]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
like acpi_table_install(), acpi_table_add() should propagate Errors
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/pc.h"
26 #include "hw/serial.h"
27 #include "hw/apic.h"
28 #include "hw/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/fw_cfg.h"
33 #include "hw/hpet_emul.h"
34 #include "hw/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "hw/multiboot.h"
38 #include "hw/mc146818rtc.h"
39 #include "hw/i8254.h"
40 #include "hw/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block-common.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55
56 /* debug PC/ISA interrupts */
57 //#define DEBUG_IRQ
58
59 #ifdef DEBUG_IRQ
60 #define DPRINTF(fmt, ...) \
61 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
62 #else
63 #define DPRINTF(fmt, ...)
64 #endif
65
66 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
67 #define ACPI_DATA_SIZE 0x10000
68 #define BIOS_CFG_IOPORT 0x510
69 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
70 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
71 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
72 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
73 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
74
75 #define E820_NR_ENTRIES 16
76
77 struct e820_entry {
78 uint64_t address;
79 uint64_t length;
80 uint32_t type;
81 } QEMU_PACKED __attribute((__aligned__(4)));
82
83 struct e820_table {
84 uint32_t count;
85 struct e820_entry entry[E820_NR_ENTRIES];
86 } QEMU_PACKED __attribute((__aligned__(4)));
87
88 static struct e820_table e820_table;
89 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
90
91 void gsi_handler(void *opaque, int n, int level)
92 {
93 GSIState *s = opaque;
94
95 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
96 if (n < ISA_NUM_IRQS) {
97 qemu_set_irq(s->i8259_irq[n], level);
98 }
99 qemu_set_irq(s->ioapic_irq[n], level);
100 }
101
102 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
103 unsigned size)
104 {
105 }
106
107 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
108 {
109 return 0xffffffffffffffffULL;
110 }
111
112 /* MSDOS compatibility mode FPU exception support */
113 static qemu_irq ferr_irq;
114
115 void pc_register_ferr_irq(qemu_irq irq)
116 {
117 ferr_irq = irq;
118 }
119
120 /* XXX: add IGNNE support */
121 void cpu_set_ferr(CPUX86State *s)
122 {
123 qemu_irq_raise(ferr_irq);
124 }
125
126 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
127 unsigned size)
128 {
129 qemu_irq_lower(ferr_irq);
130 }
131
132 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
133 {
134 return 0xffffffffffffffffULL;
135 }
136
137 /* TSC handling */
138 uint64_t cpu_get_tsc(CPUX86State *env)
139 {
140 return cpu_get_ticks();
141 }
142
143 /* SMM support */
144
145 static cpu_set_smm_t smm_set;
146 static void *smm_arg;
147
148 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
149 {
150 assert(smm_set == NULL);
151 assert(smm_arg == NULL);
152 smm_set = callback;
153 smm_arg = arg;
154 }
155
156 void cpu_smm_update(CPUX86State *env)
157 {
158 if (smm_set && smm_arg && env == first_cpu)
159 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
160 }
161
162
163 /* IRQ handling */
164 int cpu_get_pic_interrupt(CPUX86State *env)
165 {
166 int intno;
167
168 intno = apic_get_interrupt(env->apic_state);
169 if (intno >= 0) {
170 return intno;
171 }
172 /* read the irq from the PIC */
173 if (!apic_accept_pic_intr(env->apic_state)) {
174 return -1;
175 }
176
177 intno = pic_read_irq(isa_pic);
178 return intno;
179 }
180
181 static void pic_irq_request(void *opaque, int irq, int level)
182 {
183 CPUX86State *env = first_cpu;
184
185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186 if (env->apic_state) {
187 while (env) {
188 if (apic_accept_pic_intr(env->apic_state)) {
