]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
exec: Pass CPUState to cpu_reset_interrupt()
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/pc.h"
26 #include "hw/serial.h"
27 #include "hw/apic.h"
28 #include "hw/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/fw_cfg.h"
33 #include "hw/hpet_emul.h"
34 #include "hw/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "hw/multiboot.h"
38 #include "hw/mc146818rtc.h"
39 #include "hw/i8254.h"
40 #include "hw/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block-common.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54
55 /* debug PC/ISA interrupts */
56 //#define DEBUG_IRQ
57
58 #ifdef DEBUG_IRQ
59 #define DPRINTF(fmt, ...) \
60 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61 #else
62 #define DPRINTF(fmt, ...)
63 #endif
64
65 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
66 #define ACPI_DATA_SIZE 0x10000
67 #define BIOS_CFG_IOPORT 0x510
68 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
73
74 #define E820_NR_ENTRIES 16
75
76 struct e820_entry {
77 uint64_t address;
78 uint64_t length;
79 uint32_t type;
80 } QEMU_PACKED __attribute((__aligned__(4)));
81
82 struct e820_table {
83 uint32_t count;
84 struct e820_entry entry[E820_NR_ENTRIES];
85 } QEMU_PACKED __attribute((__aligned__(4)));
86
87 static struct e820_table e820_table;
88 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
89
90 void gsi_handler(void *opaque, int n, int level)
91 {
92 GSIState *s = opaque;
93
94 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
95 if (n < ISA_NUM_IRQS) {
96 qemu_set_irq(s->i8259_irq[n], level);
97 }
98 qemu_set_irq(s->ioapic_irq[n], level);
99 }
100
101 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
102 unsigned size)
103 {
104 }
105
106 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
107 {
108 return 0xffffffffffffffffULL;
109 }
110
111 /* MSDOS compatibility mode FPU exception support */
112 static qemu_irq ferr_irq;
113
114 void pc_register_ferr_irq(qemu_irq irq)
115 {
116 ferr_irq = irq;
117 }
118
119 /* XXX: add IGNNE support */
120 void cpu_set_ferr(CPUX86State *s)
121 {
122 qemu_irq_raise(ferr_irq);
123 }
124
125 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127 {
128 qemu_irq_lower(ferr_irq);
129 }
130
131 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
132 {
133 return 0xffffffffffffffffULL;
134 }
135
136 /* TSC handling */
137 uint64_t cpu_get_tsc(CPUX86State *env)
138 {
139 return cpu_get_ticks();
140 }
141
142 /* SMM support */
143
144 static cpu_set_smm_t smm_set;
145 static void *smm_arg;
146
147 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
148 {
149 assert(smm_set == NULL);
150 assert(smm_arg == NULL);
151 smm_set = callback;
152 smm_arg = arg;
153 }
154
155 void cpu_smm_update(CPUX86State *env)
156 {
157 if (smm_set && smm_arg && env == first_cpu)
158 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
159 }
160
161
162 /* IRQ handling */
163 int cpu_get_pic_interrupt(CPUX86State *env)
164 {
165 int intno;
166
167 intno = apic_get_interrupt(env->apic_state);
168 if (intno >= 0) {
169 return intno;
170 }
171 /* read the irq from the PIC */
172 if (!apic_accept_pic_intr(env->apic_state)) {
173 return -1;
174 }
175
176 intno = pic_read_irq(isa_pic);
177 return intno;
178 }
179
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182 CPUX86State *env = first_cpu;
183
184 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
185 if (env->apic_state) {
186 while (env) {
187 if (apic_accept_pic_intr(env->apic_state)) {
188 apic_deliver_pic_intr(env->apic_state, level);
189 }
190 env = env->next_cpu;
191 }
192 } else {
193 CPUState *cs = CPU(x86_env_get_cpu(env));
194 if (level) {
