]> git.proxmox.com Git - qemu.git/blob - hw/intel-hda.c
intel-hda: exit cleanup
[qemu.git] / hw / intel-hda.c
1 /*
2 * Copyright (C) 2010 Red Hat, Inc.
3 *
4 * written by Gerd Hoffmann <kraxel@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "hw.h"
21 #include "pci.h"
22 #include "qemu-timer.h"
23 #include "audiodev.h"
24 #include "intel-hda.h"
25 #include "intel-hda-defs.h"
26
27 /* --------------------------------------------------------------------- */
28 /* hda bus */
29
30 static struct BusInfo hda_codec_bus_info = {
31 .name = "HDA",
32 .size = sizeof(HDACodecBus),
33 .props = (Property[]) {
34 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
35 DEFINE_PROP_END_OF_LIST()
36 }
37 };
38
39 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
40 hda_codec_response_func response,
41 hda_codec_xfer_func xfer)
42 {
43 qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
44 bus->response = response;
45 bus->xfer = xfer;
46 }
47
48 static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
49 {
50 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
51 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
52 HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
53
54 dev->info = info;
55 if (dev->cad == -1) {
56 dev->cad = bus->next_cad;
57 }
58 if (dev->cad > 15)
59 return -1;
60 bus->next_cad = dev->cad + 1;
61 return info->init(dev);
62 }
63
64 static int hda_codec_dev_exit(DeviceState *qdev)
65 {
66 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
67
68 if (dev->info->exit) {
69 dev->info->exit(dev);
70 }
71 return 0;
72 }
73
74 void hda_codec_register(HDACodecDeviceInfo *info)
75 {
76 info->qdev.init = hda_codec_dev_init;
77 info->qdev.exit = hda_codec_dev_exit;
78 info->qdev.bus_info = &hda_codec_bus_info;
79 qdev_register(&info->qdev);
80 }
81
82 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
83 {
84 DeviceState *qdev;
85 HDACodecDevice *cdev;
86
87 QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
88 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
89 if (cdev->cad == cad) {
90 return cdev;
91 }
92 }
93 return NULL;
94 }
95
96 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
97 {
98 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
99 bus->response(dev, solicited, response);
100 }
101
102 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
103 uint8_t *buf, uint32_t len)
104 {
105 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
106 return bus->xfer(dev, stnr, output, buf, len);
107 }
108
109 /* --------------------------------------------------------------------- */
110 /* intel hda emulation */
111
112 typedef struct IntelHDAStream IntelHDAStream;
113 typedef struct IntelHDAState IntelHDAState;
114 typedef struct IntelHDAReg IntelHDAReg;
115
116 typedef struct bpl {
117 uint64_t addr;
118 uint32_t len;
119 uint32_t flags;
120 } bpl;
121
122 struct IntelHDAStream {
123 /* registers */
124 uint32_t ctl;
125 uint32_t lpib;
126 uint32_t cbl;
127 uint32_t lvi;
128 uint32_t fmt;
129 uint32_t bdlp_lbase;
130 uint32_t bdlp_ubase;
131
132 /* state */
133 bpl *bpl;
134 uint32_t bentries;
135 uint32_t bsize, be, bp;
136 };
137
138 struct IntelHDAState {
139 PCIDevice pci;
140 const char *name;
141 HDACodecBus codecs;
142
143 /* registers */
144 uint32_t g_ctl;
145 uint32_t wake_en;
146 uint32_t state_sts;
147 uint32_t int_ctl;
148 uint32_t int_sts;
149 uint32_t wall_clk;
150
151 uint32_t corb_lbase;
152 uint32_t corb_ubase;
153 uint32_t corb_rp;
154 uint32_t corb_wp;
155 uint32_t corb_ctl;
156 uint32_t corb_sts;
157 uint32_t corb_size;
158
159 uint32_t rirb_lbase;
160 uint32_t rirb_ubase;
161 uint32_t rirb_wp;
162 uint32_t rirb_cnt;
163 uint32_t rirb_ctl;
164 uint32_t rirb_sts;
165 uint32_t rirb_size;
166
167 uint32_t dp_lbase;
168 uint32_t dp_ubase;
169
170 uint32_t icw;
171 uint32_t irr;
172 uint32_t ics;
173
174 /* streams */
175 IntelHDAStream st[8];
176
177 /* state */
178 int mmio_addr;
179 uint32_t rirb_count;
180 int64_t wall_base_ns;
181
182 /* debug logging */
183 const IntelHDAReg *last_reg;
184 uint32_t last_val;
185 uint32_t last_write;
186 uint32_t last_sec;
