]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'luiz/queue/qmp' into staging
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58
59 /* debug PC/ISA interrupts */
60 //#define DEBUG_IRQ
61
62 #ifdef DEBUG_IRQ
63 #define DPRINTF(fmt, ...) \
64 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...)
67 #endif
68
69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
70 #define ACPI_DATA_SIZE 0x10000
71 #define BIOS_CFG_IOPORT 0x510
72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77
78 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
79
80 #define E820_NR_ENTRIES 16
81
82 struct e820_entry {
83 uint64_t address;
84 uint64_t length;
85 uint32_t type;
86 } QEMU_PACKED __attribute((__aligned__(4)));
87
88 struct e820_table {
89 uint32_t count;
90 struct e820_entry entry[E820_NR_ENTRIES];
91 } QEMU_PACKED __attribute((__aligned__(4)));
92
93 static struct e820_table e820_table;
94 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
95
96 void gsi_handler(void *opaque, int n, int level)
97 {
98 GSIState *s = opaque;
99
100 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
101 if (n < ISA_NUM_IRQS) {
102 qemu_set_irq(s->i8259_irq[n], level);
103 }
104 qemu_set_irq(s->ioapic_irq[n], level);
105 }
106
107 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
108 unsigned size)
109 {
110 }
111
112 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
113 {
114 return 0xffffffffffffffffULL;
115 }
116
117 /* MSDOS compatibility mode FPU exception support */
118 static qemu_irq ferr_irq;
119
120 void pc_register_ferr_irq(qemu_irq irq)
121 {
122 ferr_irq = irq;
123 }
124
125 /* XXX: add IGNNE support */
126 void cpu_set_ferr(CPUX86State *s)
127 {
128 qemu_irq_raise(ferr_irq);
129 }
130
131 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
132 unsigned size)
133 {
134 qemu_irq_lower(ferr_irq);
135 }
136
137 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
138 {
139 return 0xffffffffffffffffULL;
140 }
141
142 /* TSC handling */
143 uint64_t cpu_get_tsc(CPUX86State *env)
144 {
145 return cpu_get_ticks();
146 }
147
148 /* SMM support */
149
150 static cpu_set_smm_t smm_set;
151 static void *smm_arg;
152
153 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
154 {
155 assert(smm_set == NULL);
156 assert(smm_arg == NULL);
157 smm_set = callback;
158 smm_arg = arg;
159 }
160
161 void cpu_smm_update(CPUX86State *env)
162 {
163 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
164 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
165 }
166 }
167
168
169 /* IRQ handling */
170 int cpu_get_pic_interrupt(CPUX86State *env)
171 {
172 int intno;
173
174 intno = apic_get_interrupt(env->apic_state);
175 if (intno >= 0) {
176 return intno;
177 }
178 /* read the irq from the PIC */
179 if (!apic_accept_pic_intr(env->apic_state)) {
180 return -1;
181 }
182
183 intno = pic_read_irq(isa_pic);
184 return intno;
185 }
186
187 static void pic_irq_request(void *opaque, int irq, int level)
188 {
189 CPUState *cs = first_cpu;
190 X86CPU *cpu = X86_CPU(cs);
191 CPUX86State *env = &cpu->env;
192
193 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
194 if (env->apic_state) {
195 while (cs) {
196 cpu = X86_CPU(cs);
197 env = &cpu->env;
198 if (apic_accept_pic_intr(env->apic_state)) {
199 apic_deliver_pic_intr(env->apic_state, level);
200 }
201 cs = cs->next_cpu;
202 }
203 } else {
204 if (level) {
205 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
206 } else {
207 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
208 }
209 }
210 }
211
212 /* PC cmos mappings */
213
214 #define REG_EQUIPMENT_BYTE 0x14
215
216 static int cmos_get_fd_drive_type(FDriveType fd0)
217 {
218 int val;
219
220 switch (fd0) {
221 case FDRIVE_DRV_144:
222 /* 1.44 Mb 3"5 drive */
223 val = 4;
224 break;
225 case FDRIVE_DRV_288:
226 /* 2.88 Mb 3"5 drive */
227 val = 5;
228 break;
229 case FDRIVE_DRV_120:
230 /* 1.2 Mb 5"5 drive */
231 val = 2;
232 break;
233 case FDRIVE_DRV_NONE:
234 default:
235 val = 0;
236 break;
237 }
238 return val;
239 }
240
241 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
242 int16_t cylinders, int8_t heads, int8_t sectors)
243 {
244 rtc_set_memory(s, type_ofs, 47);
245 rtc_set_memory(s, info_ofs, cylinders);
246 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
247 rtc_set_memory(s, info_ofs + 2, heads);
248 rtc_set_memory(s, info_ofs + 3, 0xff);
249 rtc_set_memory(s, info_ofs + 4, 0xff);
250 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