195 cpu_interrupt(env, CPU_INTERRUPT_HARD);
196 } else {
197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198 }
199 }
200 }
201
202 /* PC cmos mappings */
203
204 #define REG_EQUIPMENT_BYTE 0x14
205
206 static int cmos_get_fd_drive_type(FDriveType fd0)
207 {
208 int val;
209
210 switch (fd0) {
211 case FDRIVE_DRV_144:
212 /* 1.44 Mb 3"5 drive */
213 val = 4;
214 break;
215 case FDRIVE_DRV_288:
216 /* 2.88 Mb 3"5 drive */
217 val = 5;
218 break;
219 case FDRIVE_DRV_120:
220 /* 1.2 Mb 5"5 drive */
221 val = 2;
222 break;
223 case FDRIVE_DRV_NONE:
224 default:
225 val = 0;
226 break;
227 }
228 return val;
229 }
230
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232 int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234 rtc_set_memory(s, type_ofs, 47);
235 rtc_set_memory(s, info_ofs, cylinders);
236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237 rtc_set_memory(s, info_ofs + 2, heads);
238 rtc_set_memory(s, info_ofs + 3, 0xff);
239 rtc_set_memory(s, info_ofs + 4, 0xff);
240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241 rtc_set_memory(s, info_ofs + 6, cylinders);
242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243 rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249 switch(boot_device) {
250 case 'a':
251 case 'b':
252 return 0x01; /* floppy boot */
253 case 'c':
254 return 0x02; /* hard drive boot */
255 case 'd':
256 return 0x03; /* CD-ROM boot */
257 case 'n':
258 return 0x04; /* Network boot */
259 }
260 return 0;
261 }
262
263 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266 int nbds, bds[3] = { 0, };
267 int i;
268
269 nbds = strlen(boot_device);
270 if (nbds > PC_MAX_BOOT_DEVICES) {
271 error_report("Too many boot devices for PC");
272 return(1);
273 }
274 for (i = 0; i < nbds; i++) {
275 bds[i] = boot_device2nibble(boot_device[i]);
276 if (bds[i] == 0) {
277 error_report("Invalid boot device for PC: '%c'",
278 boot_device[i]);
279 return(1);
280 }
281 }
282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 return(0);
285 }
286
287 static int pc_boot_set(void *opaque, const char *boot_device)
288 {
289 return set_boot_dev(opaque, boot_device, 0);
290 }
291
292 typedef struct pc_cmos_init_late_arg {
293 ISADevice *rtc_state;
294 BusState *idebus[2];
295 } pc_cmos_init_late_arg;
296
297 static void pc_cmos_init_late(void *opaque)
298 {
299 pc_cmos_init_late_arg *arg = opaque;
300 ISADevice *s = arg->rtc_state;
301 int16_t cylinders;
302 int8_t heads, sectors;
303 int val;
304 int i, trans;
305
306 val = 0;
307 if (ide_get_geometry(arg->idebus[0], 0,
308 &cylinders, &heads, &sectors) >= 0) {
309 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
310 val |= 0xf0;
311 }
312 if (ide_get_geometry(arg->idebus[0], 1,
313 &cylinders, &heads, &sectors) >= 0) {
314 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
315 val |= 0x0f;
316 }
317 rtc_set_memory(s, 0x12, val);
318
319 val = 0;
320 for (i = 0; i < 4; i++) {
321 /* NOTE: ide_get_geometry() returns the physical
322 geometry. It is always such that: 1 <= sects <= 63, 1
323 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
324 geometry can be different if a translation is done. */
325 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
326 &cylinders, &heads, &sectors) >= 0) {
327 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
328 assert((trans & ~3) == 0);
329 val |= trans << (i * 2);
330 }
331 }
332 rtc_set_memory(s, 0x39, val);
333
334 qemu_unregister_reset(pc_cmos_init_late, opaque);
335 }
336
337 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
338 const char *boot_device,
339 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
340 ISADevice *s)
341 {
342 int val, nb, i;