187 uint32_t repeat_count;
188
189 /* properties */
190 uint32_t debug;
191 };
192
193 struct IntelHDAReg {
194 const char *name; /* register name */
195 uint32_t size; /* size in bytes */
196 uint32_t reset; /* reset value */
197 uint32_t wmask; /* write mask */
198 uint32_t wclear; /* write 1 to clear bits */
199 uint32_t offset; /* location in IntelHDAState */
200 uint32_t shift; /* byte access entries for dwords */
201 uint32_t stream;
202 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
203 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
204 };
205
206 static void intel_hda_reset(DeviceState *dev);
207
208 /* --------------------------------------------------------------------- */
209
210 static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
211 {
212 target_phys_addr_t addr;
213
214 #if TARGET_PHYS_ADDR_BITS == 32
215 addr = lbase;
216 #else
217 addr = ubase;
218 addr <<= 32;
219 addr |= lbase;
220 #endif
221 return addr;
222 }
223
224 static void stl_phys_le(target_phys_addr_t addr, uint32_t value)
225 {
226 uint32_t value_le = cpu_to_le32(value);
227 cpu_physical_memory_write(addr, (uint8_t*)(&value_le), sizeof(value_le));
228 }
229
230 static uint32_t ldl_phys_le(target_phys_addr_t addr)
231 {
232 uint32_t value_le;
233 cpu_physical_memory_read(addr, (uint8_t*)(&value_le), sizeof(value_le));
234 return le32_to_cpu(value_le);
235 }
236
237 static void intel_hda_update_int_sts(IntelHDAState *d)
238 {
239 uint32_t sts = 0;
240 uint32_t i;
241
242 /* update controller status */
243 if (d->rirb_sts & ICH6_RBSTS_IRQ) {
244 sts |= (1 << 30);
245 }
246 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
247 sts |= (1 << 30);
248 }
249 if (d->state_sts) {
250 sts |= (1 << 30);
251 }
252
253 /* update stream status */
254 for (i = 0; i < 8; i++) {
255 /* buffer completion interrupt */
256 if (d->st[i].ctl & (1 << 26)) {
257 sts |= (1 << i);
258 }
259 }
260
261 /* update global status */
262 if (sts & d->int_ctl) {
263 sts |= (1 << 31);
264 }
265
266 d->int_sts = sts;
267 }
268
269 static void intel_hda_update_irq(IntelHDAState *d)
270 {
271 int level;
272
273 intel_hda_update_int_sts(d);
274 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
275 level = 1;
276 } else {
277 level = 0;
278 }
279 dprint(d, 2, "%s: level %d\n", __FUNCTION__, level);
280 qemu_set_irq(d->pci.irq[0], level);
281 }
282
283 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
284 {
285 uint32_t cad, nid, data;
286 HDACodecDevice *codec;
287
288 cad = (verb >> 28) & 0x0f;
289 if (verb & (1 << 27)) {
290 /* indirect node addressing, not specified in HDA 1.0 */
291 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
292 return -1;
293 }
294 nid = (verb >> 20) & 0x7f;
295 data = verb & 0xfffff;
296
297 codec = hda_codec_find(&d->codecs, cad);
298 if (codec == NULL) {
299 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
300 return -1;
301 }
302 codec->info->command(codec, nid, data);
303 return 0;
304 }
305
306 static void intel_hda_corb_run(IntelHDAState *d)
307 {
308 target_phys_addr_t addr;
309 uint32_t rp, verb;
310
311 if (d->ics & ICH6_IRS_BUSY) {
312 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
313 intel_hda_send_command(d, d->icw);
314 return;
315 }
316
317 for (;;) {
318 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
319 dprint(d, 2, "%s: !run\n", __FUNCTION__);
320 return;
321 }
322 if ((d->corb_rp & 0xff) == d->corb_wp) {
323 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
324 return;
325 }
326 if (d->rirb_count == d->rirb_cnt) {
327 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
328 return;
329 }
330
331 rp = (d->corb_rp + 1) & 0xff;
332 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
333 verb = ldl_phys_le(addr + 4*rp);
334 d->corb_rp = rp;
335
336 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
337 intel_hda_send_command(d, verb);
338 }
339 }
340
341 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
342 {
343 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
344 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
345 target_phys_addr_t addr;
