]> git.proxmox.com Git - qemu.git/blob - hw/lm32_boards.c
Merge remote-tracking branch 'qemu-kvm/memory/batch' into staging
[qemu.git] / hw / lm32_boards.c
1 /*
2 * QEMU models for LatticeMico32 uclinux and evr32 boards.
3 *
4 * Copyright (c) 2010 Michael Walle <michael@walle.cc>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "sysbus.h"
21 #include "hw.h"
22 #include "net.h"
23 #include "flash.h"
24 #include "devices.h"
25 #include "boards.h"
26 #include "loader.h"
27 #include "blockdev.h"
28 #include "elf.h"
29 #include "lm32_hwsetup.h"
30 #include "lm32.h"
31 #include "exec-memory.h"
32
33 typedef struct {
34 CPUState *env;
35 target_phys_addr_t bootstrap_pc;
36 target_phys_addr_t flash_base;
37 target_phys_addr_t hwsetup_base;
38 target_phys_addr_t initrd_base;
39 size_t initrd_size;
40 target_phys_addr_t cmdline_base;
41 } ResetInfo;
42
43 static void cpu_irq_handler(void *opaque, int irq, int level)
44 {
45 CPUState *env = opaque;
46
47 if (level) {
48 cpu_interrupt(env, CPU_INTERRUPT_HARD);
49 } else {
50 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
51 }
52 }
53
54 static void main_cpu_reset(void *opaque)
55 {
56 ResetInfo *reset_info = opaque;
57 CPUState *env = reset_info->env;
58
59 cpu_reset(env);
60
61 /* init defaults */
62 env->pc = (uint32_t)reset_info->bootstrap_pc;
63 env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base;
64 env->regs[R_R2] = (uint32_t)reset_info->cmdline_base;
65 env->regs[R_R3] = (uint32_t)reset_info->initrd_base;
66 env->regs[R_R4] = (uint32_t)(reset_info->initrd_base +
67 reset_info->initrd_size);
68 env->eba = reset_info->flash_base;
69 env->deba = reset_info->flash_base;
70 }
71
72 static void lm32_evr_init(ram_addr_t ram_size_not_used,
73 const char *boot_device,
74 const char *kernel_filename,
75 const char *kernel_cmdline,
76 const char *initrd_filename, const char *cpu_model)
77 {
78 CPUState *env;
79 DriveInfo *dinfo;
80 MemoryRegion *address_space_mem = get_system_memory();
81 MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
82 MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
83 qemu_irq *cpu_irq, irq[32];
84 ResetInfo *reset_info;
85 int i;
86
87 /* memory map */
88 target_phys_addr_t flash_base = 0x04000000;
89 size_t flash_sector_size = 256 * 1024;
90 size_t flash_size = 32 * 1024 * 1024;
91 target_phys_addr_t ram_base = 0x08000000;
92 size_t ram_size = 64 * 1024 * 1024;
93 target_phys_addr_t timer0_base = 0x80002000;
94 target_phys_addr_t uart0_base = 0x80006000;
95 target_phys_addr_t timer1_base = 0x8000a000;
96 int uart0_irq = 0;
97 int timer0_irq = 1;
98 int timer1_irq = 3;
99
100 reset_info = g_malloc0(sizeof(ResetInfo));
101
102 if (cpu_model == NULL) {
103 cpu_model = "lm32-full";
104 }
105 env = cpu_init(cpu_model);
106 reset_info->env = env;
107
108 reset_info->flash_base = flash_base;
109
110 memory_region_init_ram(phys_ram, NULL, "lm32_evr.sdram", ram_size);
111 memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
112
113 memory_region_init_rom_device(phys_flash, &pflash_cfi02_ops_be,
114 NULL, "lm32_evr.flash", flash_size);
115 dinfo = drive_get(IF_PFLASH, 0, 0);
116 /* Spansion S29NS128P */
117 pflash_cfi02_register(flash_base, phys_flash,
118 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
119 flash_size / flash_sector_size, 1, 2,
120 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
121
122 /* create irq lines */
123 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
124 env->pic_state = lm32_pic_init(*cpu_irq);
125 for (i = 0; i < 32; i++) {
126 irq[i] = qdev_get_gpio_in(env->pic_state, i);
127 }
128
129 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
130 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
131 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
132
133 /* make sure juart isn't the first chardev */
134 env->juart_state = lm32_juart_init();
135
136 reset_info->bootstrap_pc = flash_base;
137
138 if (kernel_filename) {
139 uint64_t entry;
140 int kernel_size;
141
142 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
143 1, ELF_MACHINE, 0);
144 reset_info->bootstrap_pc = entry;
145
146 if (kernel_size < 0) {
147 kernel_size = load_image_targphys(kernel_filename, ram_base,
148 ram_size);
149 reset_info->bootstrap_pc = ram_base;
150 }
151
152 if (kernel_size < 0) {
153 fprintf(stderr, "qemu: could not load kernel '%s'\n",
154 kernel_filename);
155 exit(1);
156 }
157 }
158
159 qemu_register_reset(main_cpu_reset, reset_info);
160 }
161
162 static void lm32_uclinux_init(ram_addr_t ram_size_not_used,
163 const char *boot_device,
164 const char *kernel_filename,
165 const char *kernel_cmdline,
166 const char *initrd_filename, const char *cpu_model)
