]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/xen/xen-hvm.c
avoid TABs in files that only contain a few
[mirror_qemu.git] / hw / i386 / xen / xen-hvm.c
1 /*
2 * Copyright (C) 2010 Citrix Ltd.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 *
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
9 */
10
11 #include "qemu/osdep.h"
12
13 #include "cpu.h"
14 #include "hw/pci/pci.h"
15 #include "hw/pci/pci_host.h"
16 #include "hw/i386/pc.h"
17 #include "hw/i386/apic-msidef.h"
18 #include "hw/xen/xen_common.h"
19 #include "hw/xen/xen_backend.h"
20 #include "qapi/error.h"
21 #include "qapi/qapi-commands-misc.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace.h"
26 #include "exec/address-spaces.h"
27
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
31
32 //#define DEBUG_XEN_HVM
33
34 #ifdef DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
43 static MemoryRegion *framebuffer;
44 static bool xen_in_migration;
45
46 /* Compatibility with older version */
47
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
52 */
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
55 struct vmware_regs {
56 uint32_t esi;
57 uint32_t edi;
58 uint32_t ebx;
59 uint32_t ecx;
60 uint32_t edx;
61 };
62 typedef struct vmware_regs vmware_regs_t;
63
64 struct shared_vmport_iopage {
65 struct vmware_regs vcpu_vmport_regs[1];
66 };
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t;
68 #endif
69
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
71 {
72 return shared_page->vcpu_ioreq[i].vp_eport;
73 }
74 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
75 {
76 return &shared_page->vcpu_ioreq[vcpu];
77 }
78
79 #define BUFFER_IO_MAX_DELAY 100
80
81 typedef struct XenPhysmap {
82 hwaddr start_addr;
83 ram_addr_t size;
84 const char *name;
85 hwaddr phys_offset;
86
87 QLIST_ENTRY(XenPhysmap) list;
88 } XenPhysmap;
89
90 static QLIST_HEAD(, XenPhysmap) xen_physmap;
91
92 typedef struct XenPciDevice {
93 PCIDevice *pci_dev;
94 uint32_t sbdf;
95 QLIST_ENTRY(XenPciDevice) entry;
96 } XenPciDevice;
97
98 typedef struct XenIOState {
99 ioservid_t ioservid;
100 shared_iopage_t *shared_page;
101 shared_vmport_iopage_t *shared_vmport_page;
102 buffered_iopage_t *buffered_io_page;
103 QEMUTimer *buffered_io_timer;
104 CPUState **cpu_by_vcpu_id;
105 /* the evtchn port for polling the notification, */
106 evtchn_port_t *ioreq_local_port;
107 /* evtchn remote and local ports for buffered io */
108 evtchn_port_t bufioreq_remote_port;
109 evtchn_port_t bufioreq_local_port;
110 /* the evtchn fd for polling */
111 xenevtchn_handle *xce_handle;
112 /* which vcpu we are serving */
113 int send_vcpu;
114
115 struct xs_handle *xenstore;
116 MemoryListener memory_listener;
117 MemoryListener io_listener;
118 QLIST_HEAD(, XenPciDevice) dev_list;
119 DeviceListener device_listener;
120 hwaddr free_phys_offset;
121 const XenPhysmap *log_for_dirtybit;
122
123 Notifier exit;
124 Notifier suspend;
125 Notifier wakeup;
126 } XenIOState;
127
128 /* Xen specific function for piix pci */
129
130 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
131 {
132 return irq_num + ((pci_dev->devfn >> 3) << 2);
133 }
134
135 void xen_piix3_set_irq(void *opaque, int irq_num, int level)
136 {
137 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2,
138 irq_num & 3, level);
139 }
140
141 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
142 {
143 int i;
144
145 /* Scan for updates to PCI link routes (0x60-0x63). */
146 for (i = 0; i < len; i++) {
147 uint8_t v = (val >> (8 * i)) & 0xff;
148 if (v & 0x80) {
149 v = 0;
150 }
151 v &= 0xf;
152 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
153 xen_set_pci_link_route(xen_domid, address + i - 0x60, v);
154 }
155 }
156 }
157
158 int xen_is_pirq_msi(uint32_t msi_data)
159 {
160 /* If vector is 0, the msi is remapped into a pirq, passed as
161 * dest_id.
162 */
163 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0;
164 }
165
166 void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
167 {
168 xen_inject_msi(xen_domid, addr, data);
169 }
170
171 static void xen_suspend_notifier(Notifier *notifier, void *data)
172 {
173 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
174 }
175
176 /* Xen Interrupt Controller */
177
178 static void xen_set_irq(void *opaque, int irq, int level)
179 {
180 xen_set_isa_irq_level(xen_domid, irq, level);
181 }
182
183 qemu_irq *xen_interrupt_controller_init(void)
184 {
185 return qemu_allocate_irqs(xen_set_irq, NULL, 16);
186 }
187
188 /* Memory Ops */
189
190 static void xen_ram_init(PCMachineState *pcms,
191 ram_addr_t ram_size, MemoryRegion **ram_memory_p)
192 {
193 MemoryRegion *sysmem = get_system_memory();
194 ram_addr_t block_len;
195 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
196 PC_MACHINE_MAX_RAM_BELOW_4G,
197 &error_abort);
198
199 /* Handle the machine opt max-ram-below-4g. It is basically doing
200 * min(xen limit, user limit).
201 */
202 if (!user_lowmem) {
203 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */
204 }
205 if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
206 user_lowmem = HVM_BELOW_4G_RAM_END;
207 }
208
209 if (ram_size >= user_lowmem) {
210 pcms->above_4g_mem_size = ram_size - user_lowmem;
211 pcms->below_4g_mem_size = user_lowmem;
212 } else {
213 pcms->above_4g_mem_size = 0;
214 pcms->below_4g_mem_size = ram_size;
215 }
216 if (!pcms->above_4g_mem_size) {
217 block_len = ram_size;
218 } else {
219 /*
220 * Xen does not allocate the memory continuously, it keeps a
221 * hole of the size computed above or passed in.
