]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi: extract lsi_find_by_tag
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 uint32_t dma_len;
179 uint8_t *dma_buf;
180 uint32_t pending;
181 int out;
182 QTAILQ_ENTRY(lsi_request) next;
183 } lsi_request;
184
185 typedef struct {
186 PCIDevice dev;
187 int mmio_io_addr;
188 int ram_io_addr;
189 uint32_t script_ram_base;
190
191 int carry; /* ??? Should this be an a visible register somewhere? */
192 int status;
193 /* Action to take at the end of a MSG IN phase.
194 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
195 int msg_action;
196 int msg_len;
197 uint8_t msg[LSI_MAX_MSGIN_LEN];
198 /* 0 if SCRIPTS are running or stopped.
199 * 1 if a Wait Reselect instruction has been issued.
200 * 2 if processing DMA from lsi_execute_script.
201 * 3 if a DMA operation is in progress. */
202 int waiting;
203 SCSIBus bus;
204 int current_lun;
205 /* The tag is a combination of the device ID and the SCSI tag. */
206 uint32_t select_tag;
207 int command_complete;
208 QTAILQ_HEAD(, lsi_request) queue;
209 lsi_request *current;
210
211 uint32_t dsa;
212 uint32_t temp;
213 uint32_t dnad;
214 uint32_t dbc;
215 uint8_t istat0;
216 uint8_t istat1;
217 uint8_t dcmd;
218 uint8_t dstat;
219 uint8_t dien;
220 uint8_t sist0;
221 uint8_t sist1;
222 uint8_t sien0;
223 uint8_t sien1;
224 uint8_t mbox0;
225 uint8_t mbox1;
226 uint8_t dfifo;
227 uint8_t ctest2;
228 uint8_t ctest3;
229 uint8_t ctest4;
230 uint8_t ctest5;
231 uint8_t ccntl0;
232 uint8_t ccntl1;
233 uint32_t dsp;
234 uint32_t dsps;
235 uint8_t dmode;
236 uint8_t dcntl;
237 uint8_t scntl0;
238 uint8_t scntl1;
239 uint8_t scntl2;
240 uint8_t scntl3;
241 uint8_t sstat0;
242 uint8_t sstat1;
243 uint8_t scid;
244 uint8_t sxfer;
245 uint8_t socl;
246 uint8_t sdid;
247 uint8_t ssid;
248 uint8_t sfbr;
249 uint8_t stest1;
250 uint8_t stest2;
251 uint8_t stest3;
252 uint8_t sidl;
253 uint8_t stime0;
254 uint8_t respid0;
255 uint8_t respid1;
256 uint32_t mmrs;
257 uint32_t mmws;
258 uint32_t sfs;
259 uint32_t drs;
260 uint32_t sbms;
261 uint32_t dbms;
262 uint32_t dnad64;
263 uint32_t pmjad1;
264 uint32_t pmjad2;
265 uint32_t rbc;
266 uint32_t ua;
267 uint32_t ia;
268 uint32_t sbc;
269 uint32_t csbc;
270 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271 uint8_t sbr;
272
273 /* Script ram is stored as 32-bit words in host byteorder. */
274 uint32_t script_ram[2048];
275 } LSIState;
276
277 static inline int lsi_irq_on_rsl(LSIState *s)
278 {
279 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280 }
281
282 static void lsi_soft_reset(LSIState *s)
283 {
284 lsi_request *p;
285
286 DPRINTF("Reset\n");
