]> git.proxmox.com Git - qemu.git/blob - hw/kvmvapic.c
exec: refactor cpu_restore_state
[qemu.git] / hw / kvmvapic.c
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3 *
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
6 *
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
10 */
11 #include "sysemu.h"
12 #include "cpus.h"
13 #include "kvm.h"
14 #include "apic_internal.h"
15
16 #define APIC_DEFAULT_ADDRESS 0xfee00000
17
18 #define VAPIC_IO_PORT 0x7e
19
20 #define VAPIC_CPU_SHIFT 7
21
22 #define ROM_BLOCK_SIZE 512
23 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
24
25 typedef enum VAPICMode {
26 VAPIC_INACTIVE = 0,
27 VAPIC_ACTIVE = 1,
28 VAPIC_STANDBY = 2,
29 } VAPICMode;
30
31 typedef struct VAPICHandlers {
32 uint32_t set_tpr;
33 uint32_t set_tpr_eax;
34 uint32_t get_tpr[8];
35 uint32_t get_tpr_stack;
36 } QEMU_PACKED VAPICHandlers;
37
38 typedef struct GuestROMState {
39 char signature[8];
40 uint32_t vaddr;
41 uint32_t fixup_start;
42 uint32_t fixup_end;
43 uint32_t vapic_vaddr;
44 uint32_t vapic_size;
45 uint32_t vcpu_shift;
46 uint32_t real_tpr_addr;
47 VAPICHandlers up;
48 VAPICHandlers mp;
49 } QEMU_PACKED GuestROMState;
50
51 typedef struct VAPICROMState {
52 SysBusDevice busdev;
53 MemoryRegion io;
54 MemoryRegion rom;
55 uint32_t state;
56 uint32_t rom_state_paddr;
57 uint32_t rom_state_vaddr;
58 uint32_t vapic_paddr;
59 uint32_t real_tpr_addr;
60 GuestROMState rom_state;
61 size_t rom_size;
62 bool rom_mapped_writable;
63 } VAPICROMState;
64
65 #define TPR_INSTR_ABS_MODRM 0x1
66 #define TPR_INSTR_MATCH_MODRM_REG 0x2
67
68 typedef struct TPRInstruction {
69 uint8_t opcode;
70 uint8_t modrm_reg;
71 unsigned int flags;
72 TPRAccess access;
73 size_t length;
74 off_t addr_offset;
75 } TPRInstruction;
76
77 /* must be sorted by length, shortest first */
78 static const TPRInstruction tpr_instr[] = {
79 { /* mov abs to eax */
80 .opcode = 0xa1,
81 .access = TPR_ACCESS_READ,
82 .length = 5,
83 .addr_offset = 1,
84 },
85 { /* mov eax to abs */
86 .opcode = 0xa3,
87 .access = TPR_ACCESS_WRITE,
88 .length = 5,
89 .addr_offset = 1,
90 },
91 { /* mov r32 to r/m32 */
92 .opcode = 0x89,
93 .flags = TPR_INSTR_ABS_MODRM,
94 .access = TPR_ACCESS_WRITE,
95 .length = 6,
96 .addr_offset = 2,
97 },
98 { /* mov r/m32 to r32 */
99 .opcode = 0x8b,
100 .flags = TPR_INSTR_ABS_MODRM,
101 .access = TPR_ACCESS_READ,
102 .length = 6,
103 .addr_offset = 2,
104 },
105 { /* push r/m32 */
106 .opcode = 0xff,
107 .modrm_reg = 6,
108 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
109 .access = TPR_ACCESS_READ,
110 .length = 6,
111 .addr_offset = 2,
112 },
113 { /* mov imm32, r/m32 (c7/0) */
114 .opcode = 0xc7,
115 .modrm_reg = 0,
116 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
117 .access = TPR_ACCESS_WRITE,
118 .length = 10,
119 .addr_offset = 2,
120 },
121 };
122
123 static void read_guest_rom_state(VAPICROMState *s)
124 {
125 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
126 sizeof(GuestROMState), 0);
127 }
128
129 static void write_guest_rom_state(VAPICROMState *s)
130 {
131 cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
132 sizeof(GuestROMState), 1);
133 }
134
135 static void update_guest_rom_state(VAPICROMState *s)
136 {
137 read_guest_rom_state(s);
138
139 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
140 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
141
142 write_guest_rom_state(s);
143 }
144
145 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
146 {
147 hwaddr paddr;
148 target_ulong addr;
149
150 if (s->state == VAPIC_ACTIVE) {
151 return 0;
152 }
153 /*
154 * If there is no prior TPR access instruction we could analyze (which is
155 * the case after resume from hibernation), we need to scan the possible
156 * virtual address space for the APIC mapping.