222 */
223 block_len = (1ULL << 32) + pcms->above_4g_mem_size;
224 }
225 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
226 &error_fatal);
227 *ram_memory_p = &ram_memory;
228
229 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
230 &ram_memory, 0, 0xa0000);
231 memory_region_add_subregion(sysmem, 0, &ram_640k);
232 /* Skip of the VGA IO memory space, it will be registered later by the VGA
233 * emulated device.
234 *
235 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
236 * the Options ROM, so it is registered here as RAM.
237 */
238 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
239 &ram_memory, 0xc0000,
240 pcms->below_4g_mem_size - 0xc0000);
241 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
242 if (pcms->above_4g_mem_size > 0) {
243 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
244 &ram_memory, 0x100000000ULL,
245 pcms->above_4g_mem_size);
246 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
247 }
248 }
249
250 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
251 Error **errp)
252 {
253 unsigned long nr_pfn;
254 xen_pfn_t *pfn_list;
255 int i;
256
257 if (runstate_check(RUN_STATE_INMIGRATE)) {
258 /* RAM already populated in Xen */
259 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
260 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
261 __func__, size, ram_addr);
262 return;
263 }
264
265 if (mr == &ram_memory) {
266 return;
267 }
268
269 trace_xen_ram_alloc(ram_addr, size);
270
271 nr_pfn = size >> TARGET_PAGE_BITS;
272 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
273
274 for (i = 0; i < nr_pfn; i++) {
275 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
276 }
277
278 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
279 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
280 ram_addr);
281 }
282
283 g_free(pfn_list);
284 }
285
286 static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size)
287 {
288 XenPhysmap *physmap = NULL;
289
290 start_addr &= TARGET_PAGE_MASK;
291
292 QLIST_FOREACH(physmap, &xen_physmap, list) {
293 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
294 return physmap;
295 }
296 }
297 return NULL;
298 }
299
300 static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size)
301 {
302 hwaddr addr = phys_offset & TARGET_PAGE_MASK;
303 XenPhysmap *physmap = NULL;
304
305 QLIST_FOREACH(physmap, &xen_physmap, list) {
306 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
307 return physmap->start_addr + (phys_offset - physmap->phys_offset);
308 }
309 }
310
311 return phys_offset;
312 }
313
314 #ifdef XEN_COMPAT_PHYSMAP
315 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
316 {
317 char path[80], value[17];
318
319 snprintf(path, sizeof(path),
320 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
321 xen_domid, (uint64_t)physmap->phys_offset);
322 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr);
323 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
324 return -1;
325 }
326 snprintf(path, sizeof(path),
327 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
328 xen_domid, (uint64_t)physmap->phys_offset);
329 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size);
330 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
331 return -1;
332 }
333 if (physmap->name) {
334 snprintf(path, sizeof(path),
335 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
336 xen_domid, (uint64_t)physmap->phys_offset);
337 if (!xs_write(state->xenstore, 0, path,
338 physmap->name, strlen(physmap->name))) {
339 return -1;
340 }
341 }
342 return 0;
343 }
344 #else
345 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap)
346 {
347 return 0;
348 }
349 #endif
350
351 static int xen_add_to_physmap(XenIOState *state,
352 hwaddr start_addr,
353 ram_addr_t size,
354 MemoryRegion *mr,
355 hwaddr offset_within_region)
356 {
357 unsigned long nr_pages;
358 int rc = 0;
359 XenPhysmap *physmap = NULL;
360 hwaddr pfn, start_gpfn;
361 hwaddr phys_offset = memory_region_get_ram_addr(mr);
362 const char *mr_name;
363
364 if (get_physmapping(start_addr, size)) {
365 return 0;
366 }
367 if (size <= 0) {
368 return -1;
369 }
370
371 /* Xen can only handle a single dirty log region for now and we want
372 * the linear framebuffer to be that region.
373 * Avoid tracking any regions that is not videoram and avoid tracking
374 * the legacy vga region. */
375 if (mr == framebuffer && start_addr > 0xbffff) {
376 goto go_physmap;
377 }
378 return -1;
379
380 go_physmap:
381 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
382 start_addr, start_addr + size);
383
384 mr_name = memory_region_name(mr);
385
386 physmap = g_malloc(sizeof(XenPhysmap));
387
388 physmap->start_addr = start_addr;
389 physmap->size = size;
390 physmap->name = mr_name;
391 physmap->phys_offset = phys_offset;
392
393 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
394
395 if (runstate_check(RUN_STATE_INMIGRATE)) {
396 /* Now when we have a physmap entry we can replace a dummy mapping with
397 * a real one of guest foreign memory. */
398 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size);
399 assert(p && p == memory_region_get_ram_ptr(mr));
400
401 return 0;
402 }
403
404 pfn = phys_offset >> TARGET_PAGE_BITS;
405 start_gpfn = start_addr >> TARGET_PAGE_BITS;
406 nr_pages = size >> TARGET_PAGE_BITS;
407 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn,
408 start_gpfn);
409 if (rc) {
410 int saved_errno = errno;
411
412 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx
