]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
pc: Update rtc_cmos on CPU hot-plug
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56
57 /* debug PC/ISA interrupts */
58 //#define DEBUG_IRQ
59
60 #ifdef DEBUG_IRQ
61 #define DPRINTF(fmt, ...) \
62 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
63 #else
64 #define DPRINTF(fmt, ...)
65 #endif
66
67 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
68 #define ACPI_DATA_SIZE 0x10000
69 #define BIOS_CFG_IOPORT 0x510
70 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
71 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
72 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
73 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
74 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
75
76 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000
77
78 #define E820_NR_ENTRIES 16
79
80 struct e820_entry {
81 uint64_t address;
82 uint64_t length;
83 uint32_t type;
84 } QEMU_PACKED __attribute((__aligned__(4)));
85
86 struct e820_table {
87 uint32_t count;
88 struct e820_entry entry[E820_NR_ENTRIES];
89 } QEMU_PACKED __attribute((__aligned__(4)));
90
91 static struct e820_table e820_table;
92 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
93
94 void gsi_handler(void *opaque, int n, int level)
95 {
96 GSIState *s = opaque;
97
98 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
99 if (n < ISA_NUM_IRQS) {
100 qemu_set_irq(s->i8259_irq[n], level);
101 }
102 qemu_set_irq(s->ioapic_irq[n], level);
103 }
104
105 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
106 unsigned size)
107 {
108 }
109
110 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
111 {
112 return 0xffffffffffffffffULL;
113 }
114
115 /* MSDOS compatibility mode FPU exception support */
116 static qemu_irq ferr_irq;
117
118 void pc_register_ferr_irq(qemu_irq irq)
119 {
120 ferr_irq = irq;
121 }
122
123 /* XXX: add IGNNE support */
124 void cpu_set_ferr(CPUX86State *s)
125 {
126 qemu_irq_raise(ferr_irq);
127 }
128
129 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
130 unsigned size)
131 {
132 qemu_irq_lower(ferr_irq);
133 }
134
135 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
136 {
137 return 0xffffffffffffffffULL;
138 }
139
140 /* TSC handling */
141 uint64_t cpu_get_tsc(CPUX86State *env)
142 {
143 return cpu_get_ticks();
144 }
145
146 /* SMM support */
147
148 static cpu_set_smm_t smm_set;
149 static void *smm_arg;
150
151 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
152 {
153 assert(smm_set == NULL);
154 assert(smm_arg == NULL);
155 smm_set = callback;
156 smm_arg = arg;
157 }
158
159 void cpu_smm_update(CPUX86State *env)
160 {
161 if (smm_set && smm_arg && env == first_cpu)
162 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
163 }
164
165
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169 int intno;
170
171 intno = apic_get_interrupt(env->apic_state);
172 if (intno >= 0) {
173 return intno;
174 }
175 /* read the irq from the PIC */
176 if (!apic_accept_pic_intr(env->apic_state)) {
177 return -1;
178 }
179
180 intno = pic_read_irq(isa_pic);
181 return intno;
182 }
183
184 static void pic_irq_request(void *opaque, int irq, int level)
185 {
186 CPUX86State *env = first_cpu;
187
188 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
189 if (env->apic_state) {
190 while (env) {
191 if (apic_accept_pic_intr(env->apic_state)) {
192 apic_deliver_pic_intr(env->apic_state, level);
193 }
194 env = env->next_cpu;
195 }
196 } else {
197 CPUState *cs = CPU(x86_env_get_cpu(env));
198 if (level) {
199 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
200 } else {
201 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
202 }
203 }
204 }
205
206 /* PC cmos mappings */
207
208 #define REG_EQUIPMENT_BYTE 0x14
209
210 static int cmos_get_fd_drive_type(FDriveType fd0)
211 {
212 int val;
213
214 switch (fd0) {
215 case FDRIVE_DRV_144:
216 /* 1.44 Mb 3"5 drive */
217 val = 4;
218 break;
219 case FDRIVE_DRV_288:
220 /* 2.88 Mb 3"5 drive */
221 val = 5;
222 break;
223 case FDRIVE_DRV_120:
224 /* 1.2 Mb 5"5 drive */
225 val = 2;
226 break;
227 case FDRIVE_DRV_NONE:
228 default:
229 val = 0;
230 break;
231 }
232 return val;
233 }
234
235 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
236 int16_t cylinders, int8_t heads, int8_t sectors)
237 {
238 rtc_set_memory(s, type_ofs, 47);
239 rtc_set_memory(s, info_ofs, cylinders);
240 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
241 rtc_set_memory(s, info_ofs + 2, heads);
242 rtc_set_memory(s, info_ofs + 3, 0xff);
243 rtc_set_memory(s, info_ofs + 4, 0xff);
244 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
245 rtc_set_memory(s, info_ofs + 6, cylinders);
246 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
247 rtc_set_memory(s, info_ofs + 8, sectors);
248 }
249
250 /* convert boot_device letter to something recognizable by the bios */
251 static int boot_device2nibble(char boot_device)
252 {
253 switch(boot_device) {
254 case 'a':
255 case 'b':
256 return 0x01; /* floppy boot */
257 case 'c':
258 return 0x02; /* hard drive boot */
259 case 'd':
260 return 0x03; /* CD-ROM boot */
261 case 'n':
262 return 0x04; /* Network boot */
263 }
264 return 0;
265 }
266
267 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
268 {
269 #define PC_MAX_BOOT_DEVICES 3
270 int nbds, bds[3] = { 0, };
271 int i;
272
273 nbds = strlen(boot_device);
274 if (nbds > PC_MAX_BOOT_DEVICES) {
275 error_report("Too many boot devices for PC");
276 return(1);
277 }
278 for (i = 0; i < nbds; i++) {
279 bds[i] = boot_device2nibble(boot_device[i]);
280 if (bds[i] == 0) {
281 error_report("Invalid boot device for PC: '%c'",
282 boot_device[i]);
283 return(1);
284 }
285 }
286 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
287 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
288 return(0);
289 }
290
291 static int pc_boot_set(void *opaque, const char *boot_device)
292 {
293 return set_boot_dev(opaque, boot_device, 0);
294 }
295
296 typedef struct pc_cmos_init_late_arg {
297 ISADevice *rtc_state;
298 BusState *idebus[2];
299 } pc_cmos_init_late_arg;
300
301 static void pc_cmos_init_late(void *opaque)
302 {
303 pc_cmos_init_late_arg *arg = opaque;
304 ISADevice *s = arg->rtc_state;
305 int16_t cylinders;
306 int8_t heads, sectors;
307 int val;
308 int i, trans;
309
310 val = 0;
311 if (ide_get_geometry(arg->idebus[0], 0,
312 &cylinders, &heads, &sectors) >= 0) {
313 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
314 val |= 0xf0;
315 }
316 if (ide_get_geometry(arg->idebus[0], 1,
317 &cylinders, &heads, &sectors) >= 0) {
318 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
319 val |= 0x0f;
320 }
321 rtc_set_memory(s, 0x12, val);
322
323 val = 0;
324 for (i = 0; i < 4; i++) {
325 /* NOTE: ide_get_geometry() returns the physical
326 geometry. It is always such that: 1 <= sects <= 63, 1
327 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
328 geometry can be different if a translation is done. */
329 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
330 &cylinders, &heads, &sectors) >= 0) {
331 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
332 assert((trans & ~3) == 0);
333 val |= trans << (i * 2);
334 }
335 }
336 rtc_set_memory(s, 0x39, val);
337
338 qemu_unregister_reset(pc_cmos_init_late, opaque);
339 }
340
341 typedef struct RTCCPUHotplugArg {
342 Notifier cpu_added_notifier;
343 ISADevice *rtc_state;
344 } RTCCPUHotplugArg;
345
346 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
347 {
348 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
349 cpu_added_notifier);
350 ISADevice *s = arg->rtc_state;
351
352 /* increment the number of CPUs */
353 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
354 }
355
356 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