346 uint32_t wp, ex;
347
348 if (d->ics & ICH6_IRS_BUSY) {
349 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
350 __FUNCTION__, response, dev->cad);
351 d->irr = response;
352 d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
353 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
354 return;
355 }
356
357 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
358 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
359 return;
360 }
361
362 ex = (solicited ? 0 : (1 << 4)) | dev->cad;
363 wp = (d->rirb_wp + 1) & 0xff;
364 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
365 stl_phys_le(addr + 8*wp, response);
366 stl_phys_le(addr + 8*wp + 4, ex);
367 d->rirb_wp = wp;
368
369 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
370 __FUNCTION__, wp, response, ex);
371
372 d->rirb_count++;
373 if (d->rirb_count == d->rirb_cnt) {
374 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
375 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
376 d->rirb_sts |= ICH6_RBSTS_IRQ;
377 intel_hda_update_irq(d);
378 }
379 } else if ((d->corb_rp & 0xff) == d->corb_wp) {
380 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
381 d->rirb_count, d->rirb_cnt);
382 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
383 d->rirb_sts |= ICH6_RBSTS_IRQ;
384 intel_hda_update_irq(d);
385 }
386 }
387 }
388
389 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
390 uint8_t *buf, uint32_t len)
391 {
392 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
393 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
394 IntelHDAStream *st = NULL;
395 target_phys_addr_t addr;
396 uint32_t s, copy, left;
397 bool irq = false;
398
399 for (s = 0; s < ARRAY_SIZE(d->st); s++) {
400 if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
401 st = d->st + s;
402 break;
403 }
404 }
405 if (st == NULL) {
406 return false;
407 }
408 if (st->bpl == NULL) {
409 return false;
410 }
411 if (st->ctl & (1 << 26)) {
412 /*
413 * Wait with the next DMA xfer until the guest
414 * has acked the buffer completion interrupt
415 */
416 return false;
417 }
418
419 left = len;
420 while (left > 0) {
421 copy = left;
422 if (copy > st->bsize - st->lpib)
423 copy = st->bsize - st->lpib;
424 if (copy > st->bpl[st->be].len - st->bp)
425 copy = st->bpl[st->be].len - st->bp;
426
427 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
428 st->be, st->bp, st->bpl[st->be].len, copy);
429
430 cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
431 buf, copy, !output);
432 st->lpib += copy;
433 st->bp += copy;
434 buf += copy;
435 left -= copy;
436
437 if (st->bpl[st->be].len == st->bp) {
438 /* bpl entry filled */
439 if (st->bpl[st->be].flags & 0x01) {
440 irq = true;
441 }
442 st->bp = 0;
443 st->be++;
444 if (st->be == st->bentries) {
445 /* bpl wrap around */
446 st->be = 0;
447 st->lpib = 0;
448 }
449 }
450 }
451 if (d->dp_lbase & 0x01) {
452 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
453 stl_phys_le(addr + 8*s, st->lpib);
454 }
455 dprint(d, 3, "dma: --\n");
456
457 if (irq) {
458 st->ctl |= (1 << 26); /* buffer completion interrupt */
459 intel_hda_update_irq(d);
460 }
461 return true;
462 }
463
464 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
465 {
466 target_phys_addr_t addr;
467 uint8_t buf[16];
468 uint32_t i;
469
470 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
471 st->bentries = st->lvi +1;
472 qemu_free(st->bpl);
473 st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
474 for (i = 0; i < st->bentries; i++, addr += 16) {
475 cpu_physical_memory_read(addr, buf, 16);
476 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
477 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
478 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
479 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
480 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
481 }
482
483 st->bsize = st->cbl;
484 st->lpib = 0;
485 st->be = 0;
486 st->bp = 0;
487 }
488
489 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
490 {
491 DeviceState *qdev;
492 HDACodecDevice *cdev;
493
494 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