343 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
344 static pc_cmos_init_late_arg arg;
345
346 /* various important CMOS locations needed by PC/Bochs bios */
347
348 /* memory size */
349 /* base memory (first MiB) */
350 val = MIN(ram_size / 1024, 640);
351 rtc_set_memory(s, 0x15, val);
352 rtc_set_memory(s, 0x16, val >> 8);
353 /* extended memory (next 64MiB) */
354 if (ram_size > 1024 * 1024) {
355 val = (ram_size - 1024 * 1024) / 1024;
356 } else {
357 val = 0;
358 }
359 if (val > 65535)
360 val = 65535;
361 rtc_set_memory(s, 0x17, val);
362 rtc_set_memory(s, 0x18, val >> 8);
363 rtc_set_memory(s, 0x30, val);
364 rtc_set_memory(s, 0x31, val >> 8);
365 /* memory between 16MiB and 4GiB */
366 if (ram_size > 16 * 1024 * 1024) {
367 val = (ram_size - 16 * 1024 * 1024) / 65536;
368 } else {
369 val = 0;
370 }
371 if (val > 65535)
372 val = 65535;
373 rtc_set_memory(s, 0x34, val);
374 rtc_set_memory(s, 0x35, val >> 8);
375 /* memory above 4GiB */
376 val = above_4g_mem_size / 65536;
377 rtc_set_memory(s, 0x5b, val);
378 rtc_set_memory(s, 0x5c, val >> 8);
379 rtc_set_memory(s, 0x5d, val >> 16);
380
381 /* set the number of CPU */
382 rtc_set_memory(s, 0x5f, smp_cpus - 1);
383
384 /* set boot devices, and disable floppy signature check if requested */
385 if (set_boot_dev(s, boot_device, fd_bootchk)) {
386 exit(1);
387 }
388
389 /* floppy type */
390 if (floppy) {
391 for (i = 0; i < 2; i++) {
392 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
393 }
394 }
395 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
396 cmos_get_fd_drive_type(fd_type[1]);
397 rtc_set_memory(s, 0x10, val);
398
399 val = 0;
400 nb = 0;
401 if (fd_type[0] < FDRIVE_DRV_NONE) {
402 nb++;
403 }
404 if (fd_type[1] < FDRIVE_DRV_NONE) {
405 nb++;
406 }
407 switch (nb) {
408 case 0:
409 break;
410 case 1:
411 val |= 0x01; /* 1 drive, ready for boot */
412 break;
413 case 2:
414 val |= 0x41; /* 2 drives, ready for boot */
415 break;
416 }
417 val |= 0x02; /* FPU is there */
418 val |= 0x04; /* PS/2 mouse installed */
419 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
420
421 /* hard drives */
422 arg.rtc_state = s;
423 arg.idebus[0] = idebus0;
424 arg.idebus[1] = idebus1;
425 qemu_register_reset(pc_cmos_init_late, &arg);
426 }
427
428 /* port 92 stuff: could be split off */
429 typedef struct Port92State {
430 ISADevice dev;
431 MemoryRegion io;
432 uint8_t outport;
433 qemu_irq *a20_out;
434 } Port92State;
435
436 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
437 unsigned size)
438 {
439 Port92State *s = opaque;
440
441 DPRINTF("port92: write 0x%02x\n", val);
442 s->outport = val;
443 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
444 if (val & 1) {
445 qemu_system_reset_request();
446 }
447 }
448
449 static uint64_t port92_read(void *opaque, hwaddr addr,
450 unsigned size)
451 {
452 Port92State *s = opaque;
453 uint32_t ret;
454
455 ret = s->outport;
456 DPRINTF("port92: read 0x%02x\n", ret);
457 return ret;
458 }
459
460 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
461 {
462 Port92State *s = DO_UPCAST(Port92State, dev, dev);
463
464 s->a20_out = a20_out;
465 }
466
467 static const VMStateDescription vmstate_port92_isa = {
468 .name = "port92",
469 .version_id = 1,
470 .minimum_version_id = 1,
471 .minimum_version_id_old = 1,
472 .fields = (VMStateField []) {
473 VMSTATE_UINT8(outport, Port92State),
474 VMSTATE_END_OF_LIST()
475 }
476 };
477
478 static void port92_reset(DeviceState *d)
479 {
480 Port92State *s = container_of(d, Port92State, dev.qdev);
481
482 s->outport &= ~1;
483 }
484
485 static const MemoryRegionOps port92_ops = {
486 .read = port92_read,
487 .write = port92_write,
488 .impl = {
489 .min_access_size = 1,