357 const char *boot_device,
358 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
359 ISADevice *s)
360 {
361 int val, nb, i;
362 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
363 static pc_cmos_init_late_arg arg;
364 static RTCCPUHotplugArg cpu_hotplug_cb;
365
366 /* various important CMOS locations needed by PC/Bochs bios */
367
368 /* memory size */
369 /* base memory (first MiB) */
370 val = MIN(ram_size / 1024, 640);
371 rtc_set_memory(s, 0x15, val);
372 rtc_set_memory(s, 0x16, val >> 8);
373 /* extended memory (next 64MiB) */
374 if (ram_size > 1024 * 1024) {
375 val = (ram_size - 1024 * 1024) / 1024;
376 } else {
377 val = 0;
378 }
379 if (val > 65535)
380 val = 65535;
381 rtc_set_memory(s, 0x17, val);
382 rtc_set_memory(s, 0x18, val >> 8);
383 rtc_set_memory(s, 0x30, val);
384 rtc_set_memory(s, 0x31, val >> 8);
385 /* memory between 16MiB and 4GiB */
386 if (ram_size > 16 * 1024 * 1024) {
387 val = (ram_size - 16 * 1024 * 1024) / 65536;
388 } else {
389 val = 0;
390 }
391 if (val > 65535)
392 val = 65535;
393 rtc_set_memory(s, 0x34, val);
394 rtc_set_memory(s, 0x35, val >> 8);
395 /* memory above 4GiB */
396 val = above_4g_mem_size / 65536;
397 rtc_set_memory(s, 0x5b, val);
398 rtc_set_memory(s, 0x5c, val >> 8);
399 rtc_set_memory(s, 0x5d, val >> 16);
400
401 /* set the number of CPU */
402 rtc_set_memory(s, 0x5f, smp_cpus - 1);
403 /* init CPU hotplug notifier */
404 cpu_hotplug_cb.rtc_state = s;
405 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
406 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
407
408 /* set boot devices, and disable floppy signature check if requested */
409 if (set_boot_dev(s, boot_device, fd_bootchk)) {
410 exit(1);
411 }
412
413 /* floppy type */
414 if (floppy) {
415 for (i = 0; i < 2; i++) {
416 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
417 }
418 }
419 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
420 cmos_get_fd_drive_type(fd_type[1]);
421 rtc_set_memory(s, 0x10, val);
422
423 val = 0;
424 nb = 0;
425 if (fd_type[0] < FDRIVE_DRV_NONE) {
426 nb++;
427 }
428 if (fd_type[1] < FDRIVE_DRV_NONE) {
429 nb++;
430 }
431 switch (nb) {
432 case 0:
433 break;
434 case 1:
435 val |= 0x01; /* 1 drive, ready for boot */
436 break;
437 case 2:
438 val |= 0x41; /* 2 drives, ready for boot */
439 break;
440 }
441 val |= 0x02; /* FPU is there */
442 val |= 0x04; /* PS/2 mouse installed */
443 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
444
445 /* hard drives */
446 arg.rtc_state = s;
447 arg.idebus[0] = idebus0;
448 arg.idebus[1] = idebus1;
449 qemu_register_reset(pc_cmos_init_late, &arg);
450 }
451
452 #define TYPE_PORT92 "port92"
453 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
454
455 /* port 92 stuff: could be split off */
456 typedef struct Port92State {
457 ISADevice parent_obj;
458
459 MemoryRegion io;
460 uint8_t outport;
461 qemu_irq *a20_out;
462 } Port92State;
463
464 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
465 unsigned size)
466 {
467 Port92State *s = opaque;
468
469 DPRINTF("port92: write 0x%02x\n", val);
470 s->outport = val;
471 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
472 if (val & 1) {
473 qemu_system_reset_request();
474 }
475 }
476
477 static uint64_t port92_read(void *opaque, hwaddr addr,
478 unsigned size)
479 {
480 Port92State *s = opaque;
481 uint32_t ret;
482
483 ret = s->outport;
484 DPRINTF("port92: read 0x%02x\n", ret);
485 return ret;
486 }
487
488 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
489 {
490 Port92State *s = PORT92(dev);
491
492 s->a20_out = a20_out;
493 }
494
495 static const VMStateDescription vmstate_port92_isa = {
496 .name = "port92",
497 .version_id = 1,
498 .minimum_version_id = 1,
499 .minimum_version_id_old = 1,
500 .fields = (VMStateField []) {
501 VMSTATE_UINT8(outport, Port92State),
502 VMSTATE_END_OF_LIST()
503 }
504 };
505
506 static void port92_reset(DeviceState *d)