413 " to GFN %"HWADDR_PRIx" failed: %s",
414 nr_pages, pfn, start_gpfn, strerror(saved_errno));
415 errno = saved_errno;
416 return -1;
417 }
418
419 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid,
420 start_addr >> TARGET_PAGE_BITS,
421 (start_addr + size - 1) >> TARGET_PAGE_BITS,
422 XEN_DOMCTL_MEM_CACHEATTR_WB);
423 if (rc) {
424 error_report("pin_memory_cacheattr failed: %s", strerror(errno));
425 }
426 return xen_save_physmap(state, physmap);
427 }
428
429 static int xen_remove_from_physmap(XenIOState *state,
430 hwaddr start_addr,
431 ram_addr_t size)
432 {
433 int rc = 0;
434 XenPhysmap *physmap = NULL;
435 hwaddr phys_offset = 0;
436
437 physmap = get_physmapping(start_addr, size);
438 if (physmap == NULL) {
439 return -1;
440 }
441
442 phys_offset = physmap->phys_offset;
443 size = physmap->size;
444
445 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
446 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
447
448 size >>= TARGET_PAGE_BITS;
449 start_addr >>= TARGET_PAGE_BITS;
450 phys_offset >>= TARGET_PAGE_BITS;
451 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr,
452 phys_offset);
453 if (rc) {
454 int saved_errno = errno;
455
456 error_report("relocate_memory "RAM_ADDR_FMT" pages"
457 " from GFN %"HWADDR_PRIx
458 " to GFN %"HWADDR_PRIx" failed: %s",
459 size, start_addr, phys_offset, strerror(saved_errno));
460 errno = saved_errno;
461 return -1;
462 }
463
464 QLIST_REMOVE(physmap, list);
465 if (state->log_for_dirtybit == physmap) {
466 state->log_for_dirtybit = NULL;
467 }
468 g_free(physmap);
469
470 return 0;
471 }
472
473 static void xen_set_memory(struct MemoryListener *listener,
474 MemoryRegionSection *section,
475 bool add)
476 {
477 XenIOState *state = container_of(listener, XenIOState, memory_listener);
478 hwaddr start_addr = section->offset_within_address_space;
479 ram_addr_t size = int128_get64(section->size);
480 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
481 hvmmem_type_t mem_type;
482
483 if (section->mr == &ram_memory) {
484 return;
485 } else {
486 if (add) {
487 xen_map_memory_section(xen_domid, state->ioservid,
488 section);
489 } else {
490 xen_unmap_memory_section(xen_domid, state->ioservid,
491 section);
492 }
493 }
494
495 if (!memory_region_is_ram(section->mr)) {
496 return;
497 }
498
499 if (log_dirty != add) {
500 return;
501 }
502
503 trace_xen_client_set_memory(start_addr, size, log_dirty);
504
505 start_addr &= TARGET_PAGE_MASK;
506 size = TARGET_PAGE_ALIGN(size);
507
508 if (add) {
509 if (!memory_region_is_rom(section->mr)) {
510 xen_add_to_physmap(state, start_addr, size,
511 section->mr, section->offset_within_region);
512 } else {
513 mem_type = HVMMEM_ram_ro;
514 if (xen_set_mem_type(xen_domid, mem_type,
515 start_addr >> TARGET_PAGE_BITS,
516 size >> TARGET_PAGE_BITS)) {
517 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n",
518 start_addr);
519 }
520 }
521 } else {
522 if (xen_remove_from_physmap(state, start_addr, size) < 0) {
523 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
524 }
525 }
526 }
527
528 static void xen_region_add(MemoryListener *listener,
529 MemoryRegionSection *section)
530 {
531 memory_region_ref(section->mr);
532 xen_set_memory(listener, section, true);
533 }
534
535 static void xen_region_del(MemoryListener *listener,
536 MemoryRegionSection *section)
537 {
538 xen_set_memory(listener, section, false);
539 memory_region_unref(section->mr);
540 }
541
542 static void xen_io_add(MemoryListener *listener,
543 MemoryRegionSection *section)
544 {
545 XenIOState *state = container_of(listener, XenIOState, io_listener);
546 MemoryRegion *mr = section->mr;
547
548 if (mr->ops == &unassigned_io_ops) {
549 return;
550 }
551
552 memory_region_ref(mr);
553
554 xen_map_io_section(xen_domid, state->ioservid, section);
555 }
556
557 static void xen_io_del(MemoryListener *listener,
558 MemoryRegionSection *section)
559 {
560 XenIOState *state = container_of(listener, XenIOState, io_listener);
561 MemoryRegion *mr = section->mr;
562
563 if (mr->ops == &unassigned_io_ops) {
564 return;
565 }
566
567 xen_unmap_io_section(xen_domid, state->ioservid, section);
568
569 memory_region_unref(mr);
570 }
571
572 static void xen_device_realize(DeviceListener *listener,
573 DeviceState *dev)
574 {
575 XenIOState *state = container_of(listener, XenIOState, device_listener);
576
577 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
578 PCIDevice *pci_dev = PCI_DEVICE(dev);
579 XenPciDevice *xendev = g_new(XenPciDevice, 1);
580
581 xendev->pci_dev = pci_dev;
582 xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
583 pci_dev->devfn);
584 QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
585
586 xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
587 }
588 }
589
590 static void xen_device_unrealize(DeviceListener *listener,
591 DeviceState *dev)
592 {
593 XenIOState *state = container_of(listener, XenIOState, device_listener);
594
595 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
596 PCIDevice *pci_dev = PCI_DEVICE(dev);
597 XenPciDevice *xendev, *next;
598
599 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
600
601 QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
602 if (xendev->pci_dev == pci_dev) {
603 QLIST_REMOVE(xendev, entry);
604 g_free(xendev);
605 break;
606 }
607 }
608 }
609 }
610
611 static void xen_sync_dirty_bitmap(XenIOState *state,
612 hwaddr start_addr,
613 ram_addr_t size)
614 {
615 hwaddr npages = size >> TARGET_PAGE_BITS;