495 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
496 if (cdev->info->stream) {
497 cdev->info->stream(cdev, stream, running);
498 }
499 }
500 }
501
502 /* --------------------------------------------------------------------- */
503
504 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
505 {
506 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
507 intel_hda_reset(&d->pci.qdev);
508 }
509 }
510
511 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
512 {
513 intel_hda_update_irq(d);
514 }
515
516 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
517 {
518 intel_hda_update_irq(d);
519 }
520
521 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
522 {
523 int64_t ns;
524
525 ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
526 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
527 }
528
529 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
530 {
531 intel_hda_corb_run(d);
532 }
533
534 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
535 {
536 intel_hda_corb_run(d);
537 }
538
539 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
540 {
541 if (d->rirb_wp & ICH6_RIRBWP_RST) {
542 d->rirb_wp = 0;
543 }
544 }
545
546 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
547 {
548 intel_hda_update_irq(d);
549
550 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
551 /* cleared ICH6_RBSTS_IRQ */
552 d->rirb_count = 0;
553 intel_hda_corb_run(d);
554 }
555 }
556
557 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
558 {
559 if (d->ics & ICH6_IRS_BUSY) {
560 intel_hda_corb_run(d);
561 }
562 }
563
564 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
565 {
566 IntelHDAStream *st = d->st + reg->stream;
567
568 if (st->ctl & 0x01) {
569 /* reset */
570 dprint(d, 1, "st #%d: reset\n", reg->stream);
571 st->ctl = 0;
572 }
573 if ((st->ctl & 0x02) != (old & 0x02)) {
574 uint32_t stnr = (st->ctl >> 20) & 0x0f;
575 /* run bit flipped */
576 if (st->ctl & 0x02) {
577 /* start */
578 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
579 reg->stream, stnr, st->cbl);
580 intel_hda_parse_bdl(d, st);
581 intel_hda_notify_codecs(d, stnr, true);
582 } else {
583 /* stop */
584 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
585 intel_hda_notify_codecs(d, stnr, false);
586 }
587 }
588 intel_hda_update_irq(d);
589 }
590
591 /* --------------------------------------------------------------------- */
592
593 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
594
595 static const struct IntelHDAReg regtab[] = {
596 /* global */
597 [ ICH6_REG_GCAP ] = {
598 .name = "GCAP",
599 .size = 2,
600 .reset = 0x4401,
601 },
602 [ ICH6_REG_VMIN ] = {
603 .name = "VMIN",
604 .size = 1,
605 },
606 [ ICH6_REG_VMAJ ] = {
607 .name = "VMAJ",
608 .size = 1,
609 .reset = 1,
610 },
611 [ ICH6_REG_OUTPAY ] = {
612 .name = "OUTPAY",
613 .size = 2,
614 .reset = 0x3c,
615 },
616 [ ICH6_REG_INPAY ] = {
617 .name = "INPAY",
618 .size = 2,
619 .reset = 0x1d,
620 },
621 [ ICH6_REG_GCTL ] = {
622 .name = "GCTL",
623 .size = 4,
624 .wmask = 0x0103,
625 .offset = offsetof(IntelHDAState, g_ctl),
626 .whandler = intel_hda_set_g_ctl,
627 },
628 [ ICH6_REG_WAKEEN ] = {
629 .name = "WAKEEN",
630 .size = 2,
631 .offset = offsetof(IntelHDAState, wake_en),
632 },
633 [ ICH6_REG_STATESTS ] = {
634 .name = "STATESTS",
635 .size = 2,
636 .wmask = 0x3fff,
637 .wclear = 0x3fff,
638 .offset = offsetof(IntelHDAState, state_sts),
639 .whandler = intel_hda_set_state_sts,
640 },
641
642 /* interrupts */
643 [ ICH6_REG_INTCTL ] = {
644 .name = "INTCTL",
645 .size = 4,
646 .wmask = 0xc00000ff,
647 .offset = offsetof(IntelHDAState, int_ctl),
648 .whandler = intel_hda_set_int_ctl,
649 },
650 [ ICH6_REG_INTSTS ] = {
651 .name = "INTSTS",
652 .size = 4,
653 .wmask = 0xc00000ff,
654 .wclear = 0xc00000ff,
655 .offset = offsetof(IntelHDAState, int_sts),
656 },
657
658 /* misc */
659 [ ICH6_REG_WALLCLK ] = {
660 .name = "WALLCLK",
661 .size = 4,
662 .offset = offsetof(IntelHDAState, wall_clk),
663 .rhandler = intel_hda_get_wall_clk,
664 },
665 [ ICH6_REG_WALLCLK + 0x2000 ] = {
666 .name = "WALLCLK(alias)",
667 .size = 4,