287 s->carry = 0;
288
289 s->msg_action = 0;
290 s->msg_len = 0;
291 s->waiting = 0;
292 s->dsa = 0;
293 s->dnad = 0;
294 s->dbc = 0;
295 s->temp = 0;
296 memset(s->scratch, 0, sizeof(s->scratch));
297 s->istat0 = 0;
298 s->istat1 = 0;
299 s->dcmd = 0x40;
300 s->dstat = LSI_DSTAT_DFE;
301 s->dien = 0;
302 s->sist0 = 0;
303 s->sist1 = 0;
304 s->sien0 = 0;
305 s->sien1 = 0;
306 s->mbox0 = 0;
307 s->mbox1 = 0;
308 s->dfifo = 0;
309 s->ctest2 = LSI_CTEST2_DACK;
310 s->ctest3 = 0;
311 s->ctest4 = 0;
312 s->ctest5 = 0;
313 s->ccntl0 = 0;
314 s->ccntl1 = 0;
315 s->dsp = 0;
316 s->dsps = 0;
317 s->dmode = 0;
318 s->dcntl = 0;
319 s->scntl0 = 0xc0;
320 s->scntl1 = 0;
321 s->scntl2 = 0;
322 s->scntl3 = 0;
323 s->sstat0 = 0;
324 s->sstat1 = 0;
325 s->scid = 7;
326 s->sxfer = 0;
327 s->socl = 0;
328 s->sdid = 0;
329 s->ssid = 0;
330 s->stest1 = 0;
331 s->stest2 = 0;
332 s->stest3 = 0;
333 s->sidl = 0;
334 s->stime0 = 0;
335 s->respid0 = 0x80;
336 s->respid1 = 0;
337 s->mmrs = 0;
338 s->mmws = 0;
339 s->sfs = 0;
340 s->drs = 0;
341 s->sbms = 0;
342 s->dbms = 0;
343 s->dnad64 = 0;
344 s->pmjad1 = 0;
345 s->pmjad2 = 0;
346 s->rbc = 0;
347 s->ua = 0;
348 s->ia = 0;
349 s->sbc = 0;
350 s->csbc = 0;
351 s->sbr = 0;
352 while (!QTAILQ_EMPTY(&s->queue)) {
353 p = QTAILQ_FIRST(&s->queue);
354 QTAILQ_REMOVE(&s->queue, p, next);
355 qemu_free(p);
356 }
357 if (s->current) {
358 qemu_free(s->current);
359 s->current = NULL;
360 }
361 }
362
363 static int lsi_dma_40bit(LSIState *s)
364 {
365 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366 return 1;
367 return 0;
368 }
369
370 static int lsi_dma_ti64bit(LSIState *s)
371 {
372 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373 return 1;
374 return 0;
375 }
376
377 static int lsi_dma_64bit(LSIState *s)
378 {
379 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380 return 1;
381 return 0;
382 }
383
384 static uint8_t lsi_reg_readb(LSIState *s, int offset);
385 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386 static void lsi_execute_script(LSIState *s);
387 static void lsi_reselect(LSIState *s, lsi_request *p);
388
389 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390 {
391 uint32_t buf;
392
393 /* Optimize reading from SCRIPTS RAM. */
394 if ((addr & 0xffffe000) == s->script_ram_base) {
395 return s->script_ram[(addr & 0x1fff) >> 2];
396 }
397 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398 return cpu_to_le32(buf);
399 }
400
401 static void lsi_stop_script(LSIState *s)
402 {
403 s->istat1 &= ~LSI_ISTAT1_SRUN;
404 }
405
406 static void lsi_update_irq(LSIState *s)
407 {
408 int level;
409 static int last_level;
410 lsi_request *p;