251 rtc_set_memory(s, info_ofs + 6, cylinders);
252 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
253 rtc_set_memory(s, info_ofs + 8, sectors);
254 }
255
256 /* convert boot_device letter to something recognizable by the bios */
257 static int boot_device2nibble(char boot_device)
258 {
259 switch(boot_device) {
260 case 'a':
261 case 'b':
262 return 0x01; /* floppy boot */
263 case 'c':
264 return 0x02; /* hard drive boot */
265 case 'd':
266 return 0x03; /* CD-ROM boot */
267 case 'n':
268 return 0x04; /* Network boot */
269 }
270 return 0;
271 }
272
273 static int set_boot_dev(ISADevice *s, const char *boot_device)
274 {
275 #define PC_MAX_BOOT_DEVICES 3
276 int nbds, bds[3] = { 0, };
277 int i;
278
279 nbds = strlen(boot_device);
280 if (nbds > PC_MAX_BOOT_DEVICES) {
281 error_report("Too many boot devices for PC");
282 return(1);
283 }
284 for (i = 0; i < nbds; i++) {
285 bds[i] = boot_device2nibble(boot_device[i]);
286 if (bds[i] == 0) {
287 error_report("Invalid boot device for PC: '%c'",
288 boot_device[i]);
289 return(1);
290 }
291 }
292 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
293 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
294 return(0);
295 }
296
297 static int pc_boot_set(void *opaque, const char *boot_device)
298 {
299 return set_boot_dev(opaque, boot_device);
300 }
301
302 typedef struct pc_cmos_init_late_arg {
303 ISADevice *rtc_state;
304 BusState *idebus[2];
305 } pc_cmos_init_late_arg;
306
307 static void pc_cmos_init_late(void *opaque)
308 {
309 pc_cmos_init_late_arg *arg = opaque;
310 ISADevice *s = arg->rtc_state;
311 int16_t cylinders;
312 int8_t heads, sectors;
313 int val;
314 int i, trans;
315
316 val = 0;
317 if (ide_get_geometry(arg->idebus[0], 0,
318 &cylinders, &heads, &sectors) >= 0) {
319 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
320 val |= 0xf0;
321 }
322 if (ide_get_geometry(arg->idebus[0], 1,
323 &cylinders, &heads, &sectors) >= 0) {
324 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
325 val |= 0x0f;
326 }
327 rtc_set_memory(s, 0x12, val);
328
329 val = 0;
330 for (i = 0; i < 4; i++) {
331 /* NOTE: ide_get_geometry() returns the physical
332 geometry. It is always such that: 1 <= sects <= 63, 1
333 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
334 geometry can be different if a translation is done. */
335 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
336 &cylinders, &heads, &sectors) >= 0) {
337 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
338 assert((trans & ~3) == 0);
339 val |= trans << (i * 2);
340 }
341 }
342 rtc_set_memory(s, 0x39, val);
343
344 qemu_unregister_reset(pc_cmos_init_late, opaque);
345 }
346
347 typedef struct RTCCPUHotplugArg {
348 Notifier cpu_added_notifier;
349 ISADevice *rtc_state;
350 } RTCCPUHotplugArg;
351
352 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
353 {
354 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
355 cpu_added_notifier);
356 ISADevice *s = arg->rtc_state;
357
358 /* increment the number of CPUs */
359 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
360 }
361
362 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
363 const char *boot_device,
364 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
365 ISADevice *s)
366 {
367 int val, nb, i;
368 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
369 static pc_cmos_init_late_arg arg;
370 static RTCCPUHotplugArg cpu_hotplug_cb;
371
372 /* various important CMOS locations needed by PC/Bochs bios */
373
374 /* memory size */
375 /* base memory (first MiB) */
376 val = MIN(ram_size / 1024, 640);
377 rtc_set_memory(s, 0x15, val);
378 rtc_set_memory(s, 0x16, val >> 8);
379 /* extended memory (next 64MiB) */
380 if (ram_size > 1024 * 1024) {
381 val = (ram_size - 1024 * 1024) / 1024;
382 } else {
383 val = 0;
384 }
385 if (val > 65535)
386 val = 65535;
387 rtc_set_memory(s, 0x17, val);
388 rtc_set_memory(s, 0x18, val >> 8);
389 rtc_set_memory(s, 0x30, val);
390 rtc_set_memory(s, 0x31, val >> 8);
391 /* memory between 16MiB and 4GiB */
392 if (ram_size > 16 * 1024 * 1024) {
393 val = (ram_size - 16 * 1024 * 1024) / 65536;
394 } else {
395 val = 0;
396 }
397 if (val > 65535)
398 val = 65535;
399 rtc_set_memory(s, 0x34, val);
400 rtc_set_memory(s, 0x35, val >> 8);
401 /* memory above 4GiB */
402 val = above_4g_mem_size / 65536;
403 rtc_set_memory(s, 0x5b, val);
404 rtc_set_memory(s, 0x5c, val >> 8);
405 rtc_set_memory(s, 0x5d, val >> 16);
406
407 /* set the number of CPU */