616 const int width = sizeof(unsigned long) * 8;
617 unsigned long bitmap[DIV_ROUND_UP(npages, width)];
618 int rc, i, j;
619 const XenPhysmap *physmap = NULL;
620
621 physmap = get_physmapping(start_addr, size);
622 if (physmap == NULL) {
623 /* not handled */
624 return;
625 }
626
627 if (state->log_for_dirtybit == NULL) {
628 state->log_for_dirtybit = physmap;
629 } else if (state->log_for_dirtybit != physmap) {
630 /* Only one range for dirty bitmap can be tracked. */
631 return;
632 }
633
634 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS,
635 npages, bitmap);
636 if (rc < 0) {
637 #ifndef ENODATA
638 #define ENODATA ENOENT
639 #endif
640 if (errno == ENODATA) {
641 memory_region_set_dirty(framebuffer, 0, size);
642 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
643 ", 0x" TARGET_FMT_plx "): %s\n",
644 start_addr, start_addr + size, strerror(errno));
645 }
646 return;
647 }
648
649 for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
650 unsigned long map = bitmap[i];
651 while (map != 0) {
652 j = ctzl(map);
653 map &= ~(1ul << j);
654 memory_region_set_dirty(framebuffer,
655 (i * width + j) * TARGET_PAGE_SIZE,
656 TARGET_PAGE_SIZE);
657 };
658 }
659 }
660
661 static void xen_log_start(MemoryListener *listener,
662 MemoryRegionSection *section,
663 int old, int new)
664 {
665 XenIOState *state = container_of(listener, XenIOState, memory_listener);
666
667 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
668 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
669 int128_get64(section->size));
670 }
671 }
672
673 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
674 int old, int new)
675 {
676 XenIOState *state = container_of(listener, XenIOState, memory_listener);
677
678 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
679 state->log_for_dirtybit = NULL;
680 /* Disable dirty bit tracking */
681 xen_track_dirty_vram(xen_domid, 0, 0, NULL);
682 }
683 }
684
685 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
686 {
687 XenIOState *state = container_of(listener, XenIOState, memory_listener);
688
689 xen_sync_dirty_bitmap(state, section->offset_within_address_space,
690 int128_get64(section->size));
691 }
692
693 static void xen_log_global_start(MemoryListener *listener)
694 {
695 if (xen_enabled()) {
696 xen_in_migration = true;
697 }
698 }
699
700 static void xen_log_global_stop(MemoryListener *listener)
701 {
702 xen_in_migration = false;
703 }
704
705 static MemoryListener xen_memory_listener = {
706 .region_add = xen_region_add,
707 .region_del = xen_region_del,
708 .log_start = xen_log_start,
709 .log_stop = xen_log_stop,
710 .log_sync = xen_log_sync,
711 .log_global_start = xen_log_global_start,
712 .log_global_stop = xen_log_global_stop,
713 .priority = 10,
714 };
715
716 static MemoryListener xen_io_listener = {
717 .region_add = xen_io_add,
718 .region_del = xen_io_del,
719 .priority = 10,
720 };
721
722 static DeviceListener xen_device_listener = {
723 .realize = xen_device_realize,
724 .unrealize = xen_device_unrealize,
725 };
726
727 /* get the ioreq packets from share mem */
728 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
729 {
730 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
731
732 if (req->state != STATE_IOREQ_READY) {
733 DPRINTF("I/O request not ready: "
734 "%x, ptr: %x, port: %"PRIx64", "
735 "data: %"PRIx64", count: %u, size: %u\n",
736 req->state, req->data_is_ptr, req->addr,
737 req->data, req->count, req->size);
738 return NULL;
739 }
740
741 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
742
743 req->state = STATE_IOREQ_INPROCESS;
744 return req;
745 }
746
747 /* use poll to get the port notification */
748 /* ioreq_vec--out,the */
749 /* retval--the number of ioreq packet */
750 static ioreq_t *cpu_get_ioreq(XenIOState *state)
751 {
752 int i;
753 evtchn_port_t port;
754
755 port = xenevtchn_pending(state->xce_handle);
756 if (port == state->bufioreq_local_port) {
757 timer_mod(state->buffered_io_timer,
758 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
759 return NULL;
760 }
761
762 if (port != -1) {
763 for (i = 0; i < max_cpus; i++) {
764 if (state->ioreq_local_port[i] == port) {
765 break;
766 }
767 }
768
769 if (i == max_cpus) {
770 hw_error("Fatal error while trying to get io event!\n");
771 }
772
773 /* unmask the wanted port again */
774 xenevtchn_unmask(state->xce_handle, port);
775
776 /* get the io packet from shared memory */
777 state->send_vcpu = i;
778 return cpu_get_ioreq_from_shared_memory(state, i);
779 }
780
781 /* read error or read nothing */
782 return NULL;
783 }
784
785 static uint32_t do_inp(uint32_t addr, unsigned long size)
786 {
787 switch (size) {
788 case 1:
789 return cpu_inb(addr);
790 case 2:
791 return cpu_inw(addr);
792 case 4:
793 return cpu_inl(addr);
794 default:
795 hw_error("inp: bad size: %04x %lx", addr, size);
796 }
797 }
798
799 static void do_outp(uint32_t addr,
800 unsigned long size, uint32_t val)
801 {
802 switch (size) {
803 case 1:
804 return cpu_outb(addr, val);
805 case 2:
806 return cpu_outw(addr, val);
807 case 4:
808 return cpu_outl(addr, val);
809 default:
810 hw_error("outp: bad size: %04x %lx", addr, size);
811 }
812 }
813
814 /*
815 * Helper functions which read/write an object from/to physical guest
816 * memory, as part of the implementation of an ioreq.
817 *
818 * Equivalent to
819 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
820 * val, req->size, 0/1)
821 * except without the integer overflow problems.
