diff(t, cur_tick);
324
325 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
326 * counter wraps in addition to an interrupt with comparator match.
327 */
328 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
329 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
330 if (wrap_diff < (uint32_t)diff) {
331 diff = wrap_diff;
332 t->wrap_flag = 1;
333 }
334 }
335 qemu_mod_timer(t->qemu_timer,
336 qemu_get_clock(vm_clock) + (int64_t)ticks_to_ns(diff));
337 }
338
339 static void hpet_del_timer(HPETTimer *t)
340 {
341 qemu_del_timer(t->qemu_timer);
342 update_irq(t, 0);
343 }
344
345 #ifdef HPET_DEBUG
346 static uint32_t hpet_ram_readb(void *opaque, target_phys_addr_t addr)
347 {
348 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
349 return 0;
350 }
351
352 static uint32_t hpet_ram_readw(void *opaque, target_phys_addr_t addr)
353 {
354 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
355 return 0;
356 }
357 #endif
358
359 static uint32_t hpet_ram_readl(void *opaque, target_phys_addr_t addr)
360 {
361 HPETState *s = opaque;
362 uint64_t cur_tick, index;
363
364 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
365 index = addr;
366 /*address range of all TN regs*/
367 if (index >= 0x100 && index <= 0x3ff) {
368 uint8_t timer_id = (addr - 0x100) / 0x20;
369 HPETTimer *timer = &s->timer[timer_id];
370
371 if (timer_id > s->num_timers) {
372 DPRINTF("qemu: timer id out of range\n");
373 return 0;
374 }
375
376 switch ((addr - 0x100) % 0x20) {
377 case HPET_TN_CFG:
378 return timer->config;
379 case HPET_TN_CFG + 4: // Interrupt capabilities
380 return timer->config >> 32;
381 case HPET_TN_CMP: // comparator register
382 return timer->cmp;
383 case HPET_TN_CMP + 4:
384 return timer->cmp >> 32;
385 case HPET_TN_ROUTE:
386 return timer->fsb;
387 case HPET_TN_ROUTE + 4:
388 return timer->fsb >> 32;
389 default:
390 DPRINTF("qemu: invalid hpet_ram_readl\n");
391 break;
392 }
393 } else {
394 switch (index) {
395 case HPET_ID:
396 return s->capability;
397 case HPET_PERIOD:
398 return s->capability >> 32;
399 case HPET_CFG:
400 return s->config;
401 case HPET_CFG + 4:
402 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl \n");
403 return 0;
404 case HPET_COUNTER:
405 if (hpet_enabled(s)) {
406 cur_tick = hpet_get_ticks(s);
407 } else {
408 cur_tick = s->hpet_counter;
409 }
410 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
411 return cur_tick;
412 case HPET_COUNTER + 4:
413 if (hpet_enabled(s)) {
414 cur_tick = hpet_get_ticks(s);
415 } else {
416 cur_tick = s->hpet_counter;
417 }
418 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
419 return cur_tick >> 32;
420 case HPET_STATUS:
421 return s->isr;
422 default:
423 DPRINTF("qemu: invalid hpet_ram_readl\n");
424 break;
425 }
426 }
427 return 0;
428 }
429
430 #ifdef HPET_DEBUG
431 static void hpet_ram_writeb(void *opaque, target_phys_addr_t addr,
432 uint32_t value)
433 {
434 printf("qemu: invalid hpet_write b at %" PRIx64 " = %#x\n",
435 addr, value);
436 }
437
438 static void hpet_ram_writew(void *opaque, target_phys_addr_t addr,
439 uint32_t value)
440 {
441 printf("qemu: invalid hpet_write w at %" PRIx64 " = %#x\n",
442 addr, value);
443 }
444 #endif
445
446 static void hpet_ram_writel(void *opaque, target_phys_addr_t addr,
447 uint32_t value)
448 {
449 int i;
450 HPETState *s = opaque;
451 uint64_t old_val, new_val, val, index;
452
453 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
454 index = addr;
455 old_val = hpet_ram_readl(opaque, addr);
456 new_val = value;
457
458 /*address range of all TN regs*/
459 if (index >= 0x100 && index <= 0x3ff) {
460 uint8_t timer_id = (addr - 0x100) / 0x20;
461 HPETTimer *timer = &s->timer[timer_id];
462
463 DPRINTF("qemu: hpet_ram_writel timer_id = %#x \n", timer_id);
464 if (timer_id > s->num_timers) {
465 DPRINTF("qemu: timer id out of range\n");
466 return;
467 }
468 switch ((addr - 0x100) % 0x20) {
469 case HPET_TN_CFG:
470 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
471 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
472 update_irq(timer, 0);
473 }
474 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
475 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
476 if (new_val & HPET_TN_32BIT) {
477 timer->cmp = (uint32_t)timer->cmp;
478 timer->period = (uint32_t)timer->period;
479 }
480 if (activating_bit(old_val, new_val, HPET_TN_ENABLE)) {
481 hpet_set_timer(timer);
482 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
483 hpet_del_timer(timer);
484 }
485 break;
486 case HPET_TN_CFG + 4: // Interrupt capabilities
487 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
488 break;
489 case HPET_TN_CMP: // comparator register
490 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP \n");
491 if (timer->config & HPET_TN_32BIT) {
492 new_val = (uint32_t)new_val;
493 }
494 if (!timer_is_periodic(timer)
495 || (timer->config & HPET_TN_SETVAL)) {
496 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
497 }
498 if (timer_is_periodic(timer)) {
499 /*
500 * FIXME: Clamp period to reasonable min value?