507 {
508 Port92State *s = PORT92(d);
509
510 s->outport &= ~1;
511 }
512
513 static const MemoryRegionOps port92_ops = {
514 .read = port92_read,
515 .write = port92_write,
516 .impl = {
517 .min_access_size = 1,
518 .max_access_size = 1,
519 },
520 .endianness = DEVICE_LITTLE_ENDIAN,
521 };
522
523 static int port92_initfn(ISADevice *dev)
524 {
525 Port92State *s = PORT92(dev);
526
527 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
528 isa_register_ioport(dev, &s->io, 0x92);
529
530 s->outport = 0;
531 return 0;
532 }
533
534 static void port92_class_initfn(ObjectClass *klass, void *data)
535 {
536 DeviceClass *dc = DEVICE_CLASS(klass);
537 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
538 ic->init = port92_initfn;
539 dc->no_user = 1;
540 dc->reset = port92_reset;
541 dc->vmsd = &vmstate_port92_isa;
542 }
543
544 static const TypeInfo port92_info = {
545 .name = TYPE_PORT92,
546 .parent = TYPE_ISA_DEVICE,
547 .instance_size = sizeof(Port92State),
548 .class_init = port92_class_initfn,
549 };
550
551 static void port92_register_types(void)
552 {
553 type_register_static(&port92_info);
554 }
555
556 type_init(port92_register_types)
557
558 static void handle_a20_line_change(void *opaque, int irq, int level)
559 {
560 X86CPU *cpu = opaque;
561
562 /* XXX: send to all CPUs ? */
563 /* XXX: add logic to handle multiple A20 line sources */
564 x86_cpu_set_a20(cpu, level);
565 }
566
567 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
568 {
569 int index = le32_to_cpu(e820_table.count);
570 struct e820_entry *entry;
571
572 if (index >= E820_NR_ENTRIES)
573 return -EBUSY;
574 entry = &e820_table.entry[index++];
575
576 entry->address = cpu_to_le64(address);
577 entry->length = cpu_to_le64(length);
578 entry->type = cpu_to_le32(type);
579
580 e820_table.count = cpu_to_le32(index);
581 return index;
582 }
583
584 /* Calculates the limit to CPU APIC ID values
585 *
586 * This function returns the limit for the APIC ID value, so that all
587 * CPU APIC IDs are < pc_apic_id_limit().
588 *
589 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
590 */
591 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
592 {
593 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
594 }
595
596 static void *bochs_bios_init(void)
597 {
598 void *fw_cfg;
599 uint8_t *smbios_table;
600 size_t smbios_len;
601 uint64_t *numa_fw_cfg;
602 int i, j;
603 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
604
605 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
606 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
607 *
608 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
609 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
610 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
611 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
612 * may see".
613 *
614 * So, this means we must not use max_cpus, here, but the maximum possible
615 * APIC ID value, plus one.
616 *
617 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
618 * the APIC ID, not the "CPU index"
619 */
620 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
621 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
622 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
623 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
624 acpi_tables, acpi_tables_len);
625 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
626
627 smbios_table = smbios_get_table(&smbios_len);
628 if (smbios_table)
629 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
630 smbios_table, smbios_len);
631 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
632 &e820_table, sizeof(e820_table));
633
634 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
635 /* allocate memory for the NUMA channel: one (64bit) word for the number
636 * of nodes, one word for each VCPU->node and one word for each node to
637 * hold the amount of memory.