408 rtc_set_memory(s, 0x5f, smp_cpus - 1);
409 /* init CPU hotplug notifier */
410 cpu_hotplug_cb.rtc_state = s;
411 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
412 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
413
414 if (set_boot_dev(s, boot_device)) {
415 exit(1);
416 }
417
418 /* floppy type */
419 if (floppy) {
420 for (i = 0; i < 2; i++) {
421 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
422 }
423 }
424 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
425 cmos_get_fd_drive_type(fd_type[1]);
426 rtc_set_memory(s, 0x10, val);
427
428 val = 0;
429 nb = 0;
430 if (fd_type[0] < FDRIVE_DRV_NONE) {
431 nb++;
432 }
433 if (fd_type[1] < FDRIVE_DRV_NONE) {
434 nb++;
435 }
436 switch (nb) {
437 case 0:
438 break;
439 case 1:
440 val |= 0x01; /* 1 drive, ready for boot */
441 break;
442 case 2:
443 val |= 0x41; /* 2 drives, ready for boot */
444 break;
445 }
446 val |= 0x02; /* FPU is there */
447 val |= 0x04; /* PS/2 mouse installed */
448 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
449
450 /* hard drives */
451 arg.rtc_state = s;
452 arg.idebus[0] = idebus0;
453 arg.idebus[1] = idebus1;
454 qemu_register_reset(pc_cmos_init_late, &arg);
455 }
456
457 #define TYPE_PORT92 "port92"
458 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
459
460 /* port 92 stuff: could be split off */
461 typedef struct Port92State {
462 ISADevice parent_obj;
463
464 MemoryRegion io;
465 uint8_t outport;
466 qemu_irq *a20_out;
467 } Port92State;
468
469 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
470 unsigned size)
471 {
472 Port92State *s = opaque;
473
474 DPRINTF("port92: write 0x%02x\n", val);
475 s->outport = val;
476 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
477 if (val & 1) {
478 qemu_system_reset_request();
479 }
480 }
481
482 static uint64_t port92_read(void *opaque, hwaddr addr,
483 unsigned size)
484 {
485 Port92State *s = opaque;
486 uint32_t ret;
487
488 ret = s->outport;
489 DPRINTF("port92: read 0x%02x\n", ret);
490 return ret;
491 }
492
493 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
494 {
495 Port92State *s = PORT92(dev);
496
497 s->a20_out = a20_out;
498 }
499
500 static const VMStateDescription vmstate_port92_isa = {
501 .name = "port92",
502 .version_id = 1,
503 .minimum_version_id = 1,
504 .minimum_version_id_old = 1,
505 .fields = (VMStateField []) {
506 VMSTATE_UINT8(outport, Port92State),
507 VMSTATE_END_OF_LIST()
508 }
509 };
510
511 static void port92_reset(DeviceState *d)
512 {
513 Port92State *s = PORT92(d);
514
515 s->outport &= ~1;
516 }
517
518 static const MemoryRegionOps port92_ops = {
519 .read = port92_read,
520 .write = port92_write,
521 .impl = {
522 .min_access_size = 1,
523 .max_access_size = 1,
524 },
525 .endianness = DEVICE_LITTLE_ENDIAN,
526 };
527
528 static void port92_initfn(Object *obj)
529 {
530 Port92State *s = PORT92(obj);
531
532 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
533
534 s->outport = 0;
535 }
536
537 static void port92_realizefn(DeviceState *dev, Error **errp)
538 {
539 ISADevice *isadev = ISA_DEVICE(dev);
540 Port92State *s = PORT92(dev);
541
542 isa_register_ioport(isadev, &s->io, 0x92);
543 }
544
545 static void port92_class_initfn(ObjectClass *klass, void *data)
546 {
547 DeviceClass *dc = DEVICE_CLASS(klass);
548
549 dc->no_user = 1;
550 dc->realize = port92_realizefn;
551 dc->reset = port92_reset;
552 dc->vmsd = &vmstate_port92_isa;
553 }
554
555 static const TypeInfo port92_info = {
556 .name = TYPE_PORT92,
557 .parent = TYPE_ISA_DEVICE,
558 .instance_size = sizeof(Port92State),
559 .instance_init = port92_initfn,
560 .class_init = port92_class_initfn,
561 };
562
563 static void port92_register_types(void)
564 {
565 type_register_static(&port92_info);
566 }
567
568 type_init(port92_register_types)
569
570 static void handle_a20_line_change(void *opaque, int irq, int level)
571 {
572 X86CPU *cpu = opaque;
573
574 /* XXX: send to all CPUs ? */
575 /* XXX: add logic to handle multiple A20 line sources */
576 x86_cpu_set_a20(cpu, level);
577 }
578
579 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
580 {
581 int index = le32_to_cpu(e820_table.count);
582 struct e820_entry *entry;
583
584 if (index >= E820_NR_ENTRIES)
585 return -EBUSY;
586 entry = &e820_table.entry[index++];
587
588 entry->address = cpu_to_le64(address);
589 entry->length = cpu_to_le64(length);
590 entry->type = cpu_to_le32(type);
591
592 e820_table.count = cpu_to_le32(index);