189 apic_deliver_pic_intr(env->apic_state, level);
190 }
191 env = env->next_cpu;
192 }
193 } else {
194 CPUState *cs = CPU(x86_env_get_cpu(env));
195 if (level) {
196 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
197 } else {
198 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
199 }
200 }
201 }
202
203 /* PC cmos mappings */
204
205 #define REG_EQUIPMENT_BYTE 0x14
206
207 static int cmos_get_fd_drive_type(FDriveType fd0)
208 {
209 int val;
210
211 switch (fd0) {
212 case FDRIVE_DRV_144:
213 /* 1.44 Mb 3"5 drive */
214 val = 4;
215 break;
216 case FDRIVE_DRV_288:
217 /* 2.88 Mb 3"5 drive */
218 val = 5;
219 break;
220 case FDRIVE_DRV_120:
221 /* 1.2 Mb 5"5 drive */
222 val = 2;
223 break;
224 case FDRIVE_DRV_NONE:
225 default:
226 val = 0;
227 break;
228 }
229 return val;
230 }
231
232 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
233 int16_t cylinders, int8_t heads, int8_t sectors)
234 {
235 rtc_set_memory(s, type_ofs, 47);
236 rtc_set_memory(s, info_ofs, cylinders);
237 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
238 rtc_set_memory(s, info_ofs + 2, heads);
239 rtc_set_memory(s, info_ofs + 3, 0xff);
240 rtc_set_memory(s, info_ofs + 4, 0xff);
241 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
242 rtc_set_memory(s, info_ofs + 6, cylinders);
243 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
244 rtc_set_memory(s, info_ofs + 8, sectors);
245 }
246
247 /* convert boot_device letter to something recognizable by the bios */
248 static int boot_device2nibble(char boot_device)
249 {
250 switch(boot_device) {
251 case 'a':
252 case 'b':
253 return 0x01; /* floppy boot */
254 case 'c':
255 return 0x02; /* hard drive boot */
256 case 'd':
257 return 0x03; /* CD-ROM boot */
258 case 'n':
259 return 0x04; /* Network boot */
260 }
261 return 0;
262 }
263
264 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
265 {
266 #define PC_MAX_BOOT_DEVICES 3
267 int nbds, bds[3] = { 0, };
268 int i;
269
270 nbds = strlen(boot_device);
271 if (nbds > PC_MAX_BOOT_DEVICES) {
272 error_report("Too many boot devices for PC");
273 return(1);
274 }
275 for (i = 0; i < nbds; i++) {
276 bds[i] = boot_device2nibble(boot_device[i]);
277 if (bds[i] == 0) {
278 error_report("Invalid boot device for PC: '%c'",
279 boot_device[i]);
280 return(1);
281 }
282 }
283 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
284 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
285 return(0);
286 }
287
288 static int pc_boot_set(void *opaque, const char *boot_device)
289 {
290 return set_boot_dev(opaque, boot_device, 0);
291 }
292
293 typedef struct pc_cmos_init_late_arg {
294 ISADevice *rtc_state;
295 BusState *idebus[2];
296 } pc_cmos_init_late_arg;
297
298 static void pc_cmos_init_late(void *opaque)
299 {
300 pc_cmos_init_late_arg *arg = opaque;
301 ISADevice *s = arg->rtc_state;
302 int16_t cylinders;
303 int8_t heads, sectors;
304 int val;
305 int i, trans;
306
307 val = 0;
308 if (ide_get_geometry(arg->idebus[0], 0,
309 &cylinders, &heads, &sectors) >= 0) {
310 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
311 val |= 0xf0;
312 }
313 if (ide_get_geometry(arg->idebus[0], 1,
314 &cylinders, &heads, &sectors) >= 0) {
315 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
316 val |= 0x0f;
317 }
318 rtc_set_memory(s, 0x12, val);
319
320 val = 0;
321 for (i = 0; i < 4; i++) {
322 /* NOTE: ide_get_geometry() returns the physical
323 geometry. It is always such that: 1 <= sects <= 63, 1
324 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
325 geometry can be different if a translation is done. */
326 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
327 &cylinders, &heads, &sectors) >= 0) {
328 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
329 assert((trans & ~3) == 0);
330 val |= trans << (i * 2);
331 }
332 }
333 rtc_set_memory(s, 0x39, val);