822 */
823 static void rw_phys_req_item(hwaddr addr,
824 ioreq_t *req, uint32_t i, void *val, int rw)
825 {
826 /* Do everything unsigned so overflow just results in a truncated result
827 * and accesses to undesired parts of guest memory, which is up
828 * to the guest */
829 hwaddr offset = (hwaddr)req->size * i;
830 if (req->df) {
831 addr -= offset;
832 } else {
833 addr += offset;
834 }
835 cpu_physical_memory_rw(addr, val, req->size, rw);
836 }
837
838 static inline void read_phys_req_item(hwaddr addr,
839 ioreq_t *req, uint32_t i, void *val)
840 {
841 rw_phys_req_item(addr, req, i, val, 0);
842 }
843 static inline void write_phys_req_item(hwaddr addr,
844 ioreq_t *req, uint32_t i, void *val)
845 {
846 rw_phys_req_item(addr, req, i, val, 1);
847 }
848
849
850 static void cpu_ioreq_pio(ioreq_t *req)
851 {
852 uint32_t i;
853
854 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
855 req->data, req->count, req->size);
856
857 if (req->size > sizeof(uint32_t)) {
858 hw_error("PIO: bad size (%u)", req->size);
859 }
860
861 if (req->dir == IOREQ_READ) {
862 if (!req->data_is_ptr) {
863 req->data = do_inp(req->addr, req->size);
864 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
865 req->size);
866 } else {
867 uint32_t tmp;
868
869 for (i = 0; i < req->count; i++) {
870 tmp = do_inp(req->addr, req->size);
871 write_phys_req_item(req->data, req, i, &tmp);
872 }
873 }
874 } else if (req->dir == IOREQ_WRITE) {
875 if (!req->data_is_ptr) {
876 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
877 req->size);
878 do_outp(req->addr, req->size, req->data);
879 } else {
880 for (i = 0; i < req->count; i++) {
881 uint32_t tmp = 0;
882
883 read_phys_req_item(req->data, req, i, &tmp);
884 do_outp(req->addr, req->size, tmp);
885 }
886 }
887 }
888 }
889
890 static void cpu_ioreq_move(ioreq_t *req)
891 {
892 uint32_t i;
893
894 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
895 req->data, req->count, req->size);
896
897 if (req->size > sizeof(req->data)) {
898 hw_error("MMIO: bad size (%u)", req->size);
899 }
900
901 if (!req->data_is_ptr) {
902 if (req->dir == IOREQ_READ) {
903 for (i = 0; i < req->count; i++) {
904 read_phys_req_item(req->addr, req, i, &req->data);
905 }
906 } else if (req->dir == IOREQ_WRITE) {
907 for (i = 0; i < req->count; i++) {
908 write_phys_req_item(req->addr, req, i, &req->data);
909 }
910 }
911 } else {
912 uint64_t tmp;
913
914 if (req->dir == IOREQ_READ) {
915 for (i = 0; i < req->count; i++) {
916 read_phys_req_item(req->addr, req, i, &tmp);
917 write_phys_req_item(req->data, req, i, &tmp);
918 }
919 } else if (req->dir == IOREQ_WRITE) {
920 for (i = 0; i < req->count; i++) {
921 read_phys_req_item(req->data, req, i, &tmp);
922 write_phys_req_item(req->addr, req, i, &tmp);
923 }
924 }
925 }
926 }
927
928 static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
929 {
930 uint32_t sbdf = req->addr >> 32;
931 uint32_t reg = req->addr;
932 XenPciDevice *xendev;
933
934 if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
935 req->size != sizeof(uint32_t)) {
936 hw_error("PCI config access: bad size (%u)", req->size);
937 }
938
939 if (req->count != 1) {
940 hw_error("PCI config access: bad count (%u)", req->count);
941 }
942
943 QLIST_FOREACH(xendev, &state->dev_list, entry) {
944 if (xendev->sbdf != sbdf) {
945 continue;
946 }
947
948 if (!req->data_is_ptr) {
949 if (req->dir == IOREQ_READ) {
950 req->data = pci_host_config_read_common(
951 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
952 req->size);
953 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
954 req->size, req->data);
955 } else if (req->dir == IOREQ_WRITE) {
956 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
957 req->size, req->data);
958 pci_host_config_write_common(
959 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
960 req->data, req->size);
961 }
962 } else {
963 uint32_t tmp;
964
965 if (req->dir == IOREQ_READ) {
966 tmp = pci_host_config_read_common(
967 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
968 req->size);
969 trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
970 req->size, tmp);
971 write_phys_req_item(req->data, req, 0, &tmp);
972 } else if (req->dir == IOREQ_WRITE) {
973 read_phys_req_item(req->data, req, 0, &tmp);
974 trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
975 req->size, tmp);
976 pci_host_config_write_common(
977 xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
978 tmp, req->size);
979 }
980 }
981 }
982 }
983
984 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
985 {
986 X86CPU *cpu;
987 CPUX86State *env;
988
989 cpu = X86_CPU(current_cpu);
990 env = &cpu->env;
991 env->regs[R_EAX] = req->data;
992 env->regs[R_EBX] = vmport_regs->ebx;
993 env->regs[R_ECX] = vmport_regs->ecx;
994 env->regs[R_EDX] = vmport_regs->edx;
995 env->regs[R_ESI] = vmport_regs->esi;
996 env->regs[R_EDI] = vmport_regs->edi;
997 }
998
999 static void regs_from_cpu(vmware_regs_t *vmport_regs)
1000 {