490 .max_access_size = 1,
491 },
492 .endianness = DEVICE_LITTLE_ENDIAN,
493 };
494
495 static int port92_initfn(ISADevice *dev)
496 {
497 Port92State *s = DO_UPCAST(Port92State, dev, dev);
498
499 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
500 isa_register_ioport(dev, &s->io, 0x92);
501
502 s->outport = 0;
503 return 0;
504 }
505
506 static void port92_class_initfn(ObjectClass *klass, void *data)
507 {
508 DeviceClass *dc = DEVICE_CLASS(klass);
509 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
510 ic->init = port92_initfn;
511 dc->no_user = 1;
512 dc->reset = port92_reset;
513 dc->vmsd = &vmstate_port92_isa;
514 }
515
516 static const TypeInfo port92_info = {
517 .name = "port92",
518 .parent = TYPE_ISA_DEVICE,
519 .instance_size = sizeof(Port92State),
520 .class_init = port92_class_initfn,
521 };
522
523 static void port92_register_types(void)
524 {
525 type_register_static(&port92_info);
526 }
527
528 type_init(port92_register_types)
529
530 static void handle_a20_line_change(void *opaque, int irq, int level)
531 {
532 X86CPU *cpu = opaque;
533
534 /* XXX: send to all CPUs ? */
535 /* XXX: add logic to handle multiple A20 line sources */
536 x86_cpu_set_a20(cpu, level);
537 }
538
539 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
540 {
541 int index = le32_to_cpu(e820_table.count);
542 struct e820_entry *entry;
543
544 if (index >= E820_NR_ENTRIES)
545 return -EBUSY;
546 entry = &e820_table.entry[index++];
547
548 entry->address = cpu_to_le64(address);
549 entry->length = cpu_to_le64(length);
550 entry->type = cpu_to_le32(type);
551
552 e820_table.count = cpu_to_le32(index);
553 return index;
554 }
555
556 /* Calculates the limit to CPU APIC ID values
557 *
558 * This function returns the limit for the APIC ID value, so that all
559 * CPU APIC IDs are < pc_apic_id_limit().
560 *
561 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
562 */
563 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
564 {
565 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
566 }
567
568 static void *bochs_bios_init(void)
569 {
570 void *fw_cfg;
571 uint8_t *smbios_table;
572 size_t smbios_len;
573 uint64_t *numa_fw_cfg;
574 int i, j;
575 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
576
577 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
578 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
579 *
580 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
581 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
582 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
583 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
584 * may see".
585 *
586 * So, this means we must not use max_cpus, here, but the maximum possible
587 * APIC ID value, plus one.
588 *
589 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
590 * the APIC ID, not the "CPU index"
591 */
592 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
593 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
594 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
595 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
596 acpi_tables, acpi_tables_len);
597 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
598
599 smbios_table = smbios_get_table(&smbios_len);
600 if (smbios_table)
601 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
602 smbios_table, smbios_len);
603 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
604 &e820_table, sizeof(e820_table));
605
606 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
607 /* allocate memory for the NUMA channel: one (64bit) word for the number
608 * of nodes, one word for each VCPU->node and one word for each node to
609 * hold the amount of memory.