593 return index;
594 }
595
596 /* Calculates the limit to CPU APIC ID values
597 *
598 * This function returns the limit for the APIC ID value, so that all
599 * CPU APIC IDs are < pc_apic_id_limit().
600 *
601 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
602 */
603 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
604 {
605 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
606 }
607
608 static FWCfgState *bochs_bios_init(void)
609 {
610 FWCfgState *fw_cfg;
611 uint8_t *smbios_table;
612 size_t smbios_len;
613 uint64_t *numa_fw_cfg;
614 int i, j;
615 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
616
617 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
618 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
619 *
620 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
621 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
622 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
623 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
624 * may see".
625 *
626 * So, this means we must not use max_cpus, here, but the maximum possible
627 * APIC ID value, plus one.
628 *
629 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
630 * the APIC ID, not the "CPU index"
631 */
632 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
633 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
634 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
635 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
636 acpi_tables, acpi_tables_len);
637 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
638
639 smbios_table = smbios_get_table(&smbios_len);
640 if (smbios_table)
641 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
642 smbios_table, smbios_len);
643 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
644 &e820_table, sizeof(e820_table));
645
646 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
647 /* allocate memory for the NUMA channel: one (64bit) word for the number
648 * of nodes, one word for each VCPU->node and one word for each node to
649 * hold the amount of memory.
650 */
651 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
652 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
653 for (i = 0; i < max_cpus; i++) {
654 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
655 assert(apic_id < apic_id_limit);
656 for (j = 0; j < nb_numa_nodes; j++) {
657 if (test_bit(i, node_cpumask[j])) {
658 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
659 break;
660 }
661 }
662 }
663 for (i = 0; i < nb_numa_nodes; i++) {
664 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
665 }
666 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
667 (1 + apic_id_limit + nb_numa_nodes) *
668 sizeof(*numa_fw_cfg));
669
670 return fw_cfg;
671 }
672
673 static long get_file_size(FILE *f)
674 {
675 long where, size;
676
677 /* XXX: on Unix systems, using fstat() probably makes more sense */
678
679 where = ftell(f);
680 fseek(f, 0, SEEK_END);
681 size = ftell(f);
682 fseek(f, where, SEEK_SET);
683
684 return size;
685 }
686
687 static void load_linux(FWCfgState *fw_cfg,
688 const char *kernel_filename,
689 const char *initrd_filename,
690 const char *kernel_cmdline,
691 hwaddr max_ram_size)
692 {
693 uint16_t protocol;
694 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
695 uint32_t initrd_max;
696 uint8_t header[8192], *setup, *kernel, *initrd_data;
697 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
698 FILE *f;
699 char *vmode;
700
701 /* Align to 16 bytes as a paranoia measure */
702 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
703
704 /* load the kernel header */
705 f = fopen(kernel_filename, "rb");
706 if (!f || !(kernel_size = get_file_size(f)) ||
707 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
708 MIN(ARRAY_SIZE(header), kernel_size)) {
709 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
710 kernel_filename, strerror(errno));
711 exit(1);
712 }
713
714 /* kernel protocol version */
715 #if 0
716 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
717 #endif
718 if (ldl_p(header+0x202) == 0x53726448) {
719 protocol = lduw_p(header+0x206);
720 } else {
721 /* This looks like a multiboot kernel. If it is, let's stop
722 treating it like a Linux kernel. */
723 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
724 kernel_cmdline, kernel_size, header)) {
725 return;
726 }
727 protocol = 0;
728 }
729
730 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
731 /* Low kernel */