157 */
158 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
159 paddr = cpu_get_phys_page_debug(env, addr);
160 if (paddr != APIC_DEFAULT_ADDRESS) {
161 continue;
162 }
163 s->real_tpr_addr = addr + 0x80;
164 update_guest_rom_state(s);
165 return 0;
166 }
167 return -1;
168 }
169
170 static uint8_t modrm_reg(uint8_t modrm)
171 {
172 return (modrm >> 3) & 7;
173 }
174
175 static bool is_abs_modrm(uint8_t modrm)
176 {
177 return (modrm & 0xc7) == 0x05;
178 }
179
180 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
181 {
182 return opcode[0] == instr->opcode &&
183 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
184 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
185 modrm_reg(opcode[1]) == instr->modrm_reg);
186 }
187
188 static int evaluate_tpr_instruction(VAPICROMState *s, CPUX86State *env,
189 target_ulong *pip, TPRAccess access)
190 {
191 const TPRInstruction *instr;
192 target_ulong ip = *pip;
193 uint8_t opcode[2];
194 uint32_t real_tpr_addr;
195 int i;
196
197 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
198 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
199 return -1;
200 }
201
202 /*
203 * Early Windows 2003 SMP initialization contains a
204 *
205 * mov imm32, r/m32
206 *
207 * instruction that is patched by TPR optimization. The problem is that
208 * RSP, used by the patched instruction, is zero, so the guest gets a
209 * double fault and dies.
210 */
211 if (env->regs[R_ESP] == 0) {
212 return -1;
213 }
214
215 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
216 /*
217 * KVM without kernel-based TPR access reporting will pass an IP that
218 * points after the accessing instruction. So we need to look backward
219 * to find the reason.
220 */
221 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
222 instr = &tpr_instr[i];
223 if (instr->access != access) {
224 continue;
225 }
226 if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
227 sizeof(opcode), 0) < 0) {
228 return -1;
229 }
230 if (opcode_matches(opcode, instr)) {
231 ip -= instr->length;
232 goto instruction_ok;
233 }
234 }
235 return -1;
236 } else {
237 if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
238 return -1;
239 }
240 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
241 instr = &tpr_instr[i];
242 if (opcode_matches(opcode, instr)) {
243 goto instruction_ok;
244 }
245 }
246 return -1;
247 }
248
249 instruction_ok:
250 /*
251 * Grab the virtual TPR address from the instruction
252 * and update the cached values.