1001 X86CPU *cpu = X86_CPU(current_cpu);
1002 CPUX86State *env = &cpu->env;
1003
1004 vmport_regs->ebx = env->regs[R_EBX];
1005 vmport_regs->ecx = env->regs[R_ECX];
1006 vmport_regs->edx = env->regs[R_EDX];
1007 vmport_regs->esi = env->regs[R_ESI];
1008 vmport_regs->edi = env->regs[R_EDI];
1009 }
1010
1011 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
1012 {
1013 vmware_regs_t *vmport_regs;
1014
1015 assert(state->shared_vmport_page);
1016 vmport_regs =
1017 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
1018 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
1019
1020 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
1021 regs_to_cpu(vmport_regs, req);
1022 cpu_ioreq_pio(req);
1023 regs_from_cpu(vmport_regs);
1024 current_cpu = NULL;
1025 }
1026
1027 static void handle_ioreq(XenIOState *state, ioreq_t *req)
1028 {
1029 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
1030 req->addr, req->data, req->count, req->size);
1031
1032 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
1033 (req->size < sizeof (target_ulong))) {
1034 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
1035 }
1036
1037 if (req->dir == IOREQ_WRITE)
1038 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
1039 req->addr, req->data, req->count, req->size);
1040
1041 switch (req->type) {
1042 case IOREQ_TYPE_PIO:
1043 cpu_ioreq_pio(req);
1044 break;
1045 case IOREQ_TYPE_COPY:
1046 cpu_ioreq_move(req);
1047 break;
1048 case IOREQ_TYPE_VMWARE_PORT:
1049 handle_vmport_ioreq(state, req);
1050 break;
1051 case IOREQ_TYPE_TIMEOFFSET:
1052 break;
1053 case IOREQ_TYPE_INVALIDATE:
1054 xen_invalidate_map_cache();
1055 break;
1056 case IOREQ_TYPE_PCI_CONFIG:
1057 cpu_ioreq_config(state, req);
1058 break;
1059 default:
1060 hw_error("Invalid ioreq type 0x%x\n", req->type);
1061 }
1062 if (req->dir == IOREQ_READ) {
1063 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
1064 req->addr, req->data, req->count, req->size);
1065 }
1066 }
1067
1068 static int handle_buffered_iopage(XenIOState *state)
1069 {
1070 buffered_iopage_t *buf_page = state->buffered_io_page;
1071 buf_ioreq_t *buf_req = NULL;
1072 ioreq_t req;
1073 int qw;
1074
1075 if (!buf_page) {
1076 return 0;
1077 }
1078
1079 memset(&req, 0x00, sizeof(req));
1080 req.state = STATE_IOREQ_READY;
1081 req.count = 1;
1082 req.dir = IOREQ_WRITE;
1083
1084 for (;;) {
1085 uint32_t rdptr = buf_page->read_pointer, wrptr;
1086
1087 xen_rmb();
1088 wrptr = buf_page->write_pointer;
1089 xen_rmb();
1090 if (rdptr != buf_page->read_pointer) {
1091 continue;
1092 }
1093 if (rdptr == wrptr) {
1094 break;
1095 }
1096 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
1097 req.size = 1U << buf_req->size;
1098 req.addr = buf_req->addr;
1099 req.data = buf_req->data;
1100 req.type = buf_req->type;
1101 xen_rmb();
1102 qw = (req.size == 8);
1103 if (qw) {
1104 if (rdptr + 1 == wrptr) {
1105 hw_error("Incomplete quad word buffered ioreq");
1106 }
1107 buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
1108 IOREQ_BUFFER_SLOT_NUM];
1109 req.data |= ((uint64_t)buf_req->data) << 32;
1110 xen_rmb();
1111 }
1112
1113 handle_ioreq(state, &req);
1114
1115 /* Only req.data may get updated by handle_ioreq(), albeit even that
1116 * should not happen as such data would never make it to the guest (we
1117 * can only usefully see writes here after all).
1118 */
1119 assert(req.state == STATE_IOREQ_READY);
1120 assert(req.count == 1);
1121 assert(req.dir == IOREQ_WRITE);
1122 assert(!req.data_is_ptr);
1123
1124 atomic_add(&buf_page->read_pointer, qw + 1);
1125 }
1126
1127 return req.count;
1128 }
1129
1130 static void handle_buffered_io(void *opaque)
1131 {
1132 XenIOState *state = opaque;
1133
1134 if (handle_buffered_iopage(state)) {
1135 timer_mod(state->buffered_io_timer,
1136 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
1137 } else {
1138 timer_del(state->buffered_io_timer);
1139 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port);
1140 }
1141 }
1142
1143 static void cpu_handle_ioreq(void *opaque)
1144 {
1145 XenIOState *state = opaque;
1146 ioreq_t *req = cpu_get_ioreq(state);
1147
1148 handle_buffered_iopage(state);
1149 if (req) {
1150 ioreq_t copy = *req;
1151
1152 xen_rmb();
1153 handle_ioreq(state, &copy);
1154 req->data = copy.data;
1155
1156 if (req->state != STATE_IOREQ_INPROCESS) {
1157 fprintf(stderr, "Badness in I/O request ... not in service?!: "
1158 "%x, ptr: %x, port: %"PRIx64", "
1159 "data: %"PRIx64", count: %u, size: %u, type: %u\n",
1160 req->state, req->data_is_ptr, req->addr,
1161 req->data, req->count, req->size, req->type);
1162 destroy_hvm_domain(false);
1163 return;
1164 }
1165
1166 xen_wmb(); /* Update ioreq contents /then/ update state. */
1167
1168 /*
1169 * We do this before we send the response so that the tools
1170 * have the opportunity to pick up on the reset before the
1171 * guest resumes and does a hlt with interrupts disabled which
1172 * causes Xen to powerdown the domain.
