]> git.proxmox.com Git - qemu.git/blob - hw/i386/pc.c
pc: move IO_APIC_DEFAULT_ADDRESS to include/hw/i386/ioapic.h
[qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/block/fdc.h"
29 #include "hw/ide.h"
30 #include "hw/pci/pci.h"
31 #include "monitor/monitor.h"
32 #include "hw/nvram/fw_cfg.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/i386/smbios.h"
35 #include "hw/loader.h"
36 #include "elf.h"
37 #include "multiboot.h"
38 #include "hw/timer/mc146818rtc.h"
39 #include "hw/timer/i8254.h"
40 #include "hw/audio/pcspk.h"
41 #include "hw/pci/msi.h"
42 #include "hw/sysbus.h"
43 #include "sysemu/sysemu.h"
44 #include "sysemu/kvm.h"
45 #include "kvm_i386.h"
46 #include "hw/xen/xen.h"
47 #include "sysemu/blockdev.h"
48 #include "hw/block/block.h"
49 #include "ui/qemu-spice.h"
50 #include "exec/memory.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/arch_init.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/config-file.h"
55 #include "hw/acpi/acpi.h"
56 #include "hw/cpu/icc_bus.h"
57 #include "hw/boards.h"
58
59 /* debug PC/ISA interrupts */
60 //#define DEBUG_IRQ
61
62 #ifdef DEBUG_IRQ
63 #define DPRINTF(fmt, ...) \
64 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF(fmt, ...)
67 #endif
68
69 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
70 #define ACPI_DATA_SIZE 0x10000
71 #define BIOS_CFG_IOPORT 0x510
72 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
73 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
74 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
75 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
76 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
77
78 #define E820_NR_ENTRIES 16
79
80 struct e820_entry {
81 uint64_t address;
82 uint64_t length;
83 uint32_t type;
84 } QEMU_PACKED __attribute((__aligned__(4)));
85
86 struct e820_table {
87 uint32_t count;
88 struct e820_entry entry[E820_NR_ENTRIES];
89 } QEMU_PACKED __attribute((__aligned__(4)));
90
91 static struct e820_table e820_table;
92 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
93
94 void gsi_handler(void *opaque, int n, int level)
95 {
96 GSIState *s = opaque;
97
98 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
99 if (n < ISA_NUM_IRQS) {
100 qemu_set_irq(s->i8259_irq[n], level);
101 }
102 qemu_set_irq(s->ioapic_irq[n], level);
103 }
104
105 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
106 unsigned size)
107 {
108 }
109
110 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
111 {
112 return 0xffffffffffffffffULL;
113 }
114
115 /* MSDOS compatibility mode FPU exception support */
116 static qemu_irq ferr_irq;
117
118 void pc_register_ferr_irq(qemu_irq irq)
119 {
120 ferr_irq = irq;
121 }
122
123 /* XXX: add IGNNE support */
124 void cpu_set_ferr(CPUX86State *s)
125 {
126 qemu_irq_raise(ferr_irq);
127 }
128
129 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
130 unsigned size)
131 {
132 qemu_irq_lower(ferr_irq);
133 }
134
135 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
136 {
137 return 0xffffffffffffffffULL;
138 }
139
140 /* TSC handling */
141 uint64_t cpu_get_tsc(CPUX86State *env)
142 {
143 return cpu_get_ticks();
144 }
145
146 /* SMM support */
147
148 static cpu_set_smm_t smm_set;
149 static void *smm_arg;
150
151 void cpu_smm_register(cpu_set_smm_t callback, void *arg)
152 {
153 assert(smm_set == NULL);
154 assert(smm_arg == NULL);
155 smm_set = callback;
156 smm_arg = arg;
157 }
158
159 void cpu_smm_update(CPUX86State *env)
160 {
161 if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
162 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
163 }
164 }
165
166
167 /* IRQ handling */
168 int cpu_get_pic_interrupt(CPUX86State *env)
169 {
170 int intno;
171
172 intno = apic_get_interrupt(env->apic_state);
173 if (intno >= 0) {
174 return intno;
175 }
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(env->apic_state)) {
178 return -1;
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189 CPUX86State *env = &cpu->env;
190
191 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
192 if (env->apic_state) {
193 while (cs) {
194 cpu = X86_CPU(cs);
195 env = &cpu->env;
196 if (apic_accept_pic_intr(env->apic_state)) {
197 apic_deliver_pic_intr(env->apic_state, level);
198 }
199 cs = cs->next_cpu;
200 }
201 } else {
202 if (level) {
203 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
204 } else {
205 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
206 }
207 }
208 }
209
210 /* PC cmos mappings */
211
212 #define REG_EQUIPMENT_BYTE 0x14
213
214 static int cmos_get_fd_drive_type(FDriveType fd0)
215 {
216 int val;
217
218 switch (fd0) {
219 case FDRIVE_DRV_144:
220 /* 1.44 Mb 3"5 drive */
221 val = 4;
222 break;
223 case FDRIVE_DRV_288:
224 /* 2.88 Mb 3"5 drive */
225 val = 5;
226 break;
227 case FDRIVE_DRV_120:
228 /* 1.2 Mb 5"5 drive */
229 val = 2;
230 break;
231 case FDRIVE_DRV_NONE:
232 default:
233 val = 0;
234 break;
235 }
236 return val;
237 }
238
239 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
240 int16_t cylinders, int8_t heads, int8_t sectors)
241 {
242 rtc_set_memory(s, type_ofs, 47);
243 rtc_set_memory(s, info_ofs, cylinders);
244 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
245 rtc_set_memory(s, info_ofs + 2, heads);
246 rtc_set_memory(s, info_ofs + 3, 0xff);
247 rtc_set_memory(s, info_ofs + 4, 0xff);
248 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
249 rtc_set_memory(s, info_ofs + 6, cylinders);
250 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
251 rtc_set_memory(s, info_ofs + 8, sectors);
252 }
253
254 /* convert boot_device letter to something recognizable by the bios */
255 static int boot_device2nibble(char boot_device)
256 {
257 switch(boot_device) {
258 case 'a':
259 case 'b':
260 return 0x01; /* floppy boot */
261 case 'c':
262 return 0x02; /* hard drive boot */
263 case 'd':
264 return 0x03; /* CD-ROM boot */
265 case 'n':
266 return 0x04; /* Network boot */
267 }
268 return 0;
269 }
270
271 static int set_boot_dev(ISADevice *s, const char *boot_device)
272 {
273 #define PC_MAX_BOOT_DEVICES 3
274 int nbds, bds[3] = { 0, };
275 int i;
276
277 nbds = strlen(boot_device);
278 if (nbds > PC_MAX_BOOT_DEVICES) {
279 error_report("Too many boot devices for PC");
280 return(1);
281 }
282 for (i = 0; i < nbds; i++) {
283 bds[i] = boot_device2nibble(boot_device[i]);
284 if (bds[i] == 0) {
285 error_report("Invalid boot device for PC: '%c'",
286 boot_device[i]);
287 return(1);
288 }
289 }
290 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
291 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
292 return(0);
293 }
294
295 static int pc_boot_set(void *opaque, const char *boot_device)
296 {
297 return set_boot_dev(opaque, boot_device);
298 }
299
300 typedef struct pc_cmos_init_late_arg {
301 ISADevice *rtc_state;
302 BusState *idebus[2];
303 } pc_cmos_init_late_arg;
304
305 static void pc_cmos_init_late(void *opaque)
306 {
307 pc_cmos_init_late_arg *arg = opaque;
308 ISADevice *s = arg->rtc_state;
309 int16_t cylinders;
310 int8_t heads, sectors;
311 int val;
312 int i, trans;
313
314 val = 0;
315 if (ide_get_geometry(arg->idebus[0], 0,
316 &cylinders, &heads, &sectors) >= 0) {
317 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
318 val |= 0xf0;
319 }
320 if (ide_get_geometry(arg->idebus[0], 1,
321 &cylinders, &heads, &sectors) >= 0) {
322 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
323 val |= 0x0f;
324 }
325 rtc_set_memory(s, 0x12, val);
326
327 val = 0;
328 for (i = 0; i < 4; i++) {
329 /* NOTE: ide_get_geometry() returns the physical
330 geometry. It is always such that: 1 <= sects <= 63, 1
331 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
332 geometry can be different if a translation is done. */
333 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
334 &cylinders, &heads, &sectors) >= 0) {
335 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
336 assert((trans & ~3) == 0);
337 val |= trans << (i * 2);
338 }
339 }
340 rtc_set_memory(s, 0x39, val);
341
342 qemu_unregister_reset(pc_cmos_init_late, opaque);
343 }
344
345 typedef struct RTCCPUHotplugArg {
346 Notifier cpu_added_notifier;
347 ISADevice *rtc_state;
348 } RTCCPUHotplugArg;
349
350 static void rtc_notify_cpu_added(Notifier *notifier, void *data)
351 {
352 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
353 cpu_added_notifier);
354 ISADevice *s = arg->rtc_state;
355
356 /* increment the number of CPUs */
357 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
358 }
359
360 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
361 const char *boot_device,
362 ISADevice *floppy, BusState *idebus0, BusState *idebus1,
363 ISADevice *s)
364 {
365 int val, nb, i;
366 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
367 static pc_cmos_init_late_arg arg;
368 static RTCCPUHotplugArg cpu_hotplug_cb;
369
370 /* various important CMOS locations needed by PC/Bochs bios */
371
372 /* memory size */
373 /* base memory (first MiB) */
374 val = MIN(ram_size / 1024, 640);
375 rtc_set_memory(s, 0x15, val);
376 rtc_set_memory(s, 0x16, val >> 8);
377 /* extended memory (next 64MiB) */
378 if (ram_size > 1024 * 1024) {
379 val = (ram_size - 1024 * 1024) / 1024;
380 } else {
381 val = 0;
382 }
383 if (val > 65535)
384 val = 65535;