638 */
639 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
640 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
641 for (i = 0; i < max_cpus; i++) {
642 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
643 assert(apic_id < apic_id_limit);
644 for (j = 0; j < nb_numa_nodes; j++) {
645 if (test_bit(i, node_cpumask[j])) {
646 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
647 break;
648 }
649 }
650 }
651 for (i = 0; i < nb_numa_nodes; i++) {
652 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
653 }
654 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
655 (1 + apic_id_limit + nb_numa_nodes) *
656 sizeof(*numa_fw_cfg));
657
658 return fw_cfg;
659 }
660
661 static long get_file_size(FILE *f)
662 {
663 long where, size;
664
665 /* XXX: on Unix systems, using fstat() probably makes more sense */
666
667 where = ftell(f);
668 fseek(f, 0, SEEK_END);
669 size = ftell(f);
670 fseek(f, where, SEEK_SET);
671
672 return size;
673 }
674
675 static void load_linux(void *fw_cfg,
676 const char *kernel_filename,
677 const char *initrd_filename,
678 const char *kernel_cmdline,
679 hwaddr max_ram_size)
680 {
681 uint16_t protocol;
682 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
683 uint32_t initrd_max;
684 uint8_t header[8192], *setup, *kernel, *initrd_data;
685 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
686 FILE *f;
687 char *vmode;
688
689 /* Align to 16 bytes as a paranoia measure */
690 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
691
692 /* load the kernel header */
693 f = fopen(kernel_filename, "rb");
694 if (!f || !(kernel_size = get_file_size(f)) ||
695 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
696 MIN(ARRAY_SIZE(header), kernel_size)) {
697 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
698 kernel_filename, strerror(errno));
699 exit(1);
700 }
701
702 /* kernel protocol version */
703 #if 0
704 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
705 #endif
706 if (ldl_p(header+0x202) == 0x53726448) {
707 protocol = lduw_p(header+0x206);
708 } else {
709 /* This looks like a multiboot kernel. If it is, let's stop
710 treating it like a Linux kernel. */
711 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
712 kernel_cmdline, kernel_size, header)) {
713 return;
714 }
715 protocol = 0;
716 }
717
718 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
719 /* Low kernel */
720 real_addr = 0x90000;
721 cmdline_addr = 0x9a000 - cmdline_size;
722 prot_addr = 0x10000;
723 } else if (protocol < 0x202) {
724 /* High but ancient kernel */
725 real_addr = 0x90000;
726 cmdline_addr = 0x9a000 - cmdline_size;
727 prot_addr = 0x100000;
728 } else {
729 /* High and recent kernel */
730 real_addr = 0x10000;
731 cmdline_addr = 0x20000;
732 prot_addr = 0x100000;
733 }
734
735 #if 0
736 fprintf(stderr,
737 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
738 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
739 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
740 real_addr,
741 cmdline_addr,
742 prot_addr);
743 #endif
744
745 /* highest address for loading the initrd */
746 if (protocol >= 0x203) {
747 initrd_max = ldl_p(header+0x22c);
748 } else {
749 initrd_max = 0x37ffffff;
750 }
751
752 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
753 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
754
755 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
756 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
757 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
758
759 if (protocol >= 0x202) {
760 stl_p(header+0x228, cmdline_addr);
761 } else {
762 stw_p(header+0x20, 0xA33F);
763 stw_p(header+0x22, cmdline_addr-real_addr);
764 }
765
766 /* handle vga= parameter */
767 vmode = strstr(kernel_cmdline, "vga=");
768 if (vmode) {
769 unsigned int video_mode;
770 /* skip "vga=" */
771 vmode += 4;
772 if (!strncmp(vmode, "normal", 6)) {
773 video_mode = 0xffff;
774 } else if (!strncmp(vmode, "ext", 3)) {
775 video_mode = 0xfffe;
776 } else if (!strncmp(vmode, "ask", 3)) {
777 video_mode = 0xfffd;
778 } else {
779 video_mode = strtol(vmode, NULL, 0);
780 }
781 stw_p(header+0x1fa, video_mode);
782 }
783
784 /* loader type */
785 /* High nybble = B reserved for QEMU; low nybble is revision number.