1173 */
1174 if (runstate_is_running()) {
1175 ShutdownCause request;
1176
1177 if (qemu_shutdown_requested_get()) {
1178 destroy_hvm_domain(false);
1179 }
1180 request = qemu_reset_requested_get();
1181 if (request) {
1182 qemu_system_reset(request);
1183 destroy_hvm_domain(true);
1184 }
1185 }
1186
1187 req->state = STATE_IORESP_READY;
1188 xenevtchn_notify(state->xce_handle,
1189 state->ioreq_local_port[state->send_vcpu]);
1190 }
1191 }
1192
1193 static void xen_main_loop_prepare(XenIOState *state)
1194 {
1195 int evtchn_fd = -1;
1196
1197 if (state->xce_handle != NULL) {
1198 evtchn_fd = xenevtchn_fd(state->xce_handle);
1199 }
1200
1201 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
1202 state);
1203
1204 if (evtchn_fd != -1) {
1205 CPUState *cpu_state;
1206
1207 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
1208 CPU_FOREACH(cpu_state) {
1209 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1210 __func__, cpu_state->cpu_index, cpu_state);
1211 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
1212 }
1213 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
1214 }
1215 }
1216
1217
1218 static void xen_hvm_change_state_handler(void *opaque, int running,
1219 RunState rstate)
1220 {
1221 XenIOState *state = opaque;
1222
1223 if (running) {
1224 xen_main_loop_prepare(state);
1225 }
1226
1227 xen_set_ioreq_server_state(xen_domid,
1228 state->ioservid,
1229 (rstate == RUN_STATE_RUNNING));
1230 }
1231
1232 static void xen_exit_notifier(Notifier *n, void *data)
1233 {
1234 XenIOState *state = container_of(n, XenIOState, exit);
1235
1236 xenevtchn_close(state->xce_handle);
1237 xs_daemon_close(state->xenstore);
1238 }
1239
1240 #ifdef XEN_COMPAT_PHYSMAP
1241 static void xen_read_physmap(XenIOState *state)
1242 {
1243 XenPhysmap *physmap = NULL;
1244 unsigned int len, num, i;
1245 char path[80], *value = NULL;
1246 char **entries = NULL;
1247
1248 snprintf(path, sizeof(path),
1249 "/local/domain/0/device-model/%d/physmap", xen_domid);
1250 entries = xs_directory(state->xenstore, 0, path, &num);
1251 if (entries == NULL)
1252 return;
1253
1254 for (i = 0; i < num; i++) {
1255 physmap = g_malloc(sizeof (XenPhysmap));
1256 physmap->phys_offset = strtoull(entries[i], NULL, 16);
1257 snprintf(path, sizeof(path),
1258 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1259 xen_domid, entries[i]);
1260 value = xs_read(state->xenstore, 0, path, &len);
1261 if (value == NULL) {
1262 g_free(physmap);
1263 continue;
1264 }
1265 physmap->start_addr = strtoull(value, NULL, 16);
1266 free(value);
1267
1268 snprintf(path, sizeof(path),
1269 "/local/domain/0/device-model/%d/physmap/%s/size",
1270 xen_domid, entries[i]);
1271 value = xs_read(state->xenstore, 0, path, &len);
1272 if (value == NULL) {
1273 g_free(physmap);
1274 continue;
1275 }
1276 physmap->size = strtoull(value, NULL, 16);
1277 free(value);
1278
1279 snprintf(path, sizeof(path),
1280 "/local/domain/0/device-model/%d/physmap/%s/name",
1281 xen_domid, entries[i]);
1282 physmap->name = xs_read(state->xenstore, 0, path, &len);
1283
1284 QLIST_INSERT_HEAD(&xen_physmap, physmap, list);
1285 }
1286 free(entries);
1287 }
1288 #else
1289 static void xen_read_physmap(XenIOState *state)
1290 {
1291 }
1292 #endif
1293
1294 static void xen_wakeup_notifier(Notifier *notifier, void *data)
1295 {
1296 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
1297 }
1298
1299 static int xen_map_ioreq_server(XenIOState *state)
1300 {
1301 void *addr = NULL;
1302 xenforeignmemory_resource_handle *fres;
1303 xen_pfn_t ioreq_pfn;
1304 xen_pfn_t bufioreq_pfn;
1305 evtchn_port_t bufioreq_evtchn;
1306 int rc;
1307
1308 /*
1309 * Attempt to map using the resource API and fall back to normal
1310 * foreign mapping if this is not supported.
1311 */
1312 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
1313 QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
1314 fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
1315 XENMEM_resource_ioreq_server,
1316 state->ioservid, 0, 2,
1317 &addr,
1318 PROT_READ | PROT_WRITE, 0);
1319 if (fres != NULL) {
1320 trace_xen_map_resource_ioreq(state->ioservid, addr);
1321 state->buffered_io_page = addr;
1322 state->shared_page = addr + TARGET_PAGE_SIZE;
1323 } else if (errno != EOPNOTSUPP) {
1324 error_report("failed to map ioreq server resources: error %d handle=%p",
1325 errno, xen_xc);
1326 return -1;
1327 }
1328
1329 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
1330 (state->shared_page == NULL) ?
1331 &ioreq_pfn : NULL,
1332 (state->buffered_io_page == NULL) ?
1333 &bufioreq_pfn : NULL,
1334 &bufioreq_evtchn);
1335 if (rc < 0) {
1336 error_report("failed to get ioreq server info: error %d handle=%p",
1337 errno, xen_xc);
1338 return rc;
1339 }
1340
1341 if (state->shared_page == NULL) {
1342 DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
1343
1344 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
1345 PROT_READ | PROT_WRITE,
1346 1, &ioreq_pfn, NULL);
1347 if (state->shared_page == NULL) {
1348 error_report("map shared IO page returned error %d handle=%p",
1349 errno, xen_xc);
1350 }
1351 }
1352
1353 if (state->buffered_io_page == NULL) {
1354 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
1355
1356 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
1357 PROT_READ | PROT_WRITE,
1358 1, &bufioreq_pfn,
1359 NULL);
1360 if (state->buffered_io_page == NULL) {
1361 error_report("map buffered IO page returned error %d", errno);
1362 return -1;
1363 }
1364 }
1365
1366 if (state->shared_page == NULL || state->buffered_io_page == NULL) {
1367 return -1;
1368 }
1369
1370 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
1371
1372 state->bufioreq_remote_port = bufioreq_evtchn;
1373
1374 return 0;
1375 }
1376
1377 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory)
1378 {
1379 int i, rc;
1380 xen_pfn_t ioreq_pfn;
1381 XenIOState *state;
1382