253 */
254 if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
255 (void *)&real_tpr_addr,
256 sizeof(real_tpr_addr), 0) < 0) {
257 return -1;
258 }
259 real_tpr_addr = le32_to_cpu(real_tpr_addr);
260 if ((real_tpr_addr & 0xfff) != 0x80) {
261 return -1;
262 }
263 s->real_tpr_addr = real_tpr_addr;
264 update_guest_rom_state(s);
265
266 *pip = ip;
267 return 0;
268 }
269
270 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
271 {
272 hwaddr paddr;
273 uint32_t rom_state_vaddr;
274 uint32_t pos, patch, offset;
275
276 /* nothing to do if already activated */
277 if (s->state == VAPIC_ACTIVE) {
278 return 0;
279 }
280
281 /* bail out if ROM init code was not executed (missing ROM?) */
282 if (s->state == VAPIC_INACTIVE) {
283 return -1;
284 }
285
286 /* find out virtual address of the ROM */
287 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
288 paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
289 if (paddr == -1) {
290 return -1;
291 }
292 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
293 if (paddr != s->rom_state_paddr) {
294 return -1;
295 }
296 read_guest_rom_state(s);
297 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
298 return -1;
299 }
300 s->rom_state_vaddr = rom_state_vaddr;
301
302 /* fixup addresses in ROM if needed */
303 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
304 return 0;
305 }
306 for (pos = le32_to_cpu(s->rom_state.fixup_start);
307 pos < le32_to_cpu(s->rom_state.fixup_end);
308 pos += 4) {
309 cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
310 (void *)&offset, sizeof(offset), 0);
311 offset = le32_to_cpu(offset);
312 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
313 sizeof(patch), 0);
314 patch = le32_to_cpu(patch);
315 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
316 patch = cpu_to_le32(patch);
317 cpu_physical_memory_rw(paddr + offset, (void *)&patch,
318 sizeof(patch), 1);
319 }
320 read_guest_rom_state(s);
321 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
322 le32_to_cpu(s->rom_state.vaddr);
323
324 return 0;
325 }
326
327 /*
328 * Tries to read the unique processor number from the Kernel Processor Control
329 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
330 * cannot be accessed or is considered invalid. This also ensures that we are
331 * not patching the wrong guest.
332 */
333 static int get_kpcr_number(CPUX86State *env)
334 {
335 struct kpcr {
336 uint8_t fill1[0x1c];
337 uint32_t self;
338 uint8_t fill2[0x31];
339 uint8_t number;
340 } QEMU_PACKED kpcr;
341
342 if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
343 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
344 kpcr.self != env->segs[R_FS].base) {
345 return -1;
346 }
347 return kpcr.number;
348 }
349
350 static int vapic_enable(VAPICROMState *s, CPUX86State *env)
351 {
352 int cpu_number = get_kpcr_number(env);
353 hwaddr vapic_paddr;
354 static const uint8_t enabled = 1;
355
356 if (cpu_number < 0) {
357 return -1;
358 }
359 vapic_paddr = s->vapic_paddr +
360 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
361 cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
362 (void *)&enabled, sizeof(enabled), 1);
363 apic_enable_vapic(env->apic_state, vapic_paddr);
364
365 s->state = VAPIC_ACTIVE;
366
367 return 0;
368 }
369
370 static void patch_byte(CPUX86State *env, target_ulong addr, uint8_t byte)
371 {
372 cpu_memory_rw_debug(env, addr, &byte, 1, 1);
373 }
374
375 static void patch_call(VAPICROMState *s, CPUX86State *env, target_ulong ip,
376 uint32_t target)
377 {
378 uint32_t offset;
379
380 offset = cpu_to_le32(target - ip - 5);
381 patch_byte(env, ip, 0xe8); /* call near */
382 cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
383 }
384
385 static void patch_instruction(VAPICROMState *s, CPUX86State *env, target_ulong ip)
386 {
387 VAPICHandlers *handlers;
388 uint8_t opcode[2];
389 uint32_t imm32;
390 target_ulong current_pc = 0;
391 target_ulong current_cs_base = 0;
392 int current_flags = 0;
393
394 if (smp_cpus == 1) {
395 handlers = &s->rom_state.up;
396 } else {
397 handlers = &s->rom_state.mp;
398 }
399
400 if (!kvm_enabled()) {
401 cpu_restore_state(env, env->mem_io_pc);
402 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
403 &current_flags);
404 }