668 .offset = offsetof(IntelHDAState, wall_clk),
669 .rhandler = intel_hda_get_wall_clk,
670 },
671
672 /* dma engine */
673 [ ICH6_REG_CORBLBASE ] = {
674 .name = "CORBLBASE",
675 .size = 4,
676 .wmask = 0xffffff80,
677 .offset = offsetof(IntelHDAState, corb_lbase),
678 },
679 [ ICH6_REG_CORBUBASE ] = {
680 .name = "CORBUBASE",
681 .size = 4,
682 .wmask = 0xffffffff,
683 .offset = offsetof(IntelHDAState, corb_ubase),
684 },
685 [ ICH6_REG_CORBWP ] = {
686 .name = "CORBWP",
687 .size = 2,
688 .wmask = 0xff,
689 .offset = offsetof(IntelHDAState, corb_wp),
690 .whandler = intel_hda_set_corb_wp,
691 },
692 [ ICH6_REG_CORBRP ] = {
693 .name = "CORBRP",
694 .size = 2,
695 .wmask = 0x80ff,
696 .offset = offsetof(IntelHDAState, corb_rp),
697 },
698 [ ICH6_REG_CORBCTL ] = {
699 .name = "CORBCTL",
700 .size = 1,
701 .wmask = 0x03,
702 .offset = offsetof(IntelHDAState, corb_ctl),
703 .whandler = intel_hda_set_corb_ctl,
704 },
705 [ ICH6_REG_CORBSTS ] = {
706 .name = "CORBSTS",
707 .size = 1,
708 .wmask = 0x01,
709 .wclear = 0x01,
710 .offset = offsetof(IntelHDAState, corb_sts),
711 },
712 [ ICH6_REG_CORBSIZE ] = {
713 .name = "CORBSIZE",
714 .size = 1,
715 .reset = 0x42,
716 .offset = offsetof(IntelHDAState, corb_size),
717 },
718 [ ICH6_REG_RIRBLBASE ] = {
719 .name = "RIRBLBASE",
720 .size = 4,
721 .wmask = 0xffffff80,
722 .offset = offsetof(IntelHDAState, rirb_lbase),
723 },
724 [ ICH6_REG_RIRBUBASE ] = {
725 .name = "RIRBUBASE",
726 .size = 4,
727 .wmask = 0xffffffff,
728 .offset = offsetof(IntelHDAState, rirb_ubase),
729 },
730 [ ICH6_REG_RIRBWP ] = {
731 .name = "RIRBWP",
732 .size = 2,
733 .wmask = 0x8000,
734 .offset = offsetof(IntelHDAState, rirb_wp),
735 .whandler = intel_hda_set_rirb_wp,
736 },
737 [ ICH6_REG_RINTCNT ] = {
738 .name = "RINTCNT",
739 .size = 2,
740 .wmask = 0xff,
741 .offset = offsetof(IntelHDAState, rirb_cnt),
742 },
743 [ ICH6_REG_RIRBCTL ] = {
744 .name = "RIRBCTL",
745 .size = 1,
746 .wmask = 0x07,
747 .offset = offsetof(IntelHDAState, rirb_ctl),
748 },
749 [ ICH6_REG_RIRBSTS ] = {
750 .name = "RIRBSTS",
751 .size = 1,
752 .wmask = 0x05,
753 .wclear = 0x05,
754 .offset = offsetof(IntelHDAState, rirb_sts),
755 .whandler = intel_hda_set_rirb_sts,
756 },
757 [ ICH6_REG_RIRBSIZE ] = {
758 .name = "RIRBSIZE",
759 .size = 1,
760 .reset = 0x42,
761 .offset = offsetof(IntelHDAState, rirb_size),
762 },
763
764 [ ICH6_REG_DPLBASE ] = {
765 .name = "DPLBASE",
766 .size = 4,
767 .wmask = 0xffffff81,
768 .offset = offsetof(IntelHDAState, dp_lbase),
769 },
770 [ ICH6_REG_DPUBASE ] = {
771 .name = "DPUBASE",
772 .size = 4,
773 .wmask = 0xffffffff,
774 .offset = offsetof(IntelHDAState, dp_ubase),
775 },
776
777 [ ICH6_REG_IC ] = {
778 .name = "ICW",
779 .size = 4,
780 .wmask = 0xffffffff,
781 .offset = offsetof(IntelHDAState, icw),
782 },
783 [ ICH6_REG_IR ] = {
784 .name = "IRR",
785 .size = 4,
786 .offset = offsetof(IntelHDAState, irr),
787 },
788 [ ICH6_REG_IRS ] = {
789 .name = "ICS",
790 .size = 2,
791 .wmask = 0x0003,
792 .wclear = 0x0002,
793 .offset = offsetof(IntelHDAState, ics),
794 .whandler = intel_hda_set_ics,
795 },
796
797 #define HDA_STREAM(_t, _i) \
798 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
799 .stream = _i, \
800 .name = _t stringify(_i) " CTL", \
801 .size = 4, \
802 .wmask = 0x1cff001f, \
803 .offset = offsetof(IntelHDAState, st[_i].ctl), \
804 .whandler = intel_hda_set_st_ctl, \
805 }, \
806 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
807 .stream = _i, \
808 .name = _t stringify(_i) " CTL(stnr)", \
809 .size = 1, \
810 .shift = 16, \
811 .wmask = 0x00ff0000, \
812 .offset = offsetof(IntelHDAState, st[_i].ctl), \
813 .whandler = intel_hda_set_st_ctl, \
814 }, \
815 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
816 .stream = _i, \
817 .name = _t stringify(_i) " CTL(sts)", \
818 .size = 1, \
819 .shift = 24, \
820 .wmask = 0x1c000000, \
821 .wclear = 0x1c000000, \
822 .offset = offsetof(IntelHDAState, st[_i].ctl), \
823 .whandler = intel_hda_set_st_ctl, \
824 }, \
825 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
826 .stream = _i, \