385 rtc_set_memory(s, 0x17, val);
386 rtc_set_memory(s, 0x18, val >> 8);
387 rtc_set_memory(s, 0x30, val);
388 rtc_set_memory(s, 0x31, val >> 8);
389 /* memory between 16MiB and 4GiB */
390 if (ram_size > 16 * 1024 * 1024) {
391 val = (ram_size - 16 * 1024 * 1024) / 65536;
392 } else {
393 val = 0;
394 }
395 if (val > 65535)
396 val = 65535;
397 rtc_set_memory(s, 0x34, val);
398 rtc_set_memory(s, 0x35, val >> 8);
399 /* memory above 4GiB */
400 val = above_4g_mem_size / 65536;
401 rtc_set_memory(s, 0x5b, val);
402 rtc_set_memory(s, 0x5c, val >> 8);
403 rtc_set_memory(s, 0x5d, val >> 16);
404
405 /* set the number of CPU */
406 rtc_set_memory(s, 0x5f, smp_cpus - 1);
407 /* init CPU hotplug notifier */
408 cpu_hotplug_cb.rtc_state = s;
409 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
410 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
411
412 if (set_boot_dev(s, boot_device)) {
413 exit(1);
414 }
415
416 /* floppy type */
417 if (floppy) {
418 for (i = 0; i < 2; i++) {
419 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
420 }
421 }
422 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
423 cmos_get_fd_drive_type(fd_type[1]);
424 rtc_set_memory(s, 0x10, val);
425
426 val = 0;
427 nb = 0;
428 if (fd_type[0] < FDRIVE_DRV_NONE) {
429 nb++;
430 }
431 if (fd_type[1] < FDRIVE_DRV_NONE) {
432 nb++;
433 }
434 switch (nb) {
435 case 0:
436 break;
437 case 1:
438 val |= 0x01; /* 1 drive, ready for boot */
439 break;
440 case 2:
441 val |= 0x41; /* 2 drives, ready for boot */
442 break;
443 }
444 val |= 0x02; /* FPU is there */
445 val |= 0x04; /* PS/2 mouse installed */
446 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
447
448 /* hard drives */
449 arg.rtc_state = s;
450 arg.idebus[0] = idebus0;
451 arg.idebus[1] = idebus1;
452 qemu_register_reset(pc_cmos_init_late, &arg);
453 }
454
455 #define TYPE_PORT92 "port92"
456 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
457
458 /* port 92 stuff: could be split off */
459 typedef struct Port92State {
460 ISADevice parent_obj;
461
462 MemoryRegion io;
463 uint8_t outport;
464 qemu_irq *a20_out;
465 } Port92State;
466
467 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
468 unsigned size)
469 {
470 Port92State *s = opaque;
471
472 DPRINTF("port92: write 0x%02x\n", val);
473 s->outport = val;
474 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
475 if (val & 1) {
476 qemu_system_reset_request();
477 }
478 }
479
480 static uint64_t port92_read(void *opaque, hwaddr addr,
481 unsigned size)
482 {
483 Port92State *s = opaque;
484 uint32_t ret;
485
486 ret = s->outport;
487 DPRINTF("port92: read 0x%02x\n", ret);
488 return ret;
489 }
490
491 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
492 {
493 Port92State *s = PORT92(dev);
494
495 s->a20_out = a20_out;
496 }
497
498 static const VMStateDescription vmstate_port92_isa = {
499 .name = "port92",
500 .version_id = 1,
501 .minimum_version_id = 1,
502 .minimum_version_id_old = 1,
503 .fields = (VMStateField []) {
504 VMSTATE_UINT8(outport, Port92State),
505 VMSTATE_END_OF_LIST()
506 }
507 };
508
509 static void port92_reset(DeviceState *d)
510 {
511 Port92State *s = PORT92(d);
512
513 s->outport &= ~1;
514 }
515
516 static const MemoryRegionOps port92_ops = {
517 .read = port92_read,
518 .write = port92_write,
519 .impl = {
520 .min_access_size = 1,
521 .max_access_size = 1,
522 },
523 .endianness = DEVICE_LITTLE_ENDIAN,
524 };
525
526 static void port92_initfn(Object *obj)
527 {
528 Port92State *s = PORT92(obj);
529
530 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
531
532 s->outport = 0;
533 }
534
535 static void port92_realizefn(DeviceState *dev, Error **errp)
536 {
537 ISADevice *isadev = ISA_DEVICE(dev);
538 Port92State *s = PORT92(dev);
539
540 isa_register_ioport(isadev, &s->io, 0x92);
541 }
542
543 static void port92_class_initfn(ObjectClass *klass, void *data)
544 {
545 DeviceClass *dc = DEVICE_CLASS(klass);
546
547 dc->no_user = 1;
548 dc->realize = port92_realizefn;
549 dc->reset = port92_reset;
550 dc->vmsd = &vmstate_port92_isa;
551 }
552
553 static const TypeInfo port92_info = {
554 .name = TYPE_PORT92,
555 .parent = TYPE_ISA_DEVICE,
556 .instance_size = sizeof(Port92State),
557 .instance_init = port92_initfn,
558 .class_init = port92_class_initfn,
559 };
560
561 static void port92_register_types(void)
562 {
563 type_register_static(&port92_info);
564 }
565
566 type_init(port92_register_types)
567
568 static void handle_a20_line_change(void *opaque, int irq, int level)
569 {
570 X86CPU *cpu = opaque;
571
572 /* XXX: send to all CPUs ? */
573 /* XXX: add logic to handle multiple A20 line sources */