405
406 pause_all_vcpus();
407
408 cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
409
410 switch (opcode[0]) {
411 case 0x89: /* mov r32 to r/m32 */
412 patch_byte(env, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
413 patch_call(s, env, ip + 1, handlers->set_tpr);
414 break;
415 case 0x8b: /* mov r/m32 to r32 */
416 patch_byte(env, ip, 0x90);
417 patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
418 break;
419 case 0xa1: /* mov abs to eax */
420 patch_call(s, env, ip, handlers->get_tpr[0]);
421 break;
422 case 0xa3: /* mov eax to abs */
423 patch_call(s, env, ip, handlers->set_tpr_eax);
424 break;
425 case 0xc7: /* mov imm32, r/m32 (c7/0) */
426 patch_byte(env, ip, 0x68); /* push imm32 */
427 cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
428 cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
429 patch_call(s, env, ip + 5, handlers->set_tpr);
430 break;
431 case 0xff: /* push r/m32 */
432 patch_byte(env, ip, 0x50); /* push eax */
433 patch_call(s, env, ip + 1, handlers->get_tpr_stack);
434 break;
435 default:
436 abort();
437 }
438
439 resume_all_vcpus();
440
441 if (!kvm_enabled()) {
442 env->current_tb = NULL;
443 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
444 cpu_resume_from_signal(env, NULL);
445 }
446 }
447
448 void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
449 TPRAccess access)
450 {
451 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
452 CPUX86State *env = cpu;
453
454 cpu_synchronize_state(env);
455
456 if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
457 if (s->state == VAPIC_ACTIVE) {
458 vapic_enable(s, env);
459 }
460 return;
461 }
462 if (update_rom_mapping(s, env, ip) < 0) {
463 return;
464 }
465 if (vapic_enable(s, env) < 0) {
466 return;
467 }
468 patch_instruction(s, env, ip);
469 }
470
471 typedef struct VAPICEnableTPRReporting {
472 DeviceState *apic;
473 bool enable;
474 } VAPICEnableTPRReporting;
475
476 static void vapic_do_enable_tpr_reporting(void *data)
477 {
478 VAPICEnableTPRReporting *info = data;
479
480 apic_enable_tpr_access_reporting(info->apic, info->enable);
481 }
482
483 static void vapic_enable_tpr_reporting(bool enable)
484 {
485 VAPICEnableTPRReporting info = {
486 .enable = enable,
487 };
488 X86CPU *cpu;
489 CPUX86State *env;
490
491 for (env = first_cpu; env != NULL; env = env->next_cpu) {
492 cpu = x86_env_get_cpu(env);
493 info.apic = env->apic_state;
494 run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
495 }
496 }
497
498 static void vapic_reset(DeviceState *dev)
499 {
500 VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
501
502 if (s->state == VAPIC_ACTIVE) {
503 s->state = VAPIC_STANDBY;
504 }
505 vapic_enable_tpr_reporting(false);
506 }
507
508 /*
509 * Set the IRQ polling hypercalls to the supported variant:
510 * - vmcall if using KVM in-kernel irqchip
511 * - 32-bit VAPIC port write otherwise
512 */
513 static int patch_hypercalls(VAPICROMState *s)
514 {
515 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
516 static const uint8_t vmcall_pattern[] = { /* vmcall */
517 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
518 };
519 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
520 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
521 };
522 uint8_t alternates[2];
523 const uint8_t *pattern;
524 const uint8_t *patch;
525 int patches = 0;
526 off_t pos;
527 uint8_t *rom;
528
529 rom = g_malloc(s->rom_size);
530 cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
531
532 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
533 if (kvm_irqchip_in_kernel()) {
534 pattern = outl_pattern;
535 alternates[0] = outl_pattern[7];
536 alternates[1] = outl_pattern[7];
537 patch = &vmcall_pattern[5];
538 } else {
539 pattern = vmcall_pattern;
540 alternates[0] = vmcall_pattern[7];
541 alternates[1] = 0xd9; /* AMD's VMMCALL */
542 patch = &outl_pattern[5];
543 }
544 if (memcmp(rom + pos, pattern, 7) == 0 &&
545 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
546 cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
547 3, 1);
548 /*
549 * Don't flush the tb here. Under ordinary conditions, the patched
550 * calls are miles away from the current IP. Under malicious
551 * conditions, the guest could trick us to crash.