334
335 qemu_unregister_reset(pc_cmos_init_late, opaque);
336 }
337
338 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
339 const char *boot_device,
340 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
341 ISADevice *s)
342 {
343 int val, nb, i;
344 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
345 static pc_cmos_init_late_arg arg;
346
347 /* various important CMOS locations needed by PC/Bochs bios */
348
349 /* memory size */
350 /* base memory (first MiB) */
351 val = MIN(ram_size / 1024, 640);
352 rtc_set_memory(s, 0x15, val);
353 rtc_set_memory(s, 0x16, val >> 8);
354 /* extended memory (next 64MiB) */
355 if (ram_size > 1024 * 1024) {
356 val = (ram_size - 1024 * 1024) / 1024;
357 } else {
358 val = 0;
359 }
360 if (val > 65535)
361 val = 65535;
362 rtc_set_memory(s, 0x17, val);
363 rtc_set_memory(s, 0x18, val >> 8);
364 rtc_set_memory(s, 0x30, val);
365 rtc_set_memory(s, 0x31, val >> 8);
366 /* memory between 16MiB and 4GiB */
367 if (ram_size > 16 * 1024 * 1024) {
368 val = (ram_size - 16 * 1024 * 1024) / 65536;
369 } else {
370 val = 0;
371 }
372 if (val > 65535)
373 val = 65535;
374 rtc_set_memory(s, 0x34, val);
375 rtc_set_memory(s, 0x35, val >> 8);
376 /* memory above 4GiB */
377 val = above_4g_mem_size / 65536;
378 rtc_set_memory(s, 0x5b, val);
379 rtc_set_memory(s, 0x5c, val >> 8);
380 rtc_set_memory(s, 0x5d, val >> 16);
381
382 /* set the number of CPU */
383 rtc_set_memory(s, 0x5f, smp_cpus - 1);
384
385 /* set boot devices, and disable floppy signature check if requested */
386 if (set_boot_dev(s, boot_device, fd_bootchk)) {
387 exit(1);
388 }
389
390 /* floppy type */
391 if (floppy) {
392 for (i = 0; i < 2; i++) {
393 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
394 }
395 }
396 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
397 cmos_get_fd_drive_type(fd_type[1]);
398 rtc_set_memory(s, 0x10, val);
399
400 val = 0;
401 nb = 0;
402 if (fd_type[0] < FDRIVE_DRV_NONE) {
403 nb++;
404 }
405 if (fd_type[1] < FDRIVE_DRV_NONE) {
406 nb++;
407 }
408 switch (nb) {
409 case 0:
410 break;
411 case 1:
412 val |= 0x01; /* 1 drive, ready for boot */
413 break;
414 case 2:
415 val |= 0x41; /* 2 drives, ready for boot */
416 break;
417 }
418 val |= 0x02; /* FPU is there */
419 val |= 0x04; /* PS/2 mouse installed */
420 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
421
422 /* hard drives */
423 arg.rtc_state = s;
424 arg.idebus[0] = idebus0;
425 arg.idebus[1] = idebus1;
426 qemu_register_reset(pc_cmos_init_late, &arg);
427 }
428
429 /* port 92 stuff: could be split off */
430 typedef struct Port92State {
431 ISADevice dev;
432 MemoryRegion io;
433 uint8_t outport;
434 qemu_irq *a20_out;
435 } Port92State;
436
437 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
438 unsigned size)
439 {
440 Port92State *s = opaque;
441
442 DPRINTF("port92: write 0x%02x\n", val);
443 s->outport = val;
444 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
445 if (val & 1) {
446 qemu_system_reset_request();
447 }
448 }
449
450 static uint64_t port92_read(void *opaque, hwaddr addr,
451 unsigned size)
452 {
453 Port92State *s = opaque;
454 uint32_t ret;
455
456 ret = s->outport;
457 DPRINTF("port92: read 0x%02x\n", ret);
458 return ret;
459 }
460
461 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
462 {
463 Port92State *s = DO_UPCAST(Port92State, dev, dev);
464
465 s->a20_out = a20_out;
466 }
467
468 static const VMStateDescription vmstate_port92_isa = {
469 .name = "port92",
470 .version_id = 1,
471 .minimum_version_id = 1,
472 .minimum_version_id_old = 1,
473 .fields = (VMStateField []) {
474 VMSTATE_UINT8(outport, Port92State),
475 VMSTATE_END_OF_LIST()
476 }
477 };
478
479 static void port92_reset(DeviceState *d)
480 {
481 Port92State *s = container_of(d, Port92State, dev.qdev);
482
483 s->outport &= ~1;
484 }