411
412 /* It's unclear whether the DIP/SIP bits should be cleared when the
413 Interrupt Status Registers are cleared or when istat0 is read.
414 We currently do the formwer, which seems to work. */
415 level = 0;
416 if (s->dstat) {
417 if (s->dstat & s->dien)
418 level = 1;
419 s->istat0 |= LSI_ISTAT0_DIP;
420 } else {
421 s->istat0 &= ~LSI_ISTAT0_DIP;
422 }
423
424 if (s->sist0 || s->sist1) {
425 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426 level = 1;
427 s->istat0 |= LSI_ISTAT0_SIP;
428 } else {
429 s->istat0 &= ~LSI_ISTAT0_SIP;
430 }
431 if (s->istat0 & LSI_ISTAT0_INTF)
432 level = 1;
433
434 if (level != last_level) {
435 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436 level, s->dstat, s->sist1, s->sist0);
437 last_level = level;
438 }
439 qemu_set_irq(s->dev.irq[0], level);
440
441 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442 DPRINTF("Handled IRQs & disconnected, looking for pending "
443 "processes\n");
444 QTAILQ_FOREACH(p, &s->queue, next) {
445 if (p->pending) {
446 lsi_reselect(s, p);
447 break;
448 }
449 }
450 }
451 }
452
453 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
454 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455 {
456 uint32_t mask0;
457 uint32_t mask1;
458
459 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460 stat1, stat0, s->sist1, s->sist0);
461 s->sist0 |= stat0;
462 s->sist1 |= stat1;
463 /* Stop processor on fatal or unmasked interrupt. As a special hack
464 we don't stop processing when raising STO. Instead continue
465 execution and stop at the next insn that accesses the SCSI bus. */
466 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468 mask1 &= ~LSI_SIST1_STO;
469 if (s->sist0 & mask0 || s->sist1 & mask1) {
470 lsi_stop_script(s);
471 }
472 lsi_update_irq(s);
473 }
474
475 /* Stop SCRIPTS execution and raise a DMA interrupt. */
476 static void lsi_script_dma_interrupt(LSIState *s, int stat)
477 {
478 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479 s->dstat |= stat;
480 lsi_update_irq(s);
481 lsi_stop_script(s);
482 }
483
484 static inline void lsi_set_phase(LSIState *s, int phase)
485 {
486 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487 }
488
489 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490 {
491 /* Trigger a phase mismatch. */
492 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494 s->dsp = out ? s->pmjad1 : s->pmjad2;
495 } else {
496 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497 }
498 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499 } else {
500 DPRINTF("Phase mismatch interrupt\n");
501 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502 lsi_stop_script(s);
503 }
504 lsi_set_phase(s, new_phase);
505 }
506
507
508 /* Resume SCRIPTS execution after a DMA operation. */
509 static void lsi_resume_script(LSIState *s)
510 {
511 if (s->waiting != 2) {
512 s->waiting = 0;
513 lsi_execute_script(s);
514 } else {
515 s->waiting = 0;
516 }
517 }
518
519 static void lsi_disconnect(LSIState *s)
520 {
521 s->scntl1 &= ~LSI_SCNTL1_CON;
522 s->sstat1 &= ~PHASE_MASK;
523 }
524
525 static void lsi_bad_selection(LSIState *s, uint32_t id)
526 {
527 DPRINTF("Selected absent target %d\n", id);
528 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529 lsi_disconnect(s);
530 }
531
532 /* Initiate a SCSI layer data transfer. */
533 static void lsi_do_dma(LSIState *s, int out)
534 {
535 uint32_t count, id;
536 target_phys_addr_t addr;
537 SCSIDevice *dev;
538
539 assert(s->current);
540 if (!s->current->dma_len) {
541 /* Wait until data is available. */
542 DPRINTF("DMA no data available\n");
543 return;
544 }
545