574 x86_cpu_set_a20(cpu, level);
575 }
576
577 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
578 {
579 int index = le32_to_cpu(e820_table.count);
580 struct e820_entry *entry;
581
582 if (index >= E820_NR_ENTRIES)
583 return -EBUSY;
584 entry = &e820_table.entry[index++];
585
586 entry->address = cpu_to_le64(address);
587 entry->length = cpu_to_le64(length);
588 entry->type = cpu_to_le32(type);
589
590 e820_table.count = cpu_to_le32(index);
591 return index;
592 }
593
594 /* Calculates the limit to CPU APIC ID values
595 *
596 * This function returns the limit for the APIC ID value, so that all
597 * CPU APIC IDs are < pc_apic_id_limit().
598 *
599 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
600 */
601 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
602 {
603 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
604 }
605
606 static FWCfgState *bochs_bios_init(void)
607 {
608 FWCfgState *fw_cfg;
609 uint8_t *smbios_table;
610 size_t smbios_len;
611 uint64_t *numa_fw_cfg;
612 int i, j;
613 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
614
615 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
616 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
617 *
618 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
619 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
620 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
621 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
622 * may see".
623 *
624 * So, this means we must not use max_cpus, here, but the maximum possible
625 * APIC ID value, plus one.
626 *
627 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
628 * the APIC ID, not the "CPU index"
629 */
630 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
631 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
632 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
633 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
634 acpi_tables, acpi_tables_len);
635 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
636
637 smbios_table = smbios_get_table(&smbios_len);
638 if (smbios_table)
639 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
640 smbios_table, smbios_len);
641 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
642 &e820_table, sizeof(e820_table));
643
644 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
645 /* allocate memory for the NUMA channel: one (64bit) word for the number
646 * of nodes, one word for each VCPU->node and one word for each node to
647 * hold the amount of memory.
648 */
649 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
650 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
651 for (i = 0; i < max_cpus; i++) {
652 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
653 assert(apic_id < apic_id_limit);
654 for (j = 0; j < nb_numa_nodes; j++) {
655 if (test_bit(i, node_cpumask[j])) {
656 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
657 break;
658 }
659 }
660 }
661 for (i = 0; i < nb_numa_nodes; i++) {
662 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
663 }
664 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
665 (1 + apic_id_limit + nb_numa_nodes) *
666 sizeof(*numa_fw_cfg));
667
668 return fw_cfg;
669 }
670
671 static long get_file_size(FILE *f)
672 {
673 long where, size;
674
675 /* XXX: on Unix systems, using fstat() probably makes more sense */
676
677 where = ftell(f);
678 fseek(f, 0, SEEK_END);
679 size = ftell(f);
680 fseek(f, where, SEEK_SET);
681
682 return size;
683 }
684
685 static void load_linux(FWCfgState *fw_cfg,
686 const char *kernel_filename,
687 const char *initrd_filename,
688 const char *kernel_cmdline,
689 hwaddr max_ram_size)
690 {
691 uint16_t protocol;
692 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
693 uint32_t initrd_max;
694 uint8_t header[8192], *setup, *kernel, *initrd_data;
695 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
696 FILE *f;
697 char *vmode;
698
699 /* Align to 16 bytes as a paranoia measure */
700 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
701
702 /* load the kernel header */
703 f = fopen(kernel_filename, "rb");
704 if (!f || !(kernel_size = get_file_size(f)) ||
705 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
706 MIN(ARRAY_SIZE(header), kernel_size)) {
707 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
708 kernel_filename, strerror(errno));
709 exit(1);
710 }
711
712 /* kernel protocol version */
713 #if 0
714 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
715 #endif
716 if (ldl_p(header+0x202) == 0x53726448) {
717 protocol = lduw_p(header+0x206);
718 } else {