485
486 static const MemoryRegionOps port92_ops = {
487 .read = port92_read,
488 .write = port92_write,
489 .impl = {
490 .min_access_size = 1,
491 .max_access_size = 1,
492 },
493 .endianness = DEVICE_LITTLE_ENDIAN,
494 };
495
496 static int port92_initfn(ISADevice *dev)
497 {
498 Port92State *s = DO_UPCAST(Port92State, dev, dev);
499
500 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
501 isa_register_ioport(dev, &s->io, 0x92);
502
503 s->outport = 0;
504 return 0;
505 }
506
507 static void port92_class_initfn(ObjectClass *klass, void *data)
508 {
509 DeviceClass *dc = DEVICE_CLASS(klass);
510 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
511 ic->init = port92_initfn;
512 dc->no_user = 1;
513 dc->reset = port92_reset;
514 dc->vmsd = &vmstate_port92_isa;
515 }
516
517 static const TypeInfo port92_info = {
518 .name = "port92",
519 .parent = TYPE_ISA_DEVICE,
520 .instance_size = sizeof(Port92State),
521 .class_init = port92_class_initfn,
522 };
523
524 static void port92_register_types(void)
525 {
526 type_register_static(&port92_info);
527 }
528
529 type_init(port92_register_types)
530
531 static void handle_a20_line_change(void *opaque, int irq, int level)
532 {
533 X86CPU *cpu = opaque;
534
535 /* XXX: send to all CPUs ? */
536 /* XXX: add logic to handle multiple A20 line sources */
537 x86_cpu_set_a20(cpu, level);
538 }
539
540 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
541 {
542 int index = le32_to_cpu(e820_table.count);
543 struct e820_entry *entry;
544
545 if (index >= E820_NR_ENTRIES)
546 return -EBUSY;
547 entry = &e820_table.entry[index++];
548
549 entry->address = cpu_to_le64(address);
550 entry->length = cpu_to_le64(length);
551 entry->type = cpu_to_le32(type);
552
553 e820_table.count = cpu_to_le32(index);
554 return index;
555 }
556
557 /* Calculates the limit to CPU APIC ID values
558 *
559 * This function returns the limit for the APIC ID value, so that all
560 * CPU APIC IDs are < pc_apic_id_limit().
561 *
562 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
563 */
564 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
565 {
566 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
567 }
568
569 static void *bochs_bios_init(void)
570 {
571 void *fw_cfg;
572 uint8_t *smbios_table;
573 size_t smbios_len;
574 uint64_t *numa_fw_cfg;
575 int i, j;
576 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
577
578 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
579 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
580 *
581 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
582 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
583 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
584 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
585 * may see".
586 *
587 * So, this means we must not use max_cpus, here, but the maximum possible
588 * APIC ID value, plus one.
589 *
590 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
591 * the APIC ID, not the "CPU index"
592 */
593 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
594 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
595 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
596 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
597 acpi_tables, acpi_tables_len);
598 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
599
600 smbios_table = smbios_get_table(&smbios_len);
601 if (smbios_table)
602 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
603 smbios_table, smbios_len);
604 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
605 &e820_table, sizeof(e820_table));
606
607 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
608 /* allocate memory for the NUMA channel: one (64bit) word for the number
609 * of nodes, one word for each VCPU->node and one word for each node to
610 * hold the amount of memory.