546 id = (s->current->tag >> 8) & 0xf;
547 dev = s->bus.devs[id];
548 if (!dev) {
549 lsi_bad_selection(s, id);
550 return;
551 }
552
553 count = s->dbc;
554 if (count > s->current->dma_len)
555 count = s->current->dma_len;
556
557 addr = s->dnad;
558 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560 addr |= ((uint64_t)s->dnad64 << 32);
561 else if (s->dbms)
562 addr |= ((uint64_t)s->dbms << 32);
563 else if (s->sbms)
564 addr |= ((uint64_t)s->sbms << 32);
565
566 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567 s->csbc += count;
568 s->dnad += count;
569 s->dbc -= count;
570
571 if (s->current->dma_buf == NULL) {
572 s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573 }
574
575 /* ??? Set SFBR to first data byte. */
576 if (out) {
577 cpu_physical_memory_read(addr, s->current->dma_buf, count);
578 } else {
579 cpu_physical_memory_write(addr, s->current->dma_buf, count);
580 }
581 s->current->dma_len -= count;
582 if (s->current->dma_len == 0) {
583 s->current->dma_buf = NULL;
584 if (out) {
585 /* Write the data. */
586 dev->info->write_data(dev, s->current->tag);
587 } else {
588 /* Request any remaining data. */
589 dev->info->read_data(dev, s->current->tag);
590 }
591 } else {
592 s->current->dma_buf += count;
593 lsi_resume_script(s);
594 }
595 }
596
597
598 /* Add a command to the queue. */
599 static void lsi_queue_command(LSIState *s)
600 {
601 lsi_request *p = s->current;
602
603 DPRINTF("Queueing tag=0x%x\n", p->tag);
604 assert(s->current != NULL);
605 assert(s->current->dma_len == 0);
606 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607 s->current = NULL;
608
609 p->pending = 0;
610 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611 }
612
613 /* Queue a byte for a MSG IN phase. */
614 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615 {
616 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617 BADF("MSG IN data too long\n");
618 } else {
619 DPRINTF("MSG IN 0x%02x\n", data);
620 s->msg[s->msg_len++] = data;
621 }
622 }
623
624 /* Perform reselection to continue a command. */
625 static void lsi_reselect(LSIState *s, lsi_request *p)
626 {
627 int id;
628
629 assert(s->current == NULL);
630 QTAILQ_REMOVE(&s->queue, p, next);
631 s->current = p;
632
633 id = (p->tag >> 8) & 0xf;
634 s->ssid = id | 0x80;
635 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636 if (!(s->dcntl & LSI_DCNTL_COM)) {
637 s->sfbr = 1 << (id & 0x7);
638 }
639 DPRINTF("Reselected target %d\n", id);
640 s->scntl1 |= LSI_SCNTL1_CON;
641 lsi_set_phase(s, PHASE_MI);
642 s->msg_action = p->out ? 2 : 3;
643 s->current->dma_len = p->pending;
644 lsi_add_msg_byte(s, 0x80);
645 if (s->current->tag & LSI_TAG_VALID) {
646 lsi_add_msg_byte(s, 0x20);
647 lsi_add_msg_byte(s, p->tag & 0xff);
648 }
649
650 if (lsi_irq_on_rsl(s)) {
651 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652 }
653 }
654
655 static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
656 {
657 lsi_request *p;
658
659 QTAILQ_FOREACH(p, &s->queue, next) {
660 if (p->tag == tag) {
661 return p;
662 }
663 }
664
665 return NULL;
666 }
667
668 /* Record that data is available for a queued command. Returns zero if
669 the device was reselected, nonzero if the IO is deferred. */
670 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
671 {
672 lsi_request *p;
673
674 p = lsi_find_by_tag(s, tag);
675 if (!p) {
676 BADF("IO with unknown tag %d\n", tag);
677 return 1;
678 }
679
680 if (p->pending) {
681 BADF("Multiple IO pending for tag %d\n", tag);
682 }
683 p->pending = arg;
684 /* Reselect if waiting for it, or if reselection triggers an IRQ
685 and the bus is free.