719 /* This looks like a multiboot kernel. If it is, let's stop
720 treating it like a Linux kernel. */
721 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
722 kernel_cmdline, kernel_size, header)) {
723 return;
724 }
725 protocol = 0;
726 }
727
728 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
729 /* Low kernel */
730 real_addr = 0x90000;
731 cmdline_addr = 0x9a000 - cmdline_size;
732 prot_addr = 0x10000;
733 } else if (protocol < 0x202) {
734 /* High but ancient kernel */
735 real_addr = 0x90000;
736 cmdline_addr = 0x9a000 - cmdline_size;
737 prot_addr = 0x100000;
738 } else {
739 /* High and recent kernel */
740 real_addr = 0x10000;
741 cmdline_addr = 0x20000;
742 prot_addr = 0x100000;
743 }
744
745 #if 0
746 fprintf(stderr,
747 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
748 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
749 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
750 real_addr,
751 cmdline_addr,
752 prot_addr);
753 #endif
754
755 /* highest address for loading the initrd */
756 if (protocol >= 0x203) {
757 initrd_max = ldl_p(header+0x22c);
758 } else {
759 initrd_max = 0x37ffffff;
760 }
761
762 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
763 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
764
765 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
766 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
767 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
768
769 if (protocol >= 0x202) {
770 stl_p(header+0x228, cmdline_addr);
771 } else {
772 stw_p(header+0x20, 0xA33F);
773 stw_p(header+0x22, cmdline_addr-real_addr);
774 }
775
776 /* handle vga= parameter */
777 vmode = strstr(kernel_cmdline, "vga=");
778 if (vmode) {
779 unsigned int video_mode;
780 /* skip "vga=" */
781 vmode += 4;
782 if (!strncmp(vmode, "normal", 6)) {
783 video_mode = 0xffff;
784 } else if (!strncmp(vmode, "ext", 3)) {
785 video_mode = 0xfffe;
786 } else if (!strncmp(vmode, "ask", 3)) {
787 video_mode = 0xfffd;
788 } else {
789 video_mode = strtol(vmode, NULL, 0);
790 }
791 stw_p(header+0x1fa, video_mode);
792 }
793
794 /* loader type */
795 /* High nybble = B reserved for QEMU; low nybble is revision number.
796 If this code is substantially changed, you may want to consider
797 incrementing the revision. */
798 if (protocol >= 0x200) {
799 header[0x210] = 0xB0;
800 }
801 /* heap */
802 if (protocol >= 0x201) {
803 header[0x211] |= 0x80; /* CAN_USE_HEAP */
804 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
805 }
806
807 /* load initrd */
808 if (initrd_filename) {
809 if (protocol < 0x200) {
810 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
811 exit(1);
812 }
813
814 initrd_size = get_image_size(initrd_filename);
815 if (initrd_size < 0) {
816 fprintf(stderr, "qemu: error reading initrd %s\n",
817 initrd_filename);
818 exit(1);
819 }
820
821 initrd_addr = (initrd_max-initrd_size) & ~4095;
822
823 initrd_data = g_malloc(initrd_size);
824 load_image(initrd_filename, initrd_data);
825
826 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
827 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
828 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
829
830 stl_p(header+0x218, initrd_addr);
831 stl_p(header+0x21c, initrd_size);
832 }
833
834 /* load kernel and setup */
835 setup_size = header[0x1f1];
836 if (setup_size == 0) {
837 setup_size = 4;
838 }
839 setup_size = (setup_size+1)*512;
840 kernel_size -= setup_size;
841
842 setup = g_malloc(setup_size);
843 kernel = g_malloc(kernel_size);
844 fseek(f, 0, SEEK_SET);
845 if (fread(setup, 1, setup_size, f) != setup_size) {
846 fprintf(stderr, "fread() failed\n");
847 exit(1);
848 }
849 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
850 fprintf(stderr, "fread() failed\n");
851 exit(1);
852 }
853 fclose(f);
854 memcpy(setup, header, MIN(sizeof(header), setup_size));
855
856 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
857 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
858 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
859
860 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
861 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
862 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
863
864 option_rom[nb_option_roms].name = "linuxboot.bin";
865 option_rom[nb_option_roms].bootindex = 0;
866 nb_option_roms++;
867 }
868
869 #define NE2000_NB_MAX 6
870
871 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
872 0x280, 0x380 };
873 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
874
875 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
876 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