611 */
612 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
613 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
614 for (i = 0; i < max_cpus; i++) {
615 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
616 assert(apic_id < apic_id_limit);
617 for (j = 0; j < nb_numa_nodes; j++) {
618 if (test_bit(i, node_cpumask[j])) {
619 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
620 break;
621 }
622 }
623 }
624 for (i = 0; i < nb_numa_nodes; i++) {
625 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
626 }
627 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
628 (1 + apic_id_limit + nb_numa_nodes) *
629 sizeof(*numa_fw_cfg));
630
631 return fw_cfg;
632 }
633
634 static long get_file_size(FILE *f)
635 {
636 long where, size;
637
638 /* XXX: on Unix systems, using fstat() probably makes more sense */
639
640 where = ftell(f);
641 fseek(f, 0, SEEK_END);
642 size = ftell(f);
643 fseek(f, where, SEEK_SET);
644
645 return size;
646 }
647
648 static void load_linux(void *fw_cfg,
649 const char *kernel_filename,
650 const char *initrd_filename,
651 const char *kernel_cmdline,
652 hwaddr max_ram_size)
653 {
654 uint16_t protocol;
655 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
656 uint32_t initrd_max;
657 uint8_t header[8192], *setup, *kernel, *initrd_data;
658 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
659 FILE *f;
660 char *vmode;
661
662 /* Align to 16 bytes as a paranoia measure */
663 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
664
665 /* load the kernel header */
666 f = fopen(kernel_filename, "rb");
667 if (!f || !(kernel_size = get_file_size(f)) ||
668 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
669 MIN(ARRAY_SIZE(header), kernel_size)) {
670 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
671 kernel_filename, strerror(errno));
672 exit(1);
673 }
674
675 /* kernel protocol version */
676 #if 0
677 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
678 #endif
679 if (ldl_p(header+0x202) == 0x53726448) {
680 protocol = lduw_p(header+0x206);
681 } else {
682 /* This looks like a multiboot kernel. If it is, let's stop
683 treating it like a Linux kernel. */
684 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
685 kernel_cmdline, kernel_size, header)) {
686 return;
687 }
688 protocol = 0;
689 }
690
691 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
692 /* Low kernel */
693 real_addr = 0x90000;
694 cmdline_addr = 0x9a000 - cmdline_size;
695 prot_addr = 0x10000;
696 } else if (protocol < 0x202) {
697 /* High but ancient kernel */
698 real_addr = 0x90000;
699 cmdline_addr = 0x9a000 - cmdline_size;
700 prot_addr = 0x100000;
701 } else {
702 /* High and recent kernel */
703 real_addr = 0x10000;
704 cmdline_addr = 0x20000;
705 prot_addr = 0x100000;
706 }
707
708 #if 0
709 fprintf(stderr,
710 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
711 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
712 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
713 real_addr,
714 cmdline_addr,
715 prot_addr);
716 #endif
717
718 /* highest address for loading the initrd */
719 if (protocol >= 0x203) {
720 initrd_max = ldl_p(header+0x22c);
721 } else {
722 initrd_max = 0x37ffffff;
723 }
724
725 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
726 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
727
728 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
729 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
730 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
731
732 if (protocol >= 0x202) {
733 stl_p(header+0x228, cmdline_addr);
734 } else {
735 stw_p(header+0x20, 0xA33F);
736 stw_p(header+0x22, cmdline_addr-real_addr);
737 }
738
739 /* handle vga= parameter */
740 vmode = strstr(kernel_cmdline, "vga=");
741 if (vmode) {
742 unsigned int video_mode;
743 /* skip "vga=" */
744 vmode += 4;
745 if (!strncmp(vmode, "normal", 6)) {
746 video_mode = 0xffff;
747 } else if (!strncmp(vmode, "ext", 3)) {
748 video_mode = 0xfffe;
749 } else if (!strncmp(vmode, "ask", 3)) {
750 video_mode = 0xfffd;
751 } else {
752 video_mode = strtol(vmode, NULL, 0);
753 }
754 stw_p(header+0x1fa, video_mode);
755 }
756
757 /* loader type */
758 /* High nybble = B reserved for QEMU; low nybble is revision number.