827 .name = _t stringify(_i) " LPIB", \
828 .size = 4, \
829 .offset = offsetof(IntelHDAState, st[_i].lpib), \
830 }, \
831 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
832 .stream = _i, \
833 .name = _t stringify(_i) " LPIB(alias)", \
834 .size = 4, \
835 .offset = offsetof(IntelHDAState, st[_i].lpib), \
836 }, \
837 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
838 .stream = _i, \
839 .name = _t stringify(_i) " CBL", \
840 .size = 4, \
841 .wmask = 0xffffffff, \
842 .offset = offsetof(IntelHDAState, st[_i].cbl), \
843 }, \
844 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
845 .stream = _i, \
846 .name = _t stringify(_i) " LVI", \
847 .size = 2, \
848 .wmask = 0x00ff, \
849 .offset = offsetof(IntelHDAState, st[_i].lvi), \
850 }, \
851 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
852 .stream = _i, \
853 .name = _t stringify(_i) " FIFOS", \
854 .size = 2, \
855 .reset = HDA_BUFFER_SIZE, \
856 }, \
857 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
858 .stream = _i, \
859 .name = _t stringify(_i) " FMT", \
860 .size = 2, \
861 .wmask = 0x7f7f, \
862 .offset = offsetof(IntelHDAState, st[_i].fmt), \
863 }, \
864 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
865 .stream = _i, \
866 .name = _t stringify(_i) " BDLPL", \
867 .size = 4, \
868 .wmask = 0xffffff80, \
869 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
870 }, \
871 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
872 .stream = _i, \
873 .name = _t stringify(_i) " BDLPU", \
874 .size = 4, \
875 .wmask = 0xffffffff, \
876 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
877 }, \
878
879 HDA_STREAM("IN", 0)
880 HDA_STREAM("IN", 1)
881 HDA_STREAM("IN", 2)
882 HDA_STREAM("IN", 3)
883
884 HDA_STREAM("OUT", 4)
885 HDA_STREAM("OUT", 5)
886 HDA_STREAM("OUT", 6)
887 HDA_STREAM("OUT", 7)
888
889 };
890
891 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
892 {
893 const IntelHDAReg *reg;
894
895 if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
896 goto noreg;
897 }
898 reg = regtab+addr;
899 if (reg->name == NULL) {
900 goto noreg;
901 }
902 return reg;
903
904 noreg:
905 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
906 return NULL;
907 }
908
909 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
910 {
911 uint8_t *addr = (void*)d;
912
913 addr += reg->offset;
914 return (uint32_t*)addr;
915 }
916
917 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
918 uint32_t wmask)
919 {
920 uint32_t *addr;
921 uint32_t old;
922
923 if (!reg) {
924 return;
925 }
926
927 if (d->debug) {
928 time_t now = time(NULL);
929 if (d->last_write && d->last_reg == reg && d->last_val == val) {
930 d->repeat_count++;
931 if (d->last_sec != now) {
932 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
933 d->last_sec = now;
934 d->repeat_count = 0;
935 }
936 } else {
937 if (d->repeat_count) {
938 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
939 }
940 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
941 d->last_write = 1;
942 d->last_reg = reg;
943 d->last_val = val;
944 d->last_sec = now;
945 d->repeat_count = 0;
946 }
947 }
948 assert(reg->offset != 0);
949
950 addr = intel_hda_reg_addr(d, reg);
951 old = *addr;
952
953 if (reg->shift) {
954 val <<= reg->shift;
955 wmask <<= reg->shift;
956 }
957 wmask &= reg->wmask;
958 *addr &= ~wmask;
959 *addr |= wmask & val;
960 *addr &= ~(val & reg->wclear);
961
962 if (reg->whandler) {
963 reg->whandler(d, reg, old);
964 }
965 }
966
967 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
968 uint32_t rmask)
969 {
970 uint32_t *addr, ret;
971
972 if (!reg) {
973 return 0;
974 }
975
976 if (reg->rhandler) {
977 reg->rhandler(d, reg);
978 }
979
980 if (reg->offset == 0) {
981 /* constant read-only register */
982 ret = reg->reset;
983 } else {
984 addr = intel_hda_reg_addr(d, reg);
985 ret = *addr;
986 if (reg->shift) {
987 ret >>= reg->shift;
988 }
989 ret &= rmask;
990 }
991 if (d->debug) {
992 time_t now = time(NULL);
993 if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
994 d->repeat_count++;
995 if (d->last_sec != now) {