610 */
611 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
612 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
613 for (i = 0; i < max_cpus; i++) {
614 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
615 assert(apic_id < apic_id_limit);
616 for (j = 0; j < nb_numa_nodes; j++) {
617 if (test_bit(i, node_cpumask[j])) {
618 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
619 break;
620 }
621 }
622 }
623 for (i = 0; i < nb_numa_nodes; i++) {
624 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
625 }
626 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
627 (1 + apic_id_limit + nb_numa_nodes) *
628 sizeof(*numa_fw_cfg));
629
630 return fw_cfg;
631 }
632
633 static long get_file_size(FILE *f)
634 {
635 long where, size;
636
637 /* XXX: on Unix systems, using fstat() probably makes more sense */
638
639 where = ftell(f);
640 fseek(f, 0, SEEK_END);
641 size = ftell(f);
642 fseek(f, where, SEEK_SET);
643
644 return size;
645 }
646
647 static void load_linux(void *fw_cfg,
648 const char *kernel_filename,
649 const char *initrd_filename,
650 const char *kernel_cmdline,
651 hwaddr max_ram_size)
652 {
653 uint16_t protocol;
654 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
655 uint32_t initrd_max;
656 uint8_t header[8192], *setup, *kernel, *initrd_data;
657 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
658 FILE *f;
659 char *vmode;
660
661 /* Align to 16 bytes as a paranoia measure */
662 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
663
664 /* load the kernel header */
665 f = fopen(kernel_filename, "rb");
666 if (!f || !(kernel_size = get_file_size(f)) ||
667 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
668 MIN(ARRAY_SIZE(header), kernel_size)) {
669 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
670 kernel_filename, strerror(errno));
671 exit(1);
672 }
673
674 /* kernel protocol version */
675 #if 0
676 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
677 #endif
678 if (ldl_p(header+0x202) == 0x53726448)
679 protocol = lduw_p(header+0x206);
680 else {
681 /* This looks like a multiboot kernel. If it is, let's stop
682 treating it like a Linux kernel. */
683 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
684 kernel_cmdline, kernel_size, header))
685 return;
686 protocol = 0;
687 }
688
689 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
690 /* Low kernel */
691 real_addr = 0x90000;
692 cmdline_addr = 0x9a000 - cmdline_size;
693 prot_addr = 0x10000;
694 } else if (protocol < 0x202) {
695 /* High but ancient kernel */
696 real_addr = 0x90000;
697 cmdline_addr = 0x9a000 - cmdline_size;
698 prot_addr = 0x100000;
699 } else {
700 /* High and recent kernel */
701 real_addr = 0x10000;
702 cmdline_addr = 0x20000;
703 prot_addr = 0x100000;
704 }
705
706 #if 0
707 fprintf(stderr,
708 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
709 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
710 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
711 real_addr,
712 cmdline_addr,
713 prot_addr);
714 #endif
715
716 /* highest address for loading the initrd */
717 if (protocol >= 0x203)
718 initrd_max = ldl_p(header+0x22c);
719 else
720 initrd_max = 0x37ffffff;
721
722 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
723 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
724
725 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
726 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
727 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
728
729 if (protocol >= 0x202) {
730 stl_p(header+0x228, cmdline_addr);
731 } else {
732 stw_p(header+0x20, 0xA33F);
733 stw_p(header+0x22, cmdline_addr-real_addr);
734 }
735
736 /* handle vga= parameter */
737 vmode = strstr(kernel_cmdline, "vga=");
738 if (vmode) {
739 unsigned int video_mode;
740 /* skip "vga=" */
741 vmode += 4;
742 if (!strncmp(vmode, "normal", 6)) {
743 video_mode = 0xffff;
744 } else if (!strncmp(vmode, "ext", 3)) {
745 video_mode = 0xfffe;
746 } else if (!strncmp(vmode, "ask", 3)) {
747 video_mode = 0xfffd;
748 } else {
749 video_mode = strtol(vmode, NULL, 0);
750 }
751 stw_p(header+0x1fa, video_mode);
752 }
753
754 /* loader type */
755 /* High nybble = B reserved for QEMU; low nybble is revision number.