786 If this code is substantially changed, you may want to consider
787 incrementing the revision. */
788 if (protocol >= 0x200) {
789 header[0x210] = 0xB0;
790 }
791 /* heap */
792 if (protocol >= 0x201) {
793 header[0x211] |= 0x80; /* CAN_USE_HEAP */
794 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
795 }
796
797 /* load initrd */
798 if (initrd_filename) {
799 if (protocol < 0x200) {
800 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
801 exit(1);
802 }
803
804 initrd_size = get_image_size(initrd_filename);
805 if (initrd_size < 0) {
806 fprintf(stderr, "qemu: error reading initrd %s\n",
807 initrd_filename);
808 exit(1);
809 }
810
811 initrd_addr = (initrd_max-initrd_size) & ~4095;
812
813 initrd_data = g_malloc(initrd_size);
814 load_image(initrd_filename, initrd_data);
815
816 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
817 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
818 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
819
820 stl_p(header+0x218, initrd_addr);
821 stl_p(header+0x21c, initrd_size);
822 }
823
824 /* load kernel and setup */
825 setup_size = header[0x1f1];
826 if (setup_size == 0) {
827 setup_size = 4;
828 }
829 setup_size = (setup_size+1)*512;
830 kernel_size -= setup_size;
831
832 setup = g_malloc(setup_size);
833 kernel = g_malloc(kernel_size);
834 fseek(f, 0, SEEK_SET);
835 if (fread(setup, 1, setup_size, f) != setup_size) {
836 fprintf(stderr, "fread() failed\n");
837 exit(1);
838 }
839 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
840 fprintf(stderr, "fread() failed\n");
841 exit(1);
842 }
843 fclose(f);
844 memcpy(setup, header, MIN(sizeof(header), setup_size));
845
846 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
847 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
848 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
849
850 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
851 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
852 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
853
854 option_rom[nb_option_roms].name = "linuxboot.bin";
855 option_rom[nb_option_roms].bootindex = 0;
856 nb_option_roms++;
857 }
858
859 #define NE2000_NB_MAX 6
860
861 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
862 0x280, 0x380 };
863 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
864
865 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
866 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
867
868 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
869 {
870 static int nb_ne2k = 0;
871
872 if (nb_ne2k == NE2000_NB_MAX)
873 return;
874 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
875 ne2000_irq[nb_ne2k], nd);
876 nb_ne2k++;
877 }
878
879 DeviceState *cpu_get_current_apic(void)
880 {
881 if (cpu_single_env) {
882 return cpu_single_env->apic_state;
883 } else {
884 return NULL;
885 }
886 }
887
888 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
889 {
890 X86CPU *cpu = opaque;
891
892 if (level) {
893 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
894 }
895 }
896
897 void pc_cpus_init(const char *cpu_model)
898 {
899 int i;
900
901 /* init CPUs */
902 if (cpu_model == NULL) {
903 #ifdef TARGET_X86_64
904 cpu_model = "qemu64";
905 #else
906 cpu_model = "qemu32";
907 #endif
908 }
909
910 for (i = 0; i < smp_cpus; i++) {
911 if (!cpu_x86_init(cpu_model)) {
912 exit(1);
913 }
914 }
915 }
916
917 void pc_acpi_init(const char *default_dsdt)
918 {
919 char *filename;
920
921 if (acpi_tables != NULL) {
922 /* manually set via -acpitable, leave it alone */
923 return;
924 }
925
926 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
927 if (filename == NULL) {
928 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
929 } else {
930 char *arg;
931 QemuOpts *opts;
932 Error *err = NULL;
933
934 arg = g_strdup_printf("file=%s", filename);
935
936 /* creates a deep copy of "arg" */
937 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
938 g_assert(opts != NULL);
939
940 acpi_table_add(opts, &err);
941 if (err) {
942 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
943 error_get_pretty(err));
944 error_free(err);
945 }
946 g_free(arg);
947 g_free(filename);
948 }
949 }
950
951 void *pc_memory_init(MemoryRegion *system_memory,
952 const char *kernel_filename,
953 const char *kernel_cmdline,
954 const char *initrd_filename,
955 ram_addr_t below_4g_mem_size,
956 ram_addr_t above_4g_mem_size,
957 MemoryRegion *rom_memory,
958 MemoryRegion **ram_memory)
959 {
960 int linux_boot, i;
961 MemoryRegion *ram, *option_rom_mr;
962 MemoryRegion *ram_below_4g, *ram_above_4g;
963 void *fw_cfg;
964
965 linux_boot = (kernel_filename != NULL);
966
967 /* Allocate RAM. We allocate it as a single memory region and use
968 * aliases to address portions of it, mostly for backwards compatibility
969 * with older qemus that used qemu_ram_alloc().