732 real_addr = 0x90000;
733 cmdline_addr = 0x9a000 - cmdline_size;
734 prot_addr = 0x10000;
735 } else if (protocol < 0x202) {
736 /* High but ancient kernel */
737 real_addr = 0x90000;
738 cmdline_addr = 0x9a000 - cmdline_size;
739 prot_addr = 0x100000;
740 } else {
741 /* High and recent kernel */
742 real_addr = 0x10000;
743 cmdline_addr = 0x20000;
744 prot_addr = 0x100000;
745 }
746
747 #if 0
748 fprintf(stderr,
749 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
750 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
751 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
752 real_addr,
753 cmdline_addr,
754 prot_addr);
755 #endif
756
757 /* highest address for loading the initrd */
758 if (protocol >= 0x203) {
759 initrd_max = ldl_p(header+0x22c);
760 } else {
761 initrd_max = 0x37ffffff;
762 }
763
764 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
765 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
766
767 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
768 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
769 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
770
771 if (protocol >= 0x202) {
772 stl_p(header+0x228, cmdline_addr);
773 } else {
774 stw_p(header+0x20, 0xA33F);
775 stw_p(header+0x22, cmdline_addr-real_addr);
776 }
777
778 /* handle vga= parameter */
779 vmode = strstr(kernel_cmdline, "vga=");
780 if (vmode) {
781 unsigned int video_mode;
782 /* skip "vga=" */
783 vmode += 4;
784 if (!strncmp(vmode, "normal", 6)) {
785 video_mode = 0xffff;
786 } else if (!strncmp(vmode, "ext", 3)) {
787 video_mode = 0xfffe;
788 } else if (!strncmp(vmode, "ask", 3)) {
789 video_mode = 0xfffd;
790 } else {
791 video_mode = strtol(vmode, NULL, 0);
792 }
793 stw_p(header+0x1fa, video_mode);
794 }
795
796 /* loader type */
797 /* High nybble = B reserved for QEMU; low nybble is revision number.
798 If this code is substantially changed, you may want to consider
799 incrementing the revision. */
800 if (protocol >= 0x200) {
801 header[0x210] = 0xB0;
802 }
803 /* heap */
804 if (protocol >= 0x201) {
805 header[0x211] |= 0x80; /* CAN_USE_HEAP */
806 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
807 }
808
809 /* load initrd */
810 if (initrd_filename) {
811 if (protocol < 0x200) {
812 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
813 exit(1);
814 }
815
816 initrd_size = get_image_size(initrd_filename);
817 if (initrd_size < 0) {
818 fprintf(stderr, "qemu: error reading initrd %s\n",
819 initrd_filename);
820 exit(1);
821 }
822
823 initrd_addr = (initrd_max-initrd_size) & ~4095;
824
825 initrd_data = g_malloc(initrd_size);
826 load_image(initrd_filename, initrd_data);
827
828 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
829 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
830 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
831
832 stl_p(header+0x218, initrd_addr);
833 stl_p(header+0x21c, initrd_size);
834 }
835
836 /* load kernel and setup */
837 setup_size = header[0x1f1];
838 if (setup_size == 0) {
839 setup_size = 4;
840 }
841 setup_size = (setup_size+1)*512;
842 kernel_size -= setup_size;
843
844 setup = g_malloc(setup_size);
845 kernel = g_malloc(kernel_size);
846 fseek(f, 0, SEEK_SET);
847 if (fread(setup, 1, setup_size, f) != setup_size) {
848 fprintf(stderr, "fread() failed\n");
849 exit(1);
850 }
851 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
852 fprintf(stderr, "fread() failed\n");
853 exit(1);
854 }
855 fclose(f);
856 memcpy(setup, header, MIN(sizeof(header), setup_size));
857
858 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
859 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
860 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
861
862 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
863 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
864 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
865
866 option_rom[nb_option_roms].name = "linuxboot.bin";
867 option_rom[nb_option_roms].bootindex = 0;
868 nb_option_roms++;
869 }
870
871 #define NE2000_NB_MAX 6
872
873 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
874 0x280, 0x380 };
875 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
876
877 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
878 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
879
880 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
881 {
882 static int nb_ne2k = 0;
883
884 if (nb_ne2k == NE2000_NB_MAX)
885 return;