756 If this code is substantially changed, you may want to consider
757 incrementing the revision. */
758 if (protocol >= 0x200)
759 header[0x210] = 0xB0;
760
761 /* heap */
762 if (protocol >= 0x201) {
763 header[0x211] |= 0x80; /* CAN_USE_HEAP */
764 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
765 }
766
767 /* load initrd */
768 if (initrd_filename) {
769 if (protocol < 0x200) {
770 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
771 exit(1);
772 }
773
774 initrd_size = get_image_size(initrd_filename);
775 if (initrd_size < 0) {
776 fprintf(stderr, "qemu: error reading initrd %s\n",
777 initrd_filename);
778 exit(1);
779 }
780
781 initrd_addr = (initrd_max-initrd_size) & ~4095;
782
783 initrd_data = g_malloc(initrd_size);
784 load_image(initrd_filename, initrd_data);
785
786 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
787 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
788 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
789
790 stl_p(header+0x218, initrd_addr);
791 stl_p(header+0x21c, initrd_size);
792 }
793
794 /* load kernel and setup */
795 setup_size = header[0x1f1];
796 if (setup_size == 0)
797 setup_size = 4;
798 setup_size = (setup_size+1)*512;
799 kernel_size -= setup_size;
800
801 setup = g_malloc(setup_size);
802 kernel = g_malloc(kernel_size);
803 fseek(f, 0, SEEK_SET);
804 if (fread(setup, 1, setup_size, f) != setup_size) {
805 fprintf(stderr, "fread() failed\n");
806 exit(1);
807 }
808 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
809 fprintf(stderr, "fread() failed\n");
810 exit(1);
811 }
812 fclose(f);
813 memcpy(setup, header, MIN(sizeof(header), setup_size));
814
815 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
816 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
817 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
818
819 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
820 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
821 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
822
823 option_rom[nb_option_roms].name = "linuxboot.bin";
824 option_rom[nb_option_roms].bootindex = 0;
825 nb_option_roms++;
826 }
827
828 #define NE2000_NB_MAX 6
829
830 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
831 0x280, 0x380 };
832 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
833
834 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
835 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
836
837 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
838 {
839 static int nb_ne2k = 0;
840
841 if (nb_ne2k == NE2000_NB_MAX)
842 return;
843 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
844 ne2000_irq[nb_ne2k], nd);
845 nb_ne2k++;
846 }
847
848 DeviceState *cpu_get_current_apic(void)
849 {
850 if (cpu_single_env) {
851 return cpu_single_env->apic_state;
852 } else {
853 return NULL;
854 }
855 }
856
857 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
858 {
859 CPUX86State *s = opaque;
860
861 if (level) {
862 cpu_interrupt(s, CPU_INTERRUPT_SMI);
863 }
864 }
865
866 void pc_cpus_init(const char *cpu_model)
867 {
868 int i;
869
870 /* init CPUs */
871 if (cpu_model == NULL) {
872 #ifdef TARGET_X86_64
873 cpu_model = "qemu64";
874 #else
875 cpu_model = "qemu32";
876 #endif
877 }
878
879 for (i = 0; i < smp_cpus; i++) {
880 if (!cpu_x86_init(cpu_model)) {
881 exit(1);
882 }
883 }
884 }
885
886 void pc_acpi_init(const char *default_dsdt)
887 {
888 char *filename = NULL, *arg = NULL;
889
890 if (acpi_tables != NULL) {
891 /* manually set via -acpitable, leave it alone */
892 return;
893 }
894
895 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
896 if (filename == NULL) {
897 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
898 return;
899 }
900
901 arg = g_strdup_printf("file=%s", filename);
902 if (acpi_table_add(arg) != 0) {
903 fprintf(stderr, "WARNING: failed to load %s\n", filename);
904 }
905 g_free(arg);
906 g_free(filename);
907 }
908
909 void *pc_memory_init(MemoryRegion *system_memory,
910 const char *kernel_filename,
911 const char *kernel_cmdline,
912 const char *initrd_filename,
913 ram_addr_t below_4g_mem_size,
914 ram_addr_t above_4g_mem_size,
915 MemoryRegion *rom_memory,
916 MemoryRegion **ram_memory)
917 {
918 int linux_boot, i;
919 MemoryRegion *ram, *option_rom_mr;
920 MemoryRegion *ram_below_4g, *ram_above_4g;
921 void *fw_cfg;
922
923 linux_boot = (kernel_filename != NULL);
924
925 /* Allocate RAM. We allocate it as a single memory region and use
926 * aliases to address portions of it, mostly for backwards compatibility
927 * with older qemus that used qemu_ram_alloc().