1383 state = g_malloc0(sizeof (XenIOState));
1384
1385 state->xce_handle = xenevtchn_open(NULL, 0);
1386 if (state->xce_handle == NULL) {
1387 perror("xen: event channel open");
1388 goto err;
1389 }
1390
1391 state->xenstore = xs_daemon_open();
1392 if (state->xenstore == NULL) {
1393 perror("xen: xenstore open");
1394 goto err;
1395 }
1396
1397 xen_create_ioreq_server(xen_domid, &state->ioservid);
1398
1399 state->exit.notify = xen_exit_notifier;
1400 qemu_add_exit_notifier(&state->exit);
1401
1402 state->suspend.notify = xen_suspend_notifier;
1403 qemu_register_suspend_notifier(&state->suspend);
1404
1405 state->wakeup.notify = xen_wakeup_notifier;
1406 qemu_register_wakeup_notifier(&state->wakeup);
1407
1408 /*
1409 * Register wake-up support in QMP query-current-machine API
1410 */
1411 qemu_register_wakeup_support();
1412
1413 rc = xen_map_ioreq_server(state);
1414 if (rc < 0) {
1415 goto err;
1416 }
1417
1418 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
1419 if (!rc) {
1420 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
1421 state->shared_vmport_page =
1422 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE,
1423 1, &ioreq_pfn, NULL);
1424 if (state->shared_vmport_page == NULL) {
1425 error_report("map shared vmport IO page returned error %d handle=%p",
1426 errno, xen_xc);
1427 goto err;
1428 }
1429 } else if (rc != -ENOSYS) {
1430 error_report("get vmport regs pfn returned error %d, rc=%d",
1431 errno, rc);
1432 goto err;
1433 }
1434
1435 /* Note: cpus is empty at this point in init */
1436 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
1437
1438 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
1439 if (rc < 0) {
1440 error_report("failed to enable ioreq server info: error %d handle=%p",
1441 errno, xen_xc);
1442 goto err;
1443 }
1444
1445 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
1446
1447 /* FIXME: how about if we overflow the page here? */
1448 for (i = 0; i < max_cpus; i++) {
1449 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1450 xen_vcpu_eport(state->shared_page, i));
1451 if (rc == -1) {
1452 error_report("shared evtchn %d bind error %d", i, errno);
1453 goto err;
1454 }
1455 state->ioreq_local_port[i] = rc;
1456 }
1457
1458 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid,
1459 state->bufioreq_remote_port);
1460 if (rc == -1) {
1461 error_report("buffered evtchn bind error %d", errno);
1462 goto err;
1463 }
1464 state->bufioreq_local_port = rc;
1465
1466 /* Init RAM management */
1467 #ifdef XEN_COMPAT_PHYSMAP
1468 xen_map_cache_init(xen_phys_offset_to_gaddr, state);
1469 #else
1470 xen_map_cache_init(NULL, state);
1471 #endif
1472 xen_ram_init(pcms, ram_size, ram_memory);
1473
1474 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
1475
1476 state->memory_listener = xen_memory_listener;
1477 memory_listener_register(&state->memory_listener, &address_space_memory);
1478 state->log_for_dirtybit = NULL;
1479
1480 state->io_listener = xen_io_listener;
1481 memory_listener_register(&state->io_listener, &address_space_io);
1482
1483 state->device_listener = xen_device_listener;
1484 QLIST_INIT(&state->dev_list);
1485 device_listener_register(&state->device_listener);
1486
1487 /* Initialize backend core & drivers */
1488 if (xen_be_init() != 0) {
1489 error_report("xen backend core setup failed");
1490 goto err;
1491 }
1492 xen_be_register_common();
1493
1494 QLIST_INIT(&xen_physmap);
1495 xen_read_physmap(state);
1496
1497 /* Disable ACPI build because Xen handles it */
1498 pcms->acpi_build_enabled = false;
1499
1500 return;
1501
1502 err:
1503 error_report("xen hardware virtual machine initialisation failed");
1504 exit(1);
1505 }
1506
1507 void destroy_hvm_domain(bool reboot)
1508 {
1509 xc_interface *xc_handle;
1510 int sts;
1511 int rc;
1512
1513 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
1514
1515 if (xen_dmod) {
1516 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
1517 if (!rc) {
1518 return;
1519 }
1520 if (errno != ENOTTY /* old Xen */) {
1521 perror("xendevicemodel_shutdown failed");
1522 }
1523 /* well, try the old thing then */
1524 }
1525
1526 xc_handle = xc_interface_open(0, 0, 0);
1527 if (xc_handle == NULL) {
1528 fprintf(stderr, "Cannot acquire xenctrl handle\n");
1529 } else {
1530 sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
1531 if (sts != 0) {
1532 fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
1533 "sts %d, %s\n", reboot ? "reboot" : "poweroff",
1534 sts, strerror(errno));
1535 } else {
1536 fprintf(stderr, "Issued domain %d %s\n", xen_domid,
1537 reboot ? "reboot" : "poweroff");
1538 }
1539 xc_interface_close(xc_handle);
1540 }
1541 }
1542
1543 void xen_register_framebuffer(MemoryRegion *mr)
1544 {
1545 framebuffer = mr;
1546 }
1547
1548 void xen_shutdown_fatal_error(const char *fmt, ...)
1549 {
1550 va_list ap;
1551
1552 va_start(ap, fmt);
1553 vfprintf(stderr, fmt, ap);
1554 va_end(ap);
1555 fprintf(stderr, "Will destroy the domain.\n");
1556 /* destroy the domain */
1557 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
1558 }
1559
1560 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length)
1561 {
1562 if (unlikely(xen_in_migration)) {
1563 int rc;
1564 ram_addr_t start_pfn, nb_pages;
1565
1566 start = xen_phys_offset_to_gaddr(start, length);
1567
1568 if (length == 0) {
1569 length = TARGET_PAGE_SIZE;
1570 }
1571 start_pfn = start >> TARGET_PAGE_BITS;
1572 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
1573 - start_pfn;
1574 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages);
1575 if (rc) {
1576 fprintf(stderr,
1577 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
1578 __func__, start, nb_pages, errno, strerror(errno));
1579 }
1580 }
1581 }
1582
1583 void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
1584 {
1585 if (enable) {
1586 memory_global_dirty_log_start();
1587 } else {
1588 memory_global_dirty_log_stop();
1589 }
1590 }