686 Since no interrupt stacking is implemented in the emulation, it
687 is also required that there are no pending interrupts waiting
688 for service from the device driver. */
689 if (s->waiting == 1 ||
690 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
691 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
692 /* Reselect device. */
693 lsi_reselect(s, p);
694 return 0;
695 } else {
696 DPRINTF("Queueing IO tag=0x%x\n", tag);
697 p->pending = arg;
698 return 1;
699 }
700 }
701
702 /* Callback to indicate that the SCSI layer has completed a transfer. */
703 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
704 uint32_t arg)
705 {
706 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
707 int out;
708
709 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
710 if (reason == SCSI_REASON_DONE) {
711 DPRINTF("Command complete status=%d\n", (int)arg);
712 s->status = arg;
713 s->command_complete = 2;
714 if (s->waiting && s->dbc != 0) {
715 /* Raise phase mismatch for short transfers. */
716 lsi_bad_phase(s, out, PHASE_ST);
717 } else {
718 lsi_set_phase(s, PHASE_ST);
719 }
720
721 qemu_free(s->current);
722 s->current = NULL;
723
724 lsi_resume_script(s);
725 return;
726 }
727
728 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
729 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
730 if (lsi_queue_tag(s, tag, arg))
731 return;
732 }
733
734 /* host adapter (re)connected */
735 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
736 s->current->dma_len = arg;
737 s->command_complete = 1;
738 if (!s->waiting)
739 return;
740 if (s->waiting == 1 || s->dbc == 0) {
741 lsi_resume_script(s);
742 } else {
743 lsi_do_dma(s, out);
744 }
745 }
746
747 static void lsi_do_command(LSIState *s)
748 {
749 SCSIDevice *dev;
750 uint8_t buf[16];
751 uint32_t id;
752 int n;
753
754 DPRINTF("Send command len=%d\n", s->dbc);
755 if (s->dbc > 16)
756 s->dbc = 16;
757 cpu_physical_memory_read(s->dnad, buf, s->dbc);
758 s->sfbr = buf[0];
759 s->command_complete = 0;
760
761 id = (s->select_tag >> 8) & 0xf;
762 dev = s->bus.devs[id];
763 if (!dev) {
764 lsi_bad_selection(s, id);
765 return;
766 }
767
768 assert(s->current == NULL);
769 s->current = qemu_mallocz(sizeof(lsi_request));
770 s->current->tag = s->select_tag;
771
772 n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
773 if (n > 0) {
774 lsi_set_phase(s, PHASE_DI);
775 dev->info->read_data(dev, s->current->tag);
776 } else if (n < 0) {
777 lsi_set_phase(s, PHASE_DO);
778 dev->info->write_data(dev, s->current->tag);
779 }
780
781 if (!s->command_complete) {
782 if (n) {
783 /* Command did not complete immediately so disconnect. */
784 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
785 lsi_add_msg_byte(s, 4); /* DISCONNECT */
786 /* wait data */
787 lsi_set_phase(s, PHASE_MI);
788 s->msg_action = 1;
789 lsi_queue_command(s);
790 } else {
791 /* wait command complete */
792 lsi_set_phase(s, PHASE_DI);
793 }
794 }
795 }
796
797 static void lsi_do_status(LSIState *s)
798 {
799 uint8_t status;
800 DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
801 if (s->dbc != 1)
802 BADF("Bad Status move\n");
803 s->dbc = 1;
804 status = s->status;
805 s->sfbr = status;
806 cpu_physical_memory_write(s->dnad, &status, 1);
807 lsi_set_phase(s, PHASE_MI);
808 s->msg_action = 1;
809 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
810 }
811
812 static void lsi_do_msgin(LSIState *s)
813 {
814 int len;
815 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
816 s->sfbr = s->msg[0];
817 len = s->msg_len;
818 if (len > s->dbc)
819 len = s->dbc;
820 cpu_physical_memory_write(s->dnad, s->msg, len);
821 /* Linux drivers rely on the last byte being in the SIDL. */