886 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
887 ne2000_irq[nb_ne2k], nd);
888 nb_ne2k++;
889 }
890
891 DeviceState *cpu_get_current_apic(void)
892 {
893 if (current_cpu) {
894 X86CPU *cpu = X86_CPU(current_cpu);
895 return cpu->env.apic_state;
896 } else {
897 return NULL;
898 }
899 }
900
901 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
902 {
903 X86CPU *cpu = opaque;
904
905 if (level) {
906 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
907 }
908 }
909
910 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
911 DeviceState *icc_bridge, Error **errp)
912 {
913 X86CPU *cpu;
914 Error *local_err = NULL;
915
916 cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
917 if (!cpu) {
918 return cpu;
919 }
920
921 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
922 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
923
924 if (local_err) {
925 if (cpu != NULL) {
926 object_unref(OBJECT(cpu));
927 cpu = NULL;
928 }
929 error_propagate(errp, local_err);
930 }
931 return cpu;
932 }
933
934 static const char *current_cpu_model;
935
936 void pc_hot_add_cpu(const int64_t id, Error **errp)
937 {
938 DeviceState *icc_bridge;
939 int64_t apic_id = x86_cpu_apic_id_from_index(id);
940
941 if (id < 0) {
942 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
943 return;
944 }
945
946 if (cpu_exists(apic_id)) {
947 error_setg(errp, "Unable to add CPU: %" PRIi64
948 ", it already exists", id);
949 return;
950 }
951
952 if (id >= max_cpus) {
953 error_setg(errp, "Unable to add CPU: %" PRIi64
954 ", max allowed: %d", id, max_cpus - 1);
955 return;
956 }
957
958 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
959 TYPE_ICC_BRIDGE, NULL));
960 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
961 }
962
963 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
964 {
965 int i;
966 X86CPU *cpu = NULL;
967 Error *error = NULL;
968
969 /* init CPUs */
970 if (cpu_model == NULL) {
971 #ifdef TARGET_X86_64
972 cpu_model = "qemu64";
973 #else
974 cpu_model = "qemu32";
975 #endif
976 }
977 current_cpu_model = cpu_model;
978
979 for (i = 0; i < smp_cpus; i++) {
980 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
981 icc_bridge, &error);
982 if (error) {
983 fprintf(stderr, "%s\n", error_get_pretty(error));
984 error_free(error);
985 exit(1);
986 }
987 }
988
989 /* map APIC MMIO area if CPU has APIC */
990 if (cpu && cpu->env.apic_state) {
991 /* XXX: what if the base changes? */
992 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
993 APIC_DEFAULT_ADDRESS, 0x1000);
994 }
995 }
996
997 /* pci-info ROM file. Little endian format */
998 typedef struct PcRomPciInfo {
999 uint64_t w32_min;
1000 uint64_t w32_max;
1001 uint64_t w64_min;
1002 uint64_t w64_max;
1003 } PcRomPciInfo;
1004
1005 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1006 {
1007 PcRomPciInfo *info;
1008 if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1009 return;
1010 }
1011
1012 info = g_malloc(sizeof *info);
1013 info->w32_min = cpu_to_le64(guest_info->pci_info.w32.begin);
1014 info->w32_max = cpu_to_le64(guest_info->pci_info.w32.end);
1015 info->w64_min = cpu_to_le64(guest_info->pci_info.w64.begin);
1016 info->w64_max = cpu_to_le64(guest_info->pci_info.w64.end);
1017 /* Pass PCI hole info to guest via a side channel.
1018 * Required so guest PCI enumeration does the right thing. */
1019 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1020 }
1021
1022 typedef struct PcGuestInfoState {
1023 PcGuestInfo info;
1024 Notifier machine_done;
1025 } PcGuestInfoState;
1026
1027 static
1028 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1029 {
1030 PcGuestInfoState *guest_info_state = container_of(notifier,
1031 PcGuestInfoState,
1032 machine_done);
1033 pc_fw_cfg_guest_info(&guest_info_state->info);
1034 }
1035
1036 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1037 ram_addr_t above_4g_mem_size)
1038 {
1039 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1040 PcGuestInfo *guest_info = &guest_info_state->info;
1041
1042 guest_info->pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS;
1043 if (sizeof(hwaddr) == 4) {
1044 guest_info->pci_info.w64.begin = 0;
1045 guest_info->pci_info.w64.end = 0;
1046 } else {
1047 /*
1048 * BIOS does not set MTRR entries for the 64 bit window, so no need to
1049 * align address to power of two. Align address at 1G, this makes sure
1050 * it can be exactly covered with a PAT entry even when using huge
1051 * pages.