167 {
168 CPUState *env;
169 DriveInfo *dinfo;
170 MemoryRegion *address_space_mem = get_system_memory();
171 MemoryRegion *phys_ram = g_new(MemoryRegion, 1);
172 MemoryRegion *phys_flash = g_new(MemoryRegion, 1);
173 qemu_irq *cpu_irq, irq[32];
174 HWSetup *hw;
175 ResetInfo *reset_info;
176 int i;
177
178 /* memory map */
179 target_phys_addr_t flash_base = 0x04000000;
180 size_t flash_sector_size = 256 * 1024;
181 size_t flash_size = 32 * 1024 * 1024;
182 target_phys_addr_t ram_base = 0x08000000;
183 size_t ram_size = 64 * 1024 * 1024;
184 target_phys_addr_t uart0_base = 0x80000000;
185 target_phys_addr_t timer0_base = 0x80002000;
186 target_phys_addr_t timer1_base = 0x80010000;
187 target_phys_addr_t timer2_base = 0x80012000;
188 int uart0_irq = 0;
189 int timer0_irq = 1;
190 int timer1_irq = 20;
191 int timer2_irq = 21;
192 target_phys_addr_t hwsetup_base = 0x0bffe000;
193 target_phys_addr_t cmdline_base = 0x0bfff000;
194 target_phys_addr_t initrd_base = 0x08400000;
195 size_t initrd_max = 0x01000000;
196
197 reset_info = g_malloc0(sizeof(ResetInfo));
198
199 if (cpu_model == NULL) {
200 cpu_model = "lm32-full";
201 }
202 env = cpu_init(cpu_model);
203 reset_info->env = env;
204
205 reset_info->flash_base = flash_base;
206
207 memory_region_init_ram(phys_ram, NULL, "lm32_uclinux.sdram", ram_size);
208 memory_region_add_subregion(address_space_mem, ram_base, phys_ram);
209
210 memory_region_init_rom_device(phys_flash, &pflash_cfi01_ops_be,
211 NULL, "lm32_uclinux.flash", flash_size);
212 dinfo = drive_get(IF_PFLASH, 0, 0);
213 /* Spansion S29NS128P */
214 pflash_cfi02_register(flash_base, phys_flash,
215 dinfo ? dinfo->bdrv : NULL, flash_sector_size,
216 flash_size / flash_sector_size, 1, 2,
217 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa);
218
219 /* create irq lines */
220 cpu_irq = qemu_allocate_irqs(cpu_irq_handler, env, 1);
221 env->pic_state = lm32_pic_init(*cpu_irq);
222 for (i = 0; i < 32; i++) {
223 irq[i] = qdev_get_gpio_in(env->pic_state, i);
224 }
225
226 sysbus_create_simple("lm32-uart", uart0_base, irq[uart0_irq]);
227 sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]);
228 sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]);
229 sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]);
230
231 /* make sure juart isn't the first chardev */
232 env->juart_state = lm32_juart_init();
233
234 reset_info->bootstrap_pc = flash_base;
235
236 if (kernel_filename) {
237 uint64_t entry;
238 int kernel_size;
239
240 kernel_size = load_elf(kernel_filename, NULL, NULL, &entry, NULL, NULL,
241 1, ELF_MACHINE, 0);
242 reset_info->bootstrap_pc = entry;
243
244 if (kernel_size < 0) {
245 kernel_size = load_image_targphys(kernel_filename, ram_base,
246 ram_size);
247 reset_info->bootstrap_pc = ram_base;
248 }
249
250 if (kernel_size < 0) {
251 fprintf(stderr, "qemu: could not load kernel '%s'\n",
252 kernel_filename);
253 exit(1);
254 }
255 }
256
257 /* generate a rom with the hardware description */
258 hw = hwsetup_init();
259 hwsetup_add_cpu(hw, "LM32", 75000000);
260 hwsetup_add_flash(hw, "flash", flash_base, flash_size);
261 hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, ram_size);
262 hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq);
263 hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq);
264 hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq);
265 hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq);
266 hwsetup_add_trailer(hw);
267 hwsetup_create_rom(hw, hwsetup_base);
268 hwsetup_free(hw);
269
270 reset_info->hwsetup_base = hwsetup_base;
271
272 if (kernel_cmdline && strlen(kernel_cmdline)) {
273 pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE,
274 kernel_cmdline);
275 reset_info->cmdline_base = cmdline_base;
276 }
277
278 if (initrd_filename) {
279 size_t initrd_size;
280 initrd_size = load_image_targphys(initrd_filename, initrd_base,
281 initrd_max);
282 reset_info->initrd_base = initrd_base;
283 reset_info->initrd_size = initrd_size;
284 }
285
286 qemu_register_reset(main_cpu_reset, reset_info);
287 }
288
289 static QEMUMachine lm32_evr_machine = {
290 .name = "lm32-evr",
291 .desc = "LatticeMico32 EVR32 eval system",
292 .init = lm32_evr_init,
293 .is_default = 1
294 };
295
296 static QEMUMachine lm32_uclinux_machine = {
297 .name = "lm32-uclinux",
298 .desc = "lm32 platform for uClinux and u-boot by Theobroma Systems",
299 .init = lm32_uclinux_init,
300 .is_default = 0
301 };
302
303 static void lm32_machine_init(void)
304 {
305 qemu_register_machine(&lm32_uclinux_machine);
306 qemu_register_machine(&lm32_evr_machine);
307 }
308
309 machine_init(lm32_machine_init);