928 */
929 ram = g_malloc(sizeof(*ram));
930 memory_region_init_ram(ram, "pc.ram",
931 below_4g_mem_size + above_4g_mem_size);
932 vmstate_register_ram_global(ram);
933 *ram_memory = ram;
934 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
935 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
936 0, below_4g_mem_size);
937 memory_region_add_subregion(system_memory, 0, ram_below_4g);
938 if (above_4g_mem_size > 0) {
939 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
940 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
941 below_4g_mem_size, above_4g_mem_size);
942 memory_region_add_subregion(system_memory, 0x100000000ULL,
943 ram_above_4g);
944 }
945
946
947 /* Initialize PC system firmware */
948 pc_system_firmware_init(rom_memory);
949
950 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
951 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
952 vmstate_register_ram_global(option_rom_mr);
953 memory_region_add_subregion_overlap(rom_memory,
954 PC_ROM_MIN_VGA,
955 option_rom_mr,
956 1);
957
958 fw_cfg = bochs_bios_init();
959 rom_set_fw(fw_cfg);
960
961 if (linux_boot) {
962 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
963 }
964
965 for (i = 0; i < nb_option_roms; i++) {
966 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
967 }
968 return fw_cfg;
969 }
970
971 qemu_irq *pc_allocate_cpu_irq(void)
972 {
973 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
974 }
975
976 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
977 {
978 DeviceState *dev = NULL;
979
980 if (pci_bus) {
981 PCIDevice *pcidev = pci_vga_init(pci_bus);
982 dev = pcidev ? &pcidev->qdev : NULL;
983 } else if (isa_bus) {
984 ISADevice *isadev = isa_vga_init(isa_bus);
985 dev = isadev ? &isadev->qdev : NULL;
986 }
987 return dev;
988 }
989
990 static void cpu_request_exit(void *opaque, int irq, int level)
991 {
992 CPUX86State *env = cpu_single_env;
993
994 if (env && level) {
995 cpu_exit(env);
996 }
997 }
998
999 static const MemoryRegionOps ioport80_io_ops = {
1000 .write = ioport80_write,
1001 .read = ioport80_read,
1002 .endianness = DEVICE_NATIVE_ENDIAN,
1003 .impl = {
1004 .min_access_size = 1,
1005 .max_access_size = 1,
1006 },
1007 };
1008
1009 static const MemoryRegionOps ioportF0_io_ops = {
1010 .write = ioportF0_write,
1011 .read = ioportF0_read,
1012 .endianness = DEVICE_NATIVE_ENDIAN,
1013 .impl = {
1014 .min_access_size = 1,
1015 .max_access_size = 1,
1016 },
1017 };
1018
1019 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1020 ISADevice **rtc_state,
1021 ISADevice **floppy,
1022 bool no_vmport)
1023 {
1024 int i;
1025 DriveInfo *fd[MAX_FD];
1026 DeviceState *hpet = NULL;
1027 int pit_isa_irq = 0;
1028 qemu_irq pit_alt_irq = NULL;
1029 qemu_irq rtc_irq = NULL;
1030 qemu_irq *a20_line;
1031 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1032 qemu_irq *cpu_exit_irq;
1033 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1034 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1035
1036 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1037 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1038
1039 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1040 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1041
1042 /*
1043 * Check if an HPET shall be created.