501 * Clamp period to reasonable max value
502 */
503 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
504 timer->period =
505 (timer->period & 0xffffffff00000000ULL) | new_val;
506 }
507 timer->config &= ~HPET_TN_SETVAL;
508 if (hpet_enabled(s)) {
509 hpet_set_timer(timer);
510 }
511 break;
512 case HPET_TN_CMP + 4: // comparator register high order
513 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
514 if (!timer_is_periodic(timer)
515 || (timer->config & HPET_TN_SETVAL)) {
516 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
517 } else {
518 /*
519 * FIXME: Clamp period to reasonable min value?
520 * Clamp period to reasonable max value
521 */
522 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
523 timer->period =
524 (timer->period & 0xffffffffULL) | new_val << 32;
525 }
526 timer->config &= ~HPET_TN_SETVAL;
527 if (hpet_enabled(s)) {
528 hpet_set_timer(timer);
529 }
530 break;
531 case HPET_TN_ROUTE:
532 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
533 break;
534 case HPET_TN_ROUTE + 4:
535 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
536 break;
537 default:
538 DPRINTF("qemu: invalid hpet_ram_writel\n");
539 break;
540 }
541 return;
542 } else {
543 switch (index) {
544 case HPET_ID:
545 return;
546 case HPET_CFG:
547 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
548 s->config = (s->config & 0xffffffff00000000ULL) | val;
549 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
550 /* Enable main counter and interrupt generation. */
551 s->hpet_offset =
552 ticks_to_ns(s->hpet_counter) - qemu_get_clock(vm_clock);
553 for (i = 0; i < s->num_timers; i++) {
554 if ((&s->timer[i])->cmp != ~0ULL) {
555 hpet_set_timer(&s->timer[i]);
556 }
557 }
558 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
559 /* Halt main counter and disable interrupt generation. */
560 s->hpet_counter = hpet_get_ticks(s);
561 for (i = 0; i < s->num_timers; i++) {
562 hpet_del_timer(&s->timer[i]);
563 }
564 }
565 /* i8254 and RTC are disabled when HPET is in legacy mode */
566 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
567 hpet_pit_disable();
568 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
569 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
570 hpet_pit_enable();
571 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
572 }
573 break;
574 case HPET_CFG + 4:
575 DPRINTF("qemu: invalid HPET_CFG+4 write \n");
576 break;
577 case HPET_STATUS:
578 val = new_val & s->isr;
579 for (i = 0; i < s->num_timers; i++) {
580 if (val & (1 << i)) {
581 update_irq(&s->timer[i], 0);
582 }
583 }
584 break;
585 case HPET_COUNTER:
586 if (hpet_enabled(s)) {
587 DPRINTF("qemu: Writing counter while HPET enabled!\n");
588 }
589 s->hpet_counter =
590 (s->hpet_counter & 0xffffffff00000000ULL) | value;
591 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
592 value, s->hpet_counter);
593 break;
594 case HPET_COUNTER + 4:
595 if (hpet_enabled(s)) {
596 DPRINTF("qemu: Writing counter while HPET enabled!\n");
597 }
598 s->hpet_counter =
599 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
600 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
601 value, s->hpet_counter);
602 break;
603 default:
604 DPRINTF("qemu: invalid hpet_ram_writel\n");
605 break;
606 }
607 }
608 }
609
610 static CPUReadMemoryFunc * const hpet_ram_read[] = {
611 #ifdef HPET_DEBUG
612 hpet_ram_readb,
613 hpet_ram_readw,
614 #else
615 NULL,
616 NULL,
617 #endif
618 hpet_ram_readl,
619 };
620
621 static CPUWriteMemoryFunc * const hpet_ram_write[] = {