552 */
553 }
554 }
555
556 g_free(rom);
557
558 if (patches != 0 && patches != 2) {
559 return -1;
560 }
561
562 return 0;
563 }
564
565 /*
566 * For TCG mode or the time KVM honors read-only memory regions, we need to
567 * enable write access to the option ROM so that variables can be updated by
568 * the guest.
569 */
570 static void vapic_map_rom_writable(VAPICROMState *s)
571 {
572 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
573 MemoryRegionSection section;
574 MemoryRegion *as;
575 size_t rom_size;
576 uint8_t *ram;
577
578 as = sysbus_address_space(&s->busdev);
579
580 if (s->rom_mapped_writable) {
581 memory_region_del_subregion(as, &s->rom);
582 memory_region_destroy(&s->rom);
583 }
584
585 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
586 section = memory_region_find(as, 0, 1);
587
588 /* read ROM size from RAM region */
589 ram = memory_region_get_ram_ptr(section.mr);
590 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
591 s->rom_size = rom_size;
592
593 /* We need to round to avoid creating subpages
594 * from which we cannot run code. */
595 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
596 rom_paddr &= TARGET_PAGE_MASK;
597 rom_size = TARGET_PAGE_ALIGN(rom_size);
598
599 memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
600 rom_size);
601 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
602 s->rom_mapped_writable = true;
603 }
604
605 static int vapic_prepare(VAPICROMState *s)
606 {
607 vapic_map_rom_writable(s);
608
609 if (patch_hypercalls(s) < 0) {
610 return -1;
611 }
612
613 vapic_enable_tpr_reporting(true);
614
615 return 0;
616 }
617
618 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
619 unsigned int size)
620 {
621 CPUX86State *env = cpu_single_env;
622 hwaddr rom_paddr;
623 VAPICROMState *s = opaque;
624
625 cpu_synchronize_state(env);
626
627 /*
628 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
629 * o 16-bit write access:
630 * Reports the option ROM initialization to the hypervisor. Written
631 * value is the offset of the state structure in the ROM.
632 * o 8-bit write access:
633 * Reactivates the VAPIC after a guest hibernation, i.e. after the
634 * option ROM content has been re-initialized by a guest power cycle.
635 * o 32-bit write access:
636 * Poll for pending IRQs, considering the current VAPIC state.
637 */
638 switch (size) {
639 case 2:
640 if (s->state == VAPIC_INACTIVE) {
641 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
642 s->rom_state_paddr = rom_paddr + data;
643
644 s->state = VAPIC_STANDBY;
645 }
646 if (vapic_prepare(s) < 0) {
647 s->state = VAPIC_INACTIVE;
648 break;
649 }
650 break;
651 case 1:
652 if (kvm_enabled()) {
653 /*
654 * Disable triggering instruction in ROM by writing a NOP.
655 *
656 * We cannot do this in TCG mode as the reported IP is not
657 * accurate.