759 If this code is substantially changed, you may want to consider
760 incrementing the revision. */
761 if (protocol >= 0x200) {
762 header[0x210] = 0xB0;
763 }
764 /* heap */
765 if (protocol >= 0x201) {
766 header[0x211] |= 0x80; /* CAN_USE_HEAP */
767 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
768 }
769
770 /* load initrd */
771 if (initrd_filename) {
772 if (protocol < 0x200) {
773 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
774 exit(1);
775 }
776
777 initrd_size = get_image_size(initrd_filename);
778 if (initrd_size < 0) {
779 fprintf(stderr, "qemu: error reading initrd %s\n",
780 initrd_filename);
781 exit(1);
782 }
783
784 initrd_addr = (initrd_max-initrd_size) & ~4095;
785
786 initrd_data = g_malloc(initrd_size);
787 load_image(initrd_filename, initrd_data);
788
789 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
790 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
791 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
792
793 stl_p(header+0x218, initrd_addr);
794 stl_p(header+0x21c, initrd_size);
795 }
796
797 /* load kernel and setup */
798 setup_size = header[0x1f1];
799 if (setup_size == 0) {
800 setup_size = 4;
801 }
802 setup_size = (setup_size+1)*512;
803 kernel_size -= setup_size;
804
805 setup = g_malloc(setup_size);
806 kernel = g_malloc(kernel_size);
807 fseek(f, 0, SEEK_SET);
808 if (fread(setup, 1, setup_size, f) != setup_size) {
809 fprintf(stderr, "fread() failed\n");
810 exit(1);
811 }
812 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
813 fprintf(stderr, "fread() failed\n");
814 exit(1);
815 }
816 fclose(f);
817 memcpy(setup, header, MIN(sizeof(header), setup_size));
818
819 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
820 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
821 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
822
823 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
824 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
825 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
826
827 option_rom[nb_option_roms].name = "linuxboot.bin";
828 option_rom[nb_option_roms].bootindex = 0;
829 nb_option_roms++;
830 }
831
832 #define NE2000_NB_MAX 6
833
834 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
835 0x280, 0x380 };
836 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
837
838 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
839 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
840
841 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
842 {
843 static int nb_ne2k = 0;
844
845 if (nb_ne2k == NE2000_NB_MAX)
846 return;
847 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
848 ne2000_irq[nb_ne2k], nd);
849 nb_ne2k++;
850 }
851
852 DeviceState *cpu_get_current_apic(void)
853 {
854 if (cpu_single_env) {
855 return cpu_single_env->apic_state;
856 } else {
857 return NULL;
858 }
859 }
860
861 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
862 {
863 X86CPU *cpu = opaque;
864
865 if (level) {
866 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
867 }
868 }
869
870 void pc_cpus_init(const char *cpu_model)
871 {
872 int i;
873
874 /* init CPUs */
875 if (cpu_model == NULL) {
876 #ifdef TARGET_X86_64
877 cpu_model = "qemu64";
878 #else
879 cpu_model = "qemu32";
880 #endif
881 }
882
883 for (i = 0; i < smp_cpus; i++) {
884 if (!cpu_x86_init(cpu_model)) {
885 exit(1);
886 }
887 }
888 }
889
890 void pc_acpi_init(const char *default_dsdt)
891 {
892 char *filename = NULL, *arg = NULL;
893 QemuOpts *opts;
894 Error *err = NULL;
895
896 if (acpi_tables != NULL) {
897 /* manually set via -acpitable, leave it alone */
898 return;
899 }
900
901 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
902 if (filename == NULL) {
903 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
904 return;
905 }
906
907 arg = g_strdup_printf("file=%s", filename);
908
909 /* creates a deep copy of "arg" */
910 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
911 g_assert(opts != NULL);
912
913 acpi_table_add(opts, &err);
914 if (err) {
915 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
916 error_get_pretty(err));
917 error_free(err);
918 }
919 g_free(arg);
920 g_free(filename);
921 }
922
923 void *pc_memory_init(MemoryRegion *system_memory,
924 const char *kernel_filename,
925 const char *kernel_cmdline,
926 const char *initrd_filename,
927 ram_addr_t below_4g_mem_size,
928 ram_addr_t above_4g_mem_size,
929 MemoryRegion *rom_memory,
930 MemoryRegion **ram_memory)
931 {
932 int linux_boot, i;
933 MemoryRegion *ram, *option_rom_mr;
934 MemoryRegion *ram_below_4g, *ram_above_4g;
935 void *fw_cfg;
936
937 linux_boot = (kernel_filename != NULL);
938
939 /* Allocate RAM. We allocate it as a single memory region and use
940 * aliases to address portions of it, mostly for backwards compatibility
941 * with older qemus that used qemu_ram_alloc().