1044 *
1045 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1046 * when the HPET wants to take over. Thus we have to disable the latter.
1047 */
1048 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1049 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1050
1051 if (hpet) {
1052 for (i = 0; i < GSI_NUM_PINS; i++) {
1053 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1054 }
1055 pit_isa_irq = -1;
1056 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1057 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1058 }
1059 }
1060 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1061
1062 qemu_register_boot_set(pc_boot_set, *rtc_state);
1063
1064 if (!xen_enabled()) {
1065 if (kvm_irqchip_in_kernel()) {
1066 pit = kvm_pit_init(isa_bus, 0x40);
1067 } else {
1068 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1069 }
1070 if (hpet) {
1071 /* connect PIT to output control line of the HPET */
1072 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1073 }
1074 pcspk_init(isa_bus, pit);
1075 }
1076
1077 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1078 if (serial_hds[i]) {
1079 serial_isa_init(isa_bus, i, serial_hds[i]);
1080 }
1081 }
1082
1083 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1084 if (parallel_hds[i]) {
1085 parallel_init(isa_bus, i, parallel_hds[i]);
1086 }
1087 }
1088
1089 a20_line = qemu_allocate_irqs(handle_a20_line_change,
1090 x86_env_get_cpu(first_cpu), 2);
1091 i8042 = isa_create_simple(isa_bus, "i8042");
1092 i8042_setup_a20_line(i8042, &a20_line[0]);
1093 if (!no_vmport) {
1094 vmport_init(isa_bus);
1095 vmmouse = isa_try_create(isa_bus, "vmmouse");
1096 } else {
1097 vmmouse = NULL;
1098 }
1099 if (vmmouse) {
1100 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1101 qdev_init_nofail(&vmmouse->qdev);
1102 }
1103 port92 = isa_create_simple(isa_bus, "port92");
1104 port92_init(port92, &a20_line[1]);
1105
1106 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1107 DMA_init(0, cpu_exit_irq);
1108
1109 for(i = 0; i < MAX_FD; i++) {
1110 fd[i] = drive_get(IF_FLOPPY, 0, i);
1111 }
1112 *floppy = fdctrl_init_isa(isa_bus, fd);
1113 }
1114
1115 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1116 {
1117 int i;
1118
1119 for (i = 0; i < nb_nics; i++) {
1120 NICInfo *nd = &nd_table[i];
1121
1122 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1123 pc_init_ne2k_isa(isa_bus, nd);
1124 } else {
1125 pci_nic_init_nofail(nd, "e1000", NULL);
1126 }
1127 }
1128 }
1129
1130 void pc_pci_device_init(PCIBus *pci_bus)
1131 {
1132 int max_bus;
1133 int bus;
1134
1135 max_bus = drive_get_max_bus(IF_SCSI);
1136 for (bus = 0; bus <= max_bus; bus++) {
1137 pci_create_simple(pci_bus, -1, "lsi53c895a");
1138 }
1139 }
1140
1141 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1142 {
1143 DeviceState *dev;
1144 SysBusDevice *d;
1145 unsigned int i;
1146
1147 if (kvm_irqchip_in_kernel()) {
1148 dev = qdev_create(NULL, "kvm-ioapic");
1149 } else {
1150 dev = qdev_create(NULL, "ioapic");
1151 }
1152 if (parent_name) {
1153 object_property_add_child(object_resolve_path(parent_name, NULL),
1154 "ioapic", OBJECT(dev), NULL);
1155 }
1156 qdev_init_nofail(dev);
1157 d = SYS_BUS_DEVICE(dev);
1158 sysbus_mmio_map(d, 0, 0xfec00000);
1159
1160 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1161 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1162 }
1163 }