1052 */
1053 guest_info->pci_info.w64.begin =
1054 ROUND_UP((0x1ULL << 32) + above_4g_mem_size, 0x1ULL << 30);
1055 guest_info->pci_info.w64.end = guest_info->pci_info.w64.begin +
1056 (0x1ULL << 62);
1057 assert(guest_info->pci_info.w64.begin <= guest_info->pci_info.w64.end);
1058 }
1059
1060 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1061 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1062 return guest_info;
1063 }
1064
1065 void pc_acpi_init(const char *default_dsdt)
1066 {
1067 char *filename;
1068
1069 if (acpi_tables != NULL) {
1070 /* manually set via -acpitable, leave it alone */
1071 return;
1072 }
1073
1074 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1075 if (filename == NULL) {
1076 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1077 } else {
1078 char *arg;
1079 QemuOpts *opts;
1080 Error *err = NULL;
1081
1082 arg = g_strdup_printf("file=%s", filename);
1083
1084 /* creates a deep copy of "arg" */
1085 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1086 g_assert(opts != NULL);
1087
1088 acpi_table_add(opts, &err);
1089 if (err) {
1090 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1091 error_get_pretty(err));
1092 error_free(err);
1093 }
1094 g_free(arg);
1095 g_free(filename);
1096 }
1097 }
1098
1099 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1100 const char *kernel_filename,
1101 const char *kernel_cmdline,
1102 const char *initrd_filename,
1103 ram_addr_t below_4g_mem_size,
1104 ram_addr_t above_4g_mem_size,
1105 MemoryRegion *rom_memory,
1106 MemoryRegion **ram_memory,
1107 PcGuestInfo *guest_info)
1108 {
1109 int linux_boot, i;
1110 MemoryRegion *ram, *option_rom_mr;
1111 MemoryRegion *ram_below_4g, *ram_above_4g;
1112 FWCfgState *fw_cfg;
1113
1114 linux_boot = (kernel_filename != NULL);
1115
1116 /* Allocate RAM. We allocate it as a single memory region and use
1117 * aliases to address portions of it, mostly for backwards compatibility
1118 * with older qemus that used qemu_ram_alloc().
1119 */
1120 ram = g_malloc(sizeof(*ram));
1121 memory_region_init_ram(ram, NULL, "pc.ram",
1122 below_4g_mem_size + above_4g_mem_size);
1123 vmstate_register_ram_global(ram);
1124 *ram_memory = ram;
1125 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1126 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1127 0, below_4g_mem_size);
1128 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1129 if (above_4g_mem_size > 0) {
1130 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1131 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1132 below_4g_mem_size, above_4g_mem_size);
1133 memory_region_add_subregion(system_memory, 0x100000000ULL,
1134 ram_above_4g);
1135 }
1136
1137
1138 /* Initialize PC system firmware */
1139 pc_system_firmware_init(rom_memory);
1140
1141 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1142 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1143 vmstate_register_ram_global(option_rom_mr);
1144 memory_region_add_subregion_overlap(rom_memory,
1145 PC_ROM_MIN_VGA,
1146 option_rom_mr,
1147 1);
1148
1149 fw_cfg = bochs_bios_init();
1150 rom_set_fw(fw_cfg);
1151
1152 if (linux_boot) {
1153 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1154 }
1155
1156 for (i = 0; i < nb_option_roms; i++) {
1157 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1158 }
1159 guest_info->fw_cfg = fw_cfg;
1160 return fw_cfg;
1161 }
1162
1163 qemu_irq *pc_allocate_cpu_irq(void)
1164 {
1165 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1166 }
1167
1168 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1169 {
1170 DeviceState *dev = NULL;
1171
1172 if (pci_bus) {
1173 PCIDevice *pcidev = pci_vga_init(pci_bus);
1174 dev = pcidev ? &pcidev->qdev : NULL;
1175 } else if (isa_bus) {
1176 ISADevice *isadev = isa_vga_init(isa_bus);
1177 dev = isadev ? DEVICE(isadev) : NULL;
1178 }
1179 return dev;
1180 }
1181
1182 static void cpu_request_exit(void *opaque, int irq, int level)
1183 {
1184 CPUState *cpu = current_cpu;
1185
1186 if (cpu && level) {
1187 cpu_exit(cpu);
1188 }
1189 }
1190
1191 static const MemoryRegionOps ioport80_io_ops = {
1192 .write = ioport80_write,
1193 .read = ioport80_read,
1194 .endianness = DEVICE_NATIVE_ENDIAN,
1195 .impl = {
1196 .min_access_size = 1,
1197 .max_access_size = 1,
1198 },
1199 };
1200
1201 static const MemoryRegionOps ioportF0_io_ops = {
1202 .write = ioportF0_write,
1203 .read = ioportF0_read,
1204 .endianness = DEVICE_NATIVE_ENDIAN,
1205 .impl = {
1206 .min_access_size = 1,
1207 .max_access_size = 1,
1208 },
1209 };
1210
1211 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1212 ISADevice **rtc_state,
1213 ISADevice **floppy,
1214 bool no_vmport)
1215 {
1216 int i;
1217 DriveInfo *fd[MAX_FD];
1218 DeviceState *hpet = NULL;
1219 int pit_isa_irq = 0;
1220 qemu_irq pit_alt_irq = NULL;
1221 qemu_irq rtc_irq = NULL;
1222 qemu_irq *a20_line;
1223 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1224 qemu_irq *cpu_exit_irq;
1225 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1226 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1227
1228 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1229 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1230
1231 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1232 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1233
1234 /*
1235 * Check if an HPET shall be created.