877
878 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
879 {
880 static int nb_ne2k = 0;
881
882 if (nb_ne2k == NE2000_NB_MAX)
883 return;
884 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
885 ne2000_irq[nb_ne2k], nd);
886 nb_ne2k++;
887 }
888
889 DeviceState *cpu_get_current_apic(void)
890 {
891 if (current_cpu) {
892 X86CPU *cpu = X86_CPU(current_cpu);
893 return cpu->env.apic_state;
894 } else {
895 return NULL;
896 }
897 }
898
899 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
900 {
901 X86CPU *cpu = opaque;
902
903 if (level) {
904 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
905 }
906 }
907
908 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
909 DeviceState *icc_bridge, Error **errp)
910 {
911 X86CPU *cpu;
912 Error *local_err = NULL;
913
914 cpu = cpu_x86_create(cpu_model, icc_bridge, errp);
915 if (!cpu) {
916 return cpu;
917 }
918
919 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
920 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
921
922 if (local_err) {
923 if (cpu != NULL) {
924 object_unref(OBJECT(cpu));
925 cpu = NULL;
926 }
927 error_propagate(errp, local_err);
928 }
929 return cpu;
930 }
931
932 static const char *current_cpu_model;
933
934 void pc_hot_add_cpu(const int64_t id, Error **errp)
935 {
936 DeviceState *icc_bridge;
937 int64_t apic_id = x86_cpu_apic_id_from_index(id);
938
939 if (id < 0) {
940 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
941 return;
942 }
943
944 if (cpu_exists(apic_id)) {
945 error_setg(errp, "Unable to add CPU: %" PRIi64
946 ", it already exists", id);
947 return;
948 }
949
950 if (id >= max_cpus) {
951 error_setg(errp, "Unable to add CPU: %" PRIi64
952 ", max allowed: %d", id, max_cpus - 1);
953 return;
954 }
955
956 icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
957 TYPE_ICC_BRIDGE, NULL));
958 pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
959 }
960
961 void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
962 {
963 int i;
964 X86CPU *cpu = NULL;
965 Error *error = NULL;
966
967 /* init CPUs */
968 if (cpu_model == NULL) {
969 #ifdef TARGET_X86_64
970 cpu_model = "qemu64";
971 #else
972 cpu_model = "qemu32";
973 #endif
974 }
975 current_cpu_model = cpu_model;
976
977 for (i = 0; i < smp_cpus; i++) {
978 cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
979 icc_bridge, &error);
980 if (error) {
981 fprintf(stderr, "%s\n", error_get_pretty(error));
982 error_free(error);
983 exit(1);
984 }
985 }
986
987 /* map APIC MMIO area if CPU has APIC */
988 if (cpu && cpu->env.apic_state) {
989 /* XXX: what if the base changes? */
990 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
991 APIC_DEFAULT_ADDRESS, 0x1000);
992 }
993 }
994
995 /* pci-info ROM file. Little endian format */
996 typedef struct PcRomPciInfo {
997 uint64_t w32_min;
998 uint64_t w32_max;
999 uint64_t w64_min;
1000 uint64_t w64_max;
1001 } PcRomPciInfo;
1002
1003 static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
1004 {
1005 PcRomPciInfo *info;
1006 if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
1007 return;
1008 }
1009
1010 info = g_malloc(sizeof *info);
1011 info->w32_min = cpu_to_le64(guest_info->pci_info.w32.begin);
1012 info->w32_max = cpu_to_le64(guest_info->pci_info.w32.end);
1013 info->w64_min = cpu_to_le64(guest_info->pci_info.w64.begin);
1014 info->w64_max = cpu_to_le64(guest_info->pci_info.w64.end);
1015 /* Pass PCI hole info to guest via a side channel.
1016 * Required so guest PCI enumeration does the right thing. */
1017 fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
1018 }
1019
1020 typedef struct PcGuestInfoState {
1021 PcGuestInfo info;
1022 Notifier machine_done;
1023 } PcGuestInfoState;
1024
1025 static
1026 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1027 {
1028 PcGuestInfoState *guest_info_state = container_of(notifier,
1029 PcGuestInfoState,
1030 machine_done);
1031 pc_fw_cfg_guest_info(&guest_info_state->info);
1032 }
1033
1034 PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
1035 ram_addr_t above_4g_mem_size)
1036 {
1037 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1038 PcGuestInfo *guest_info = &guest_info_state->info;
1039
1040 guest_info->pci_info.w32.end = IO_APIC_DEFAULT_ADDRESS;
1041 if (sizeof(hwaddr) == 4) {
1042 guest_info->pci_info.w64.begin = 0;
1043 guest_info->pci_info.w64.end = 0;
1044 } else {
1045 /*
1046 * BIOS does not set MTRR entries for the 64 bit window, so no need to
1047 * align address to power of two. Align address at 1G, this makes sure
1048 * it can be exactly covered with a PAT entry even when using huge
1049 * pages.