658 */
659 pause_all_vcpus();
660 patch_byte(env, env->eip - 2, 0x66);
661 patch_byte(env, env->eip - 1, 0x90);
662 resume_all_vcpus();
663 }
664
665 if (s->state == VAPIC_ACTIVE) {
666 break;
667 }
668 if (update_rom_mapping(s, env, env->eip) < 0) {
669 break;
670 }
671 if (find_real_tpr_addr(s, env) < 0) {
672 break;
673 }
674 vapic_enable(s, env);
675 break;
676 default:
677 case 4:
678 if (!kvm_irqchip_in_kernel()) {
679 apic_poll_irq(env->apic_state);
680 }
681 break;
682 }
683 }
684
685 static const MemoryRegionOps vapic_ops = {
686 .write = vapic_write,
687 .endianness = DEVICE_NATIVE_ENDIAN,
688 };
689
690 static int vapic_init(SysBusDevice *dev)
691 {
692 VAPICROMState *s = FROM_SYSBUS(VAPICROMState, dev);
693
694 memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
695 sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
696 sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
697
698 option_rom[nb_option_roms].name = "kvmvapic.bin";
699 option_rom[nb_option_roms].bootindex = -1;
700 nb_option_roms++;
701
702 return 0;
703 }
704
705 static void do_vapic_enable(void *data)
706 {
707 VAPICROMState *s = data;
708
709 vapic_enable(s, first_cpu);
710 }
711
712 static int vapic_post_load(void *opaque, int version_id)
713 {
714 VAPICROMState *s = opaque;
715 uint8_t *zero;
716
717 /*
718 * The old implementation of qemu-kvm did not provide the state
719 * VAPIC_STANDBY. Reconstruct it.
720 */
721 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
722 s->state = VAPIC_STANDBY;
723 }
724
725 if (s->state != VAPIC_INACTIVE) {
726 if (vapic_prepare(s) < 0) {
727 return -1;
728 }
729 }
730 if (s->state == VAPIC_ACTIVE) {
731 if (smp_cpus == 1) {
732 run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
733 } else {
734 zero = g_malloc0(s->rom_state.vapic_size);
735 cpu_physical_memory_rw(s->vapic_paddr, zero,
736 s->rom_state.vapic_size, 1);
737 g_free(zero);
738 }
739 }
740
741 return 0;
742 }
743
744 static const VMStateDescription vmstate_handlers = {
745 .name = "kvmvapic-handlers",
746 .version_id = 1,
747 .minimum_version_id = 1,
748 .minimum_version_id_old = 1,
749 .fields = (VMStateField[]) {
750 VMSTATE_UINT32(set_tpr, VAPICHandlers),
751 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
752 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
753 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
754 VMSTATE_END_OF_LIST()
755 }
756 };
757
758 static const VMStateDescription vmstate_guest_rom = {
759 .name = "kvmvapic-guest-rom",
760 .version_id = 1,
761 .minimum_version_id = 1,
762 .minimum_version_id_old = 1,
763 .fields = (VMStateField[]) {
764 VMSTATE_UNUSED(8), /* signature */
765 VMSTATE_UINT32(vaddr, GuestROMState),
766 VMSTATE_UINT32(fixup_start, GuestROMState),
767 VMSTATE_UINT32(fixup_end, GuestROMState),
768 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
769 VMSTATE_UINT32(vapic_size, GuestROMState),
770 VMSTATE_UINT32(vcpu_shift, GuestROMState),
771 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
772 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
773 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
774 VMSTATE_END_OF_LIST()
775 }
776 };
777
778 static const VMStateDescription vmstate_vapic = {
779 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
780 .version_id = 1,
781 .minimum_version_id = 1,
782 .minimum_version_id_old = 1,
783 .post_load = vapic_post_load,
784 .fields = (VMStateField[]) {
785 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
786 GuestROMState),
787 VMSTATE_UINT32(state, VAPICROMState),
788 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
789 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
790 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
791 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
792 VMSTATE_END_OF_LIST()
793 }
794 };
795
796 static void vapic_class_init(ObjectClass *klass, void *data)
797 {
798 SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
799 DeviceClass *dc = DEVICE_CLASS(klass);
800
801 dc->no_user = 1;
802 dc->reset = vapic_reset;
803 dc->vmsd = &vmstate_vapic;
804 sc->init = vapic_init;
805 }
806
807 static TypeInfo vapic_type = {
808 .name = "kvmvapic",
809 .parent = TYPE_SYS_BUS_DEVICE,
810 .instance_size = sizeof(VAPICROMState),
811 .class_init = vapic_class_init,
812 };
813
814 static void vapic_register(void)
815 {
816 type_register_static(&vapic_type);
817 }
818
819 type_init(vapic_register);