996 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
997 d->last_sec = now;
998 d->repeat_count = 0;
999 }
1000 } else {
1001 if (d->repeat_count) {
1002 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1003 }
1004 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1005 d->last_write = 0;
1006 d->last_reg = reg;
1007 d->last_val = ret;
1008 d->last_sec = now;
1009 d->repeat_count = 0;
1010 }
1011 }
1012 return ret;
1013 }
1014
1015 static void intel_hda_regs_reset(IntelHDAState *d)
1016 {
1017 uint32_t *addr;
1018 int i;
1019
1020 for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1021 if (regtab[i].name == NULL) {
1022 continue;
1023 }
1024 if (regtab[i].offset == 0) {
1025 continue;
1026 }
1027 addr = intel_hda_reg_addr(d, regtab + i);
1028 *addr = regtab[i].reset;
1029 }
1030 }
1031
1032 /* --------------------------------------------------------------------- */
1033
1034 static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1035 {
1036 IntelHDAState *d = opaque;
1037 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1038
1039 intel_hda_reg_write(d, reg, val, 0xff);
1040 }
1041
1042 static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1043 {
1044 IntelHDAState *d = opaque;
1045 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1046
1047 intel_hda_reg_write(d, reg, val, 0xffff);
1048 }
1049
1050 static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1051 {
1052 IntelHDAState *d = opaque;
1053 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1054
1055 intel_hda_reg_write(d, reg, val, 0xffffffff);
1056 }
1057
1058 static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1059 {
1060 IntelHDAState *d = opaque;
1061 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1062
1063 return intel_hda_reg_read(d, reg, 0xff);
1064 }
1065
1066 static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1067 {
1068 IntelHDAState *d = opaque;
1069 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1070
1071 return intel_hda_reg_read(d, reg, 0xffff);
1072 }
1073
1074 static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1075 {
1076 IntelHDAState *d = opaque;
1077 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1078
1079 return intel_hda_reg_read(d, reg, 0xffffffff);
1080 }
1081
1082 static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
1083 intel_hda_mmio_readb,
1084 intel_hda_mmio_readw,
1085 intel_hda_mmio_readl,
1086 };
1087
1088 static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
1089 intel_hda_mmio_writeb,
1090 intel_hda_mmio_writew,
1091 intel_hda_mmio_writel,
1092 };
1093
1094 static void intel_hda_map(PCIDevice *pci, int region_num,
1095 pcibus_t addr, pcibus_t size, int type)
1096 {
1097 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1098
1099 cpu_register_physical_memory(addr, 0x4000, d->mmio_addr);
1100 }
1101
1102 /* --------------------------------------------------------------------- */
1103
1104 static void intel_hda_reset(DeviceState *dev)
1105 {
1106 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1107 DeviceState *qdev;
1108 HDACodecDevice *cdev;
1109
1110 intel_hda_regs_reset(d);
1111 d->wall_base_ns = qemu_get_clock(vm_clock);
1112
1113 /* reset codecs */
1114 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1115 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1116 if (qdev->info->reset) {
1117 qdev->info->reset(qdev);
1118 }
1119 d->state_sts |= (1 << cdev->cad);
1120 }
1121 intel_hda_update_irq(d);
1122 }
1123
1124 static int intel_hda_init(PCIDevice *pci)
1125 {
1126 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1127 uint8_t *conf = d->pci.config;
1128
1129 d->name = d->pci.qdev.info->name;
1130
1131 pci_config_set_vendor_id(conf, PCI_VENDOR_ID_INTEL);
1132 pci_config_set_device_id(conf, 0x2668);
1133 pci_config_set_revision(conf, 1);
1134 pci_config_set_class(conf, PCI_CLASS_MULTIMEDIA_HD_AUDIO);
1135 pci_config_set_interrupt_pin(conf, 1);
1136
1137 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1138 conf[0x40] = 0x01;
1139
1140 d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
1141 intel_hda_mmio_write, d);