1050 */
1051 guest_info->pci_info.w64.begin =
1052 ROUND_UP((0x1ULL << 32) + above_4g_mem_size, 0x1ULL << 30);
1053 guest_info->pci_info.w64.end = guest_info->pci_info.w64.begin +
1054 (0x1ULL << 62);
1055 assert(guest_info->pci_info.w64.begin <= guest_info->pci_info.w64.end);
1056 }
1057
1058 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1059 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1060 return guest_info;
1061 }
1062
1063 void pc_acpi_init(const char *default_dsdt)
1064 {
1065 char *filename;
1066
1067 if (acpi_tables != NULL) {
1068 /* manually set via -acpitable, leave it alone */
1069 return;
1070 }
1071
1072 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1073 if (filename == NULL) {
1074 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1075 } else {
1076 char *arg;
1077 QemuOpts *opts;
1078 Error *err = NULL;
1079
1080 arg = g_strdup_printf("file=%s", filename);
1081
1082 /* creates a deep copy of "arg" */
1083 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
1084 g_assert(opts != NULL);
1085
1086 acpi_table_add(opts, &err);
1087 if (err) {
1088 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename,
1089 error_get_pretty(err));
1090 error_free(err);
1091 }
1092 g_free(arg);
1093 g_free(filename);
1094 }
1095 }
1096
1097 FWCfgState *pc_memory_init(MemoryRegion *system_memory,
1098 const char *kernel_filename,
1099 const char *kernel_cmdline,
1100 const char *initrd_filename,
1101 ram_addr_t below_4g_mem_size,
1102 ram_addr_t above_4g_mem_size,
1103 MemoryRegion *rom_memory,
1104 MemoryRegion **ram_memory,
1105 PcGuestInfo *guest_info)
1106 {
1107 int linux_boot, i;
1108 MemoryRegion *ram, *option_rom_mr;
1109 MemoryRegion *ram_below_4g, *ram_above_4g;
1110 FWCfgState *fw_cfg;
1111
1112 linux_boot = (kernel_filename != NULL);
1113
1114 /* Allocate RAM. We allocate it as a single memory region and use
1115 * aliases to address portions of it, mostly for backwards compatibility
1116 * with older qemus that used qemu_ram_alloc().
1117 */
1118 ram = g_malloc(sizeof(*ram));
1119 memory_region_init_ram(ram, NULL, "pc.ram",
1120 below_4g_mem_size + above_4g_mem_size);
1121 vmstate_register_ram_global(ram);
1122 *ram_memory = ram;
1123 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1124 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1125 0, below_4g_mem_size);
1126 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1127 if (above_4g_mem_size > 0) {
1128 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1129 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1130 below_4g_mem_size, above_4g_mem_size);
1131 memory_region_add_subregion(system_memory, 0x100000000ULL,
1132 ram_above_4g);
1133 }
1134
1135
1136 /* Initialize PC system firmware */
1137 pc_system_firmware_init(rom_memory);
1138
1139 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1140 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
1141 vmstate_register_ram_global(option_rom_mr);
1142 memory_region_add_subregion_overlap(rom_memory,
1143 PC_ROM_MIN_VGA,
1144 option_rom_mr,
1145 1);
1146
1147 fw_cfg = bochs_bios_init();
1148 rom_set_fw(fw_cfg);
1149
1150 if (linux_boot) {
1151 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1152 }
1153
1154 for (i = 0; i < nb_option_roms; i++) {
1155 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1156 }
1157 guest_info->fw_cfg = fw_cfg;
1158 return fw_cfg;
1159 }
1160
1161 qemu_irq *pc_allocate_cpu_irq(void)
1162 {
1163 return qemu_allocate_irqs(pic_irq_request, NULL, 1);
1164 }
1165
1166 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1167 {
1168 DeviceState *dev = NULL;
1169
1170 if (pci_bus) {
1171 PCIDevice *pcidev = pci_vga_init(pci_bus);
1172 dev = pcidev ? &pcidev->qdev : NULL;
1173 } else if (isa_bus) {
1174 ISADevice *isadev = isa_vga_init(isa_bus);
1175 dev = isadev ? DEVICE(isadev) : NULL;
1176 }
1177 return dev;
1178 }
1179
1180 static void cpu_request_exit(void *opaque, int irq, int level)
1181 {
1182 CPUState *cpu = current_cpu;
1183
1184 if (cpu && level) {
1185 cpu_exit(cpu);
1186 }
1187 }
1188
1189 static const MemoryRegionOps ioport80_io_ops = {
1190 .write = ioport80_write,
1191 .read = ioport80_read,
1192 .endianness = DEVICE_NATIVE_ENDIAN,
1193 .impl = {
1194 .min_access_size = 1,
1195 .max_access_size = 1,
1196 },
1197 };
1198
1199 static const MemoryRegionOps ioportF0_io_ops = {
1200 .write = ioportF0_write,
1201 .read = ioportF0_read,
1202 .endianness = DEVICE_NATIVE_ENDIAN,
1203 .impl = {
1204 .min_access_size = 1,
1205 .max_access_size = 1,
1206 },
1207 };
1208
1209 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1210 ISADevice **rtc_state,
1211 ISADevice **floppy,
1212 bool no_vmport)
1213 {
1214 int i;
1215 DriveInfo *fd[MAX_FD];
1216 DeviceState *hpet = NULL;
1217 int pit_isa_irq = 0;
1218 qemu_irq pit_alt_irq = NULL;
1219 qemu_irq rtc_irq = NULL;
1220 qemu_irq *a20_line;
1221 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1222 qemu_irq *cpu_exit_irq;
1223 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1224 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1225
1226 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1227 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1228
1229 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1230 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1231
1232 /*
1233 * Check if an HPET shall be created.