1236 *
1237 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1238 * when the HPET wants to take over. Thus we have to disable the latter.
1239 */
1240 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1241 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1242
1243 if (hpet) {
1244 for (i = 0; i < GSI_NUM_PINS; i++) {
1245 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1246 }
1247 pit_isa_irq = -1;
1248 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1249 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1250 }
1251 }
1252 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1253
1254 qemu_register_boot_set(pc_boot_set, *rtc_state);
1255
1256 if (!xen_enabled()) {
1257 if (kvm_irqchip_in_kernel()) {
1258 pit = kvm_pit_init(isa_bus, 0x40);
1259 } else {
1260 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1261 }
1262 if (hpet) {
1263 /* connect PIT to output control line of the HPET */
1264 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1265 }
1266 pcspk_init(isa_bus, pit);
1267 }
1268
1269 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1270 if (serial_hds[i]) {
1271 serial_isa_init(isa_bus, i, serial_hds[i]);
1272 }
1273 }
1274
1275 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1276 if (parallel_hds[i]) {
1277 parallel_init(isa_bus, i, parallel_hds[i]);
1278 }
1279 }
1280
1281 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1282 i8042 = isa_create_simple(isa_bus, "i8042");
1283 i8042_setup_a20_line(i8042, &a20_line[0]);
1284 if (!no_vmport) {
1285 vmport_init(isa_bus);
1286 vmmouse = isa_try_create(isa_bus, "vmmouse");
1287 } else {
1288 vmmouse = NULL;
1289 }
1290 if (vmmouse) {
1291 DeviceState *dev = DEVICE(vmmouse);
1292 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1293 qdev_init_nofail(dev);
1294 }
1295 port92 = isa_create_simple(isa_bus, "port92");
1296 port92_init(port92, &a20_line[1]);
1297
1298 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1299 DMA_init(0, cpu_exit_irq);
1300
1301 for(i = 0; i < MAX_FD; i++) {
1302 fd[i] = drive_get(IF_FLOPPY, 0, i);
1303 }
1304 *floppy = fdctrl_init_isa(isa_bus, fd);
1305 }
1306
1307 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1308 {
1309 int i;
1310
1311 for (i = 0; i < nb_nics; i++) {
1312 NICInfo *nd = &nd_table[i];
1313
1314 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1315 pc_init_ne2k_isa(isa_bus, nd);
1316 } else {
1317 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1318 }
1319 }
1320 }
1321
1322 void pc_pci_device_init(PCIBus *pci_bus)
1323 {
1324 int max_bus;
1325 int bus;
1326
1327 max_bus = drive_get_max_bus(IF_SCSI);
1328 for (bus = 0; bus <= max_bus; bus++) {
1329 pci_create_simple(pci_bus, -1, "lsi53c895a");
1330 }
1331 }
1332
1333 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1334 {
1335 DeviceState *dev;
1336 SysBusDevice *d;
1337 unsigned int i;
1338
1339 if (kvm_irqchip_in_kernel()) {
1340 dev = qdev_create(NULL, "kvm-ioapic");
1341 } else {
1342 dev = qdev_create(NULL, "ioapic");
1343 }
1344 if (parent_name) {
1345 object_property_add_child(object_resolve_path(parent_name, NULL),
1346 "ioapic", OBJECT(dev), NULL);
1347 }
1348 qdev_init_nofail(dev);
1349 d = SYS_BUS_DEVICE(dev);
1350 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1351
1352 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1353 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1354 }
1355 }