970 */
971 ram = g_malloc(sizeof(*ram));
972 memory_region_init_ram(ram, "pc.ram",
973 below_4g_mem_size + above_4g_mem_size);
974 vmstate_register_ram_global(ram);
975 *ram_memory = ram;
976 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
977 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
978 0, below_4g_mem_size);
979 memory_region_add_subregion(system_memory, 0, ram_below_4g);
980 if (above_4g_mem_size > 0) {
981 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
982 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
983 below_4g_mem_size, above_4g_mem_size);
984 memory_region_add_subregion(system_memory, 0x100000000ULL,
985 ram_above_4g);
986 }
987
988
989 /* Initialize PC system firmware */
990 pc_system_firmware_init(rom_memory);
991
992 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
993 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
994 vmstate_register_ram_global(option_rom_mr);
995 memory_region_add_subregion_overlap(rom_memory,
996 PC_ROM_MIN_VGA,
997 option_rom_mr,
998 1);
999
1000 fw_cfg = bochs_bios_init();
1001 rom_set_fw(fw_cfg);
1002
1003 if (linux_boot) {
1004 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1005 }
1006
1007 for (i = 0; i < nb_option_roms; i++) {
1008 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1009 }
1010 return fw_cfg;
1011 }
1012
1013 qemu_irq *pc_allocate_cpu_irq(void)
1014 {
1015 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1016 }
1017
1018 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1019 {
1020 DeviceState *dev = NULL;
1021
1022 if (pci_bus) {
1023 PCIDevice *pcidev = pci_vga_init(pci_bus);
1024 dev = pcidev ? &pcidev->qdev : NULL;
1025 } else if (isa_bus) {
1026 ISADevice *isadev = isa_vga_init(isa_bus);
1027 dev = isadev ? &isadev->qdev : NULL;
1028 }
1029 return dev;
1030 }
1031
1032 static void cpu_request_exit(void *opaque, int irq, int level)
1033 {
1034 CPUX86State *env = cpu_single_env;
1035
1036 if (env && level) {
1037 cpu_exit(env);
1038 }
1039 }
1040
1041 static const MemoryRegionOps ioport80_io_ops = {
1042 .write = ioport80_write,
1043 .read = ioport80_read,
1044 .endianness = DEVICE_NATIVE_ENDIAN,
1045 .impl = {
1046 .min_access_size = 1,
1047 .max_access_size = 1,
1048 },
1049 };
1050
1051 static const MemoryRegionOps ioportF0_io_ops = {
1052 .write = ioportF0_write,
1053 .read = ioportF0_read,
1054 .endianness = DEVICE_NATIVE_ENDIAN,
1055 .impl = {
1056 .min_access_size = 1,
1057 .max_access_size = 1,
1058 },
1059 };
1060
1061 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1062 ISADevice **rtc_state,
1063 ISADevice **floppy,
1064 bool no_vmport)
1065 {
1066 int i;
1067 DriveInfo *fd[MAX_FD];
1068 DeviceState *hpet = NULL;
1069 int pit_isa_irq = 0;
1070 qemu_irq pit_alt_irq = NULL;
1071 qemu_irq rtc_irq = NULL;
1072 qemu_irq *a20_line;
1073 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1074 qemu_irq *cpu_exit_irq;
1075 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1076 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1077
1078 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1079 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1080
1081 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1082 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1083
1084 /*
1085 * Check if an HPET shall be created.