1234 *
1235 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1236 * when the HPET wants to take over. Thus we have to disable the latter.
1237 */
1238 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1239 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1240
1241 if (hpet) {
1242 for (i = 0; i < GSI_NUM_PINS; i++) {
1243 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1244 }
1245 pit_isa_irq = -1;
1246 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1247 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1248 }
1249 }
1250 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1251
1252 qemu_register_boot_set(pc_boot_set, *rtc_state);
1253
1254 if (!xen_enabled()) {
1255 if (kvm_irqchip_in_kernel()) {
1256 pit = kvm_pit_init(isa_bus, 0x40);
1257 } else {
1258 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1259 }
1260 if (hpet) {
1261 /* connect PIT to output control line of the HPET */
1262 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1263 }
1264 pcspk_init(isa_bus, pit);
1265 }
1266
1267 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1268 if (serial_hds[i]) {
1269 serial_isa_init(isa_bus, i, serial_hds[i]);
1270 }
1271 }
1272
1273 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1274 if (parallel_hds[i]) {
1275 parallel_init(isa_bus, i, parallel_hds[i]);
1276 }
1277 }
1278
1279 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1280 i8042 = isa_create_simple(isa_bus, "i8042");
1281 i8042_setup_a20_line(i8042, &a20_line[0]);
1282 if (!no_vmport) {
1283 vmport_init(isa_bus);
1284 vmmouse = isa_try_create(isa_bus, "vmmouse");
1285 } else {
1286 vmmouse = NULL;
1287 }
1288 if (vmmouse) {
1289 DeviceState *dev = DEVICE(vmmouse);
1290 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1291 qdev_init_nofail(dev);
1292 }
1293 port92 = isa_create_simple(isa_bus, "port92");
1294 port92_init(port92, &a20_line[1]);
1295
1296 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1297 DMA_init(0, cpu_exit_irq);
1298
1299 for(i = 0; i < MAX_FD; i++) {
1300 fd[i] = drive_get(IF_FLOPPY, 0, i);
1301 }
1302 *floppy = fdctrl_init_isa(isa_bus, fd);
1303 }
1304
1305 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1306 {
1307 int i;
1308
1309 for (i = 0; i < nb_nics; i++) {
1310 NICInfo *nd = &nd_table[i];
1311
1312 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1313 pc_init_ne2k_isa(isa_bus, nd);
1314 } else {
1315 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1316 }
1317 }
1318 }
1319
1320 void pc_pci_device_init(PCIBus *pci_bus)
1321 {
1322 int max_bus;
1323 int bus;
1324
1325 max_bus = drive_get_max_bus(IF_SCSI);
1326 for (bus = 0; bus <= max_bus; bus++) {
1327 pci_create_simple(pci_bus, -1, "lsi53c895a");
1328 }
1329 }
1330
1331 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1332 {
1333 DeviceState *dev;
1334 SysBusDevice *d;
1335 unsigned int i;
1336
1337 if (kvm_irqchip_in_kernel()) {
1338 dev = qdev_create(NULL, "kvm-ioapic");
1339 } else {
1340 dev = qdev_create(NULL, "ioapic");
1341 }
1342 if (parent_name) {
1343 object_property_add_child(object_resolve_path(parent_name, NULL),
1344 "ioapic", OBJECT(dev), NULL);
1345 }
1346 qdev_init_nofail(dev);
1347 d = SYS_BUS_DEVICE(dev);
1348 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1349
1350 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1351 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1352 }
1353 }