942 */
943 ram = g_malloc(sizeof(*ram));
944 memory_region_init_ram(ram, "pc.ram",
945 below_4g_mem_size + above_4g_mem_size);
946 vmstate_register_ram_global(ram);
947 *ram_memory = ram;
948 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
949 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
950 0, below_4g_mem_size);
951 memory_region_add_subregion(system_memory, 0, ram_below_4g);
952 if (above_4g_mem_size > 0) {
953 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
954 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
955 below_4g_mem_size, above_4g_mem_size);
956 memory_region_add_subregion(system_memory, 0x100000000ULL,
957 ram_above_4g);
958 }
959
960
961 /* Initialize PC system firmware */
962 pc_system_firmware_init(rom_memory);
963
964 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
965 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
966 vmstate_register_ram_global(option_rom_mr);
967 memory_region_add_subregion_overlap(rom_memory,
968 PC_ROM_MIN_VGA,
969 option_rom_mr,
970 1);
971
972 fw_cfg = bochs_bios_init();
973 rom_set_fw(fw_cfg);
974
975 if (linux_boot) {
976 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
977 }
978
979 for (i = 0; i < nb_option_roms; i++) {
980 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
981 }
982 return fw_cfg;
983 }
984
985 qemu_irq *pc_allocate_cpu_irq(void)
986 {
987 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
988 }
989
990 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
991 {
992 DeviceState *dev = NULL;
993
994 if (pci_bus) {
995 PCIDevice *pcidev = pci_vga_init(pci_bus);
996 dev = pcidev ? &pcidev->qdev : NULL;
997 } else if (isa_bus) {
998 ISADevice *isadev = isa_vga_init(isa_bus);
999 dev = isadev ? &isadev->qdev : NULL;
1000 }
1001 return dev;
1002 }
1003
1004 static void cpu_request_exit(void *opaque, int irq, int level)
1005 {
1006 CPUX86State *env = cpu_single_env;
1007
1008 if (env && level) {
1009 cpu_exit(env);
1010 }
1011 }
1012
1013 static const MemoryRegionOps ioport80_io_ops = {
1014 .write = ioport80_write,
1015 .read = ioport80_read,
1016 .endianness = DEVICE_NATIVE_ENDIAN,
1017 .impl = {
1018 .min_access_size = 1,
1019 .max_access_size = 1,
1020 },
1021 };
1022
1023 static const MemoryRegionOps ioportF0_io_ops = {
1024 .write = ioportF0_write,
1025 .read = ioportF0_read,
1026 .endianness = DEVICE_NATIVE_ENDIAN,
1027 .impl = {
1028 .min_access_size = 1,
1029 .max_access_size = 1,
1030 },
1031 };
1032
1033 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1034 ISADevice **rtc_state,
1035 ISADevice **floppy,
1036 bool no_vmport)
1037 {
1038 int i;
1039 DriveInfo *fd[MAX_FD];
1040 DeviceState *hpet = NULL;
1041 int pit_isa_irq = 0;
1042 qemu_irq pit_alt_irq = NULL;
1043 qemu_irq rtc_irq = NULL;
1044 qemu_irq *a20_line;
1045 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1046 qemu_irq *cpu_exit_irq;
1047 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1048 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1049
1050 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1051 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1052
1053 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1054 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1055
1056 /*
1057 * Check if an HPET shall be created.