822 s->sidl = s->msg[len - 1];
823 s->msg_len -= len;
824 if (s->msg_len) {
825 memmove(s->msg, s->msg + len, s->msg_len);
826 } else {
827 /* ??? Check if ATN (not yet implemented) is asserted and maybe
828 switch to PHASE_MO. */
829 switch (s->msg_action) {
830 case 0:
831 lsi_set_phase(s, PHASE_CMD);
832 break;
833 case 1:
834 lsi_disconnect(s);
835 break;
836 case 2:
837 lsi_set_phase(s, PHASE_DO);
838 break;
839 case 3:
840 lsi_set_phase(s, PHASE_DI);
841 break;
842 default:
843 abort();
844 }
845 }
846 }
847
848 /* Read the next byte during a MSGOUT phase. */
849 static uint8_t lsi_get_msgbyte(LSIState *s)
850 {
851 uint8_t data;
852 cpu_physical_memory_read(s->dnad, &data, 1);
853 s->dnad++;
854 s->dbc--;
855 return data;
856 }
857
858 /* Skip the next n bytes during a MSGOUT phase. */
859 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
860 {
861 s->dnad += n;
862 s->dbc -= n;
863 }
864
865 static void lsi_do_msgout(LSIState *s)
866 {
867 uint8_t msg;
868 int len;
869 uint32_t current_tag;
870 SCSIDevice *current_dev;
871 lsi_request *p, *p_next;
872 int id;
873
874 if (s->current) {
875 current_tag = s->current->tag;
876 } else {
877 current_tag = s->select_tag;
878 }
879 id = (current_tag >> 8) & 0xf;
880 current_dev = s->bus.devs[id];
881
882 DPRINTF("MSG out len=%d\n", s->dbc);
883 while (s->dbc) {
884 msg = lsi_get_msgbyte(s);
885 s->sfbr = msg;
886
887 switch (msg) {
888 case 0x04:
889 DPRINTF("MSG: Disconnect\n");
890 lsi_disconnect(s);
891 break;
892 case 0x08:
893 DPRINTF("MSG: No Operation\n");
894 lsi_set_phase(s, PHASE_CMD);
895 break;
896 case 0x01:
897 len = lsi_get_msgbyte(s);
898 msg = lsi_get_msgbyte(s);
899 (void)len; /* avoid a warning about unused variable*/
900 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
901 switch (msg) {
902 case 1:
903 DPRINTF("SDTR (ignored)\n");
904 lsi_skip_msgbytes(s, 2);
905 break;
906 case 3:
907 DPRINTF("WDTR (ignored)\n");
908 lsi_skip_msgbytes(s, 1);
909 break;
910 default:
911 goto bad;
912 }
913 break;
914 case 0x20: /* SIMPLE queue */
915 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
916 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
917 break;
918 case 0x21: /* HEAD of queue */
919 BADF("HEAD queue not implemented\n");
920 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
921 break;
922 case 0x22: /* ORDERED queue */
923 BADF("ORDERED queue not implemented\n");
924 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
925 break;
926 case 0x0d:
927 /* The ABORT TAG message clears the current I/O process only. */
928 DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
929 current_dev->info->cancel_io(current_dev, current_tag);
930 lsi_disconnect(s);
931 break;
932 case 0x06:
933 case 0x0e:
934 case 0x0c:
935 /* The ABORT message clears all I/O processes for the selecting
936 initiator on the specified logical unit of the target. */
937 if (msg == 0x06) {
938 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
939 }
940 /* The CLEAR QUEUE message clears all I/O processes for all
941 initiators on the specified logical unit of the target. */
942 if (msg == 0x0e) {
943 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
944 }
945 /* The BUS DEVICE RESET message clears all I/O processes for all
946 initiators on all logical units of the target. */
947 if (msg == 0x0c) {
948 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
949 }
950
951 /* clear the current I/O process */
952 current_dev->info->cancel_io(current_dev, current_tag);
953
954 /* As the current implemented devices scsi_disk and scsi_generic
955 only support one LUN, we don't need to keep track of LUNs.