1142 pci_register_bar(&d->pci, 0, 0x4000, PCI_BASE_ADDRESS_SPACE_MEMORY,
1143 intel_hda_map);
1144
1145 hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1146 intel_hda_response, intel_hda_xfer);
1147
1148 return 0;
1149 }
1150
1151 static int intel_hda_exit(PCIDevice *pci)
1152 {
1153 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1154
1155 cpu_unregister_io_memory(d->mmio_addr);
1156 return 0;
1157 }
1158
1159 static int intel_hda_post_load(void *opaque, int version)
1160 {
1161 IntelHDAState* d = opaque;
1162 int i;
1163
1164 dprint(d, 1, "%s\n", __FUNCTION__);
1165 for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1166 if (d->st[i].ctl & 0x02) {
1167 intel_hda_parse_bdl(d, &d->st[i]);
1168 }
1169 }
1170 intel_hda_update_irq(d);
1171 return 0;
1172 }
1173
1174 static const VMStateDescription vmstate_intel_hda_stream = {
1175 .name = "intel-hda-stream",
1176 .version_id = 1,
1177 .fields = (VMStateField []) {
1178 VMSTATE_UINT32(ctl, IntelHDAStream),
1179 VMSTATE_UINT32(lpib, IntelHDAStream),
1180 VMSTATE_UINT32(cbl, IntelHDAStream),
1181 VMSTATE_UINT32(lvi, IntelHDAStream),
1182 VMSTATE_UINT32(fmt, IntelHDAStream),
1183 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1184 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1185 VMSTATE_END_OF_LIST()
1186 }
1187 };
1188
1189 static const VMStateDescription vmstate_intel_hda = {
1190 .name = "intel-hda",
1191 .version_id = 1,
1192 .post_load = intel_hda_post_load,
1193 .fields = (VMStateField []) {
1194 VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1195
1196 /* registers */
1197 VMSTATE_UINT32(g_ctl, IntelHDAState),
1198 VMSTATE_UINT32(wake_en, IntelHDAState),
1199 VMSTATE_UINT32(state_sts, IntelHDAState),
1200 VMSTATE_UINT32(int_ctl, IntelHDAState),
1201 VMSTATE_UINT32(int_sts, IntelHDAState),
1202 VMSTATE_UINT32(wall_clk, IntelHDAState),
1203 VMSTATE_UINT32(corb_lbase, IntelHDAState),
1204 VMSTATE_UINT32(corb_ubase, IntelHDAState),
1205 VMSTATE_UINT32(corb_rp, IntelHDAState),
1206 VMSTATE_UINT32(corb_wp, IntelHDAState),
1207 VMSTATE_UINT32(corb_ctl, IntelHDAState),
1208 VMSTATE_UINT32(corb_sts, IntelHDAState),
1209 VMSTATE_UINT32(corb_size, IntelHDAState),
1210 VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1211 VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1212 VMSTATE_UINT32(rirb_wp, IntelHDAState),
1213 VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1214 VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1215 VMSTATE_UINT32(rirb_sts, IntelHDAState),
1216 VMSTATE_UINT32(rirb_size, IntelHDAState),
1217 VMSTATE_UINT32(dp_lbase, IntelHDAState),
1218 VMSTATE_UINT32(dp_ubase, IntelHDAState),
1219 VMSTATE_UINT32(icw, IntelHDAState),
1220 VMSTATE_UINT32(irr, IntelHDAState),
1221 VMSTATE_UINT32(ics, IntelHDAState),
1222 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1223 vmstate_intel_hda_stream,
1224 IntelHDAStream),
1225
1226 /* additional state info */
1227 VMSTATE_UINT32(rirb_count, IntelHDAState),
1228 VMSTATE_INT64(wall_base_ns, IntelHDAState),
1229
1230 VMSTATE_END_OF_LIST()
1231 }
1232 };
1233
1234 static PCIDeviceInfo intel_hda_info = {
1235 .qdev.name = "intel-hda",
1236 .qdev.desc = "Intel HD Audio Controller",
1237 .qdev.size = sizeof(IntelHDAState),
1238 .qdev.vmsd = &vmstate_intel_hda,
1239 .qdev.reset = intel_hda_reset,
1240 .init = intel_hda_init,
1241 .exit = intel_hda_exit,
1242 .qdev.props = (Property[]) {
1243 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1244 DEFINE_PROP_END_OF_LIST(),
1245 }
1246 };
1247
1248 static void intel_hda_register(void)
1249 {
1250 pci_qdev_register(&intel_hda_info);
1251 }
1252 device_init(intel_hda_register);
1253
1254 /*
1255 * create intel hda controller with codec attached to it,
1256 * so '-soundhw hda' works.
1257 */
1258 int intel_hda_and_codec_init(PCIBus *bus)
1259 {
1260 PCIDevice *controller;
1261 BusState *hdabus;
1262 DeviceState *codec;
1263
1264 controller = pci_create_simple(bus, -1, "intel-hda");
1265 hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1266 codec = qdev_create(hdabus, "hda-duplex");
1267 qdev_init_nofail(codec);
1268 return 0;
1269 }
1270