1086 *
1087 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1088 * when the HPET wants to take over. Thus we have to disable the latter.
1089 */
1090 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1091 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1092
1093 if (hpet) {
1094 for (i = 0; i < GSI_NUM_PINS; i++) {
1095 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1096 }
1097 pit_isa_irq = -1;
1098 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1099 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1100 }
1101 }
1102 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1103
1104 qemu_register_boot_set(pc_boot_set, *rtc_state);
1105
1106 if (!xen_enabled()) {
1107 if (kvm_irqchip_in_kernel()) {
1108 pit = kvm_pit_init(isa_bus, 0x40);
1109 } else {
1110 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1111 }
1112 if (hpet) {
1113 /* connect PIT to output control line of the HPET */
1114 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1115 }
1116 pcspk_init(isa_bus, pit);
1117 }
1118
1119 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1120 if (serial_hds[i]) {
1121 serial_isa_init(isa_bus, i, serial_hds[i]);
1122 }
1123 }
1124
1125 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1126 if (parallel_hds[i]) {
1127 parallel_init(isa_bus, i, parallel_hds[i]);
1128 }
1129 }
1130
1131 a20_line = qemu_allocate_irqs(handle_a20_line_change,
1132 x86_env_get_cpu(first_cpu), 2);
1133 i8042 = isa_create_simple(isa_bus, "i8042");
1134 i8042_setup_a20_line(i8042, &a20_line[0]);
1135 if (!no_vmport) {
1136 vmport_init(isa_bus);
1137 vmmouse = isa_try_create(isa_bus, "vmmouse");
1138 } else {
1139 vmmouse = NULL;
1140 }
1141 if (vmmouse) {
1142 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1143 qdev_init_nofail(&vmmouse->qdev);
1144 }
1145 port92 = isa_create_simple(isa_bus, "port92");
1146 port92_init(port92, &a20_line[1]);
1147
1148 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1149 DMA_init(0, cpu_exit_irq);
1150
1151 for(i = 0; i < MAX_FD; i++) {
1152 fd[i] = drive_get(IF_FLOPPY, 0, i);
1153 }
1154 *floppy = fdctrl_init_isa(isa_bus, fd);
1155 }
1156
1157 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1158 {
1159 int i;
1160
1161 for (i = 0; i < nb_nics; i++) {
1162 NICInfo *nd = &nd_table[i];
1163
1164 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1165 pc_init_ne2k_isa(isa_bus, nd);
1166 } else {
1167 pci_nic_init_nofail(nd, "e1000", NULL);
1168 }
1169 }
1170 }
1171
1172 void pc_pci_device_init(PCIBus *pci_bus)
1173 {
1174 int max_bus;
1175 int bus;
1176
1177 max_bus = drive_get_max_bus(IF_SCSI);
1178 for (bus = 0; bus <= max_bus; bus++) {
1179 pci_create_simple(pci_bus, -1, "lsi53c895a");
1180 }
1181 }
1182
1183 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1184 {
1185 DeviceState *dev;
1186 SysBusDevice *d;
1187 unsigned int i;
1188
1189 if (kvm_irqchip_in_kernel()) {
1190 dev = qdev_create(NULL, "kvm-ioapic");
1191 } else {
1192 dev = qdev_create(NULL, "ioapic");
1193 }
1194 if (parent_name) {
1195 object_property_add_child(object_resolve_path(parent_name, NULL),
1196 "ioapic", OBJECT(dev), NULL);
1197 }
1198 qdev_init_nofail(dev);
1199 d = SYS_BUS_DEVICE(dev);
1200 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1201
1202 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1203 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1204 }
1205 }