1058 *
1059 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1060 * when the HPET wants to take over. Thus we have to disable the latter.
1061 */
1062 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1063 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1064
1065 if (hpet) {
1066 for (i = 0; i < GSI_NUM_PINS; i++) {
1067 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1068 }
1069 pit_isa_irq = -1;
1070 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1071 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1072 }
1073 }
1074 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1075
1076 qemu_register_boot_set(pc_boot_set, *rtc_state);
1077
1078 if (!xen_enabled()) {
1079 if (kvm_irqchip_in_kernel()) {
1080 pit = kvm_pit_init(isa_bus, 0x40);
1081 } else {
1082 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1083 }
1084 if (hpet) {
1085 /* connect PIT to output control line of the HPET */
1086 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1087 }
1088 pcspk_init(isa_bus, pit);
1089 }
1090
1091 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1092 if (serial_hds[i]) {
1093 serial_isa_init(isa_bus, i, serial_hds[i]);
1094 }
1095 }
1096
1097 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1098 if (parallel_hds[i]) {
1099 parallel_init(isa_bus, i, parallel_hds[i]);
1100 }
1101 }
1102
1103 a20_line = qemu_allocate_irqs(handle_a20_line_change,
1104 x86_env_get_cpu(first_cpu), 2);
1105 i8042 = isa_create_simple(isa_bus, "i8042");
1106 i8042_setup_a20_line(i8042, &a20_line[0]);
1107 if (!no_vmport) {
1108 vmport_init(isa_bus);
1109 vmmouse = isa_try_create(isa_bus, "vmmouse");
1110 } else {
1111 vmmouse = NULL;
1112 }
1113 if (vmmouse) {
1114 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1115 qdev_init_nofail(&vmmouse->qdev);
1116 }
1117 port92 = isa_create_simple(isa_bus, "port92");
1118 port92_init(port92, &a20_line[1]);
1119
1120 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1121 DMA_init(0, cpu_exit_irq);
1122
1123 for(i = 0; i < MAX_FD; i++) {
1124 fd[i] = drive_get(IF_FLOPPY, 0, i);
1125 }
1126 *floppy = fdctrl_init_isa(isa_bus, fd);
1127 }
1128
1129 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1130 {
1131 int i;
1132
1133 for (i = 0; i < nb_nics; i++) {
1134 NICInfo *nd = &nd_table[i];
1135
1136 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1137 pc_init_ne2k_isa(isa_bus, nd);
1138 } else {
1139 pci_nic_init_nofail(nd, "e1000", NULL);
1140 }
1141 }
1142 }
1143
1144 void pc_pci_device_init(PCIBus *pci_bus)
1145 {
1146 int max_bus;
1147 int bus;
1148
1149 max_bus = drive_get_max_bus(IF_SCSI);
1150 for (bus = 0; bus <= max_bus; bus++) {
1151 pci_create_simple(pci_bus, -1, "lsi53c895a");
1152 }
1153 }
1154
1155 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1156 {
1157 DeviceState *dev;
1158 SysBusDevice *d;
1159 unsigned int i;
1160
1161 if (kvm_irqchip_in_kernel()) {
1162 dev = qdev_create(NULL, "kvm-ioapic");
1163 } else {
1164 dev = qdev_create(NULL, "ioapic");
1165 }
1166 if (parent_name) {
1167 object_property_add_child(object_resolve_path(parent_name, NULL),
1168 "ioapic", OBJECT(dev), NULL);
1169 }
1170 qdev_init_nofail(dev);
1171 d = SYS_BUS_DEVICE(dev);
1172 sysbus_mmio_map(d, 0, 0xfec00000);
1173
1174 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1175 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1176 }
1177 }