622 #ifdef HPET_DEBUG
623 hpet_ram_writeb,
624 hpet_ram_writew,
625 #else
626 NULL,
627 NULL,
628 #endif
629 hpet_ram_writel,
630 };
631
632 static void hpet_reset(DeviceState *d)
633 {
634 HPETState *s = FROM_SYSBUS(HPETState, sysbus_from_qdev(d));
635 int i;
636 static int count = 0;
637
638 for (i = 0; i < s->num_timers; i++) {
639 HPETTimer *timer = &s->timer[i];
640
641 hpet_del_timer(timer);
642 timer->cmp = ~0ULL;
643 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
644 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
645 timer->config |= HPET_TN_FSB_CAP;
646 }
647 /* advertise availability of ioapic inti2 */
648 timer->config |= 0x00000004ULL << 32;
649 timer->period = 0ULL;
650 timer->wrap_flag = 0;
651 }
652
653 s->hpet_counter = 0ULL;
654 s->hpet_offset = 0ULL;
655 s->config = 0ULL;
656 if (count > 0) {
657 /* we don't enable pit when hpet_reset is first called (by hpet_init)
658 * because hpet is taking over for pit here. On subsequent invocations,
659 * hpet_reset is called due to system reset. At this point control must
660 * be returned to pit until SW reenables hpet.
661 */
662 hpet_pit_enable();
663 }
664 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
665 hpet_cfg.hpet[s->hpet_id].address = sysbus_from_qdev(d)->mmio[0].addr;
666 count = 1;
667 }
668
669 static void hpet_handle_rtc_irq(void *opaque, int n, int level)
670 {
671 HPETState *s = FROM_SYSBUS(HPETState, opaque);
672
673 s->rtc_irq_level = level;
674 if (!hpet_in_legacy_mode(s)) {
675 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
676 }
677 }
678
679 static int hpet_init(SysBusDevice *dev)
680 {
681 HPETState *s = FROM_SYSBUS(HPETState, dev);
682 int i, iomemtype;
683 HPETTimer *timer;
684
685 if (hpet_cfg.count == UINT8_MAX) {
686 /* first instance */
687 hpet_cfg.count = 0;
688 }
689
690 if (hpet_cfg.count == 8) {
691 fprintf(stderr, "Only 8 instances of HPET is allowed\n");
692 return -1;
693 }
694
695 s->hpet_id = hpet_cfg.count++;
696
697 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
698 sysbus_init_irq(dev, &s->irqs[i]);
699 }
700
701 if (s->num_timers < HPET_MIN_TIMERS) {
702 s->num_timers = HPET_MIN_TIMERS;
703 } else if (s->num_timers > HPET_MAX_TIMERS) {
704 s->num_timers = HPET_MAX_TIMERS;
705 }
706 for (i = 0; i < HPET_MAX_TIMERS; i++) {
707 timer = &s->timer[i];
708 timer->qemu_timer = qemu_new_timer(vm_clock, hpet_timer, timer);
709 timer->tn = i;
710 timer->state = s;
711 }
712
713 /* 64-bit main counter; LegacyReplacementRoute. */
714 s->capability = 0x8086a001ULL;
715 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
716 s->capability |= ((HPET_CLK_PERIOD) << 32);
717
718 isa_reserve_irq(RTC_ISA_IRQ);
719 qdev_init_gpio_in(&dev->qdev, hpet_handle_rtc_irq, 1);
720
721 /* HPET Area */
722 iomemtype = cpu_register_io_memory(hpet_ram_read,
723 hpet_ram_write, s,
724 DEVICE_NATIVE_ENDIAN);
725 sysbus_init_mmio(dev, 0x400, iomemtype);
726 return 0;
727 }
728
729 static SysBusDeviceInfo hpet_device_info = {
730 .qdev.name = "hpet",
731 .qdev.size = sizeof(HPETState),
732 .qdev.no_user = 1,
733 .qdev.vmsd = &vmstate_hpet,
734 .qdev.reset = hpet_reset,
735 .init = hpet_init,
736 .qdev.props = (Property[]) {
737 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
738 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
739 DEFINE_PROP_END_OF_LIST(),
740 },
741 };
742
743 static void hpet_register_device(void)
744 {
745 sysbus_register_withprop(&hpet_device_info);
746 }
747
748 device_init(hpet_register_device)