956 Clearing I/O processes for other initiators could be possible
957 for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
958 device, but this is currently not implemented (and seems not
959 to be really necessary). So let's simply clear all queued
960 commands for the current device: */
961 id = current_tag & 0x0000ff00;
962 QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
963 if ((p->tag & 0x0000ff00) == id) {
964 current_dev->info->cancel_io(current_dev, p->tag);
965 QTAILQ_REMOVE(&s->queue, p, next);
966 }
967 }
968
969 lsi_disconnect(s);
970 break;
971 default:
972 if ((msg & 0x80) == 0) {
973 goto bad;
974 }
975 s->current_lun = msg & 7;
976 DPRINTF("Select LUN %d\n", s->current_lun);
977 lsi_set_phase(s, PHASE_CMD);
978 break;
979 }
980 }
981 return;
982 bad:
983 BADF("Unimplemented message 0x%02x\n", msg);
984 lsi_set_phase(s, PHASE_MI);
985 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
986 s->msg_action = 0;
987 }
988
989 /* Sign extend a 24-bit value. */
990 static inline int32_t sxt24(int32_t n)
991 {
992 return (n << 8) >> 8;
993 }
994
995 #define LSI_BUF_SIZE 4096
996 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
997 {
998 int n;
999 uint8_t buf[LSI_BUF_SIZE];
1000
1001 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
1002 while (count) {
1003 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
1004 cpu_physical_memory_read(src, buf, n);
1005 cpu_physical_memory_write(dest, buf, n);
1006 src += n;
1007 dest += n;
1008 count -= n;
1009 }
1010 }
1011
1012 static void lsi_wait_reselect(LSIState *s)
1013 {
1014 lsi_request *p;
1015
1016 DPRINTF("Wait Reselect\n");
1017
1018 QTAILQ_FOREACH(p, &s->queue, next) {
1019 if (p->pending) {
1020 lsi_reselect(s, p);
1021 break;
1022 }
1023 }
1024 if (s->current == NULL) {
1025 s->waiting = 1;
1026 }
1027 }
1028
1029 static void lsi_execute_script(LSIState *s)
1030 {
1031 uint32_t insn;
1032 uint32_t addr, addr_high;
1033 int opcode;
1034 int insn_processed = 0;
1035
1036 s->istat1 |= LSI_ISTAT1_SRUN;
1037 again:
1038 insn_processed++;
1039 insn = read_dword(s, s->dsp);
1040 if (!insn) {
1041 /* If we receive an empty opcode increment the DSP by 4 bytes
1042 instead of 8 and execute the next opcode at that location */
1043 s->dsp += 4;
1044 goto again;
1045 }
1046 addr = read_dword(s, s->dsp + 4);
1047 addr_high = 0;
1048 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1049 s->dsps = addr;
1050 s->dcmd = insn >> 24;
1051 s->dsp += 8;
1052 switch (insn >> 30) {
1053 case 0: /* Block move. */
1054 if (s->sist1 & LSI_SIST1_STO) {
1055 DPRINTF("Delayed select timeout\n");
1056 lsi_stop_script(s);
1057 break;
1058 }
1059 s->dbc = insn & 0xffffff;
1060 s->rbc = s->dbc;
1061 /* ??? Set ESA. */
1062 s->ia = s->dsp - 8;
1063 if (insn & (1 << 29)) {
1064 /* Indirect addressing. */
1065 addr = read_dword(s, addr);
1066 } else if (insn & (1 << 28)) {
1067 uint32_t buf[2];
1068 int32_t offset;
1069 /* Table indirect addressing. */
1070
1071 /* 32-bit Table indirect */
1072 offset = sxt24(addr);
1073 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1074 /* byte count is stored in bits 0:23 only */
1075 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1076 s->rbc = s->dbc;
1077 addr = cpu_to_le32(buf[1]);
1078
1079 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1080 * table, bits [31:24] */
1081 if (lsi_dma_40bit(s))
1082 addr_high = cpu_to_le32(buf[0]) >> 24;
1083 else if (lsi_dma_ti64bit(s)) {
1084 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1085 switch (selector) {
1086 case 0 ... 0x0f:
1087 /* offset index into scratch registers since
1088 * TI64 mode can use registers C to R */
1089 addr_high = s->scratch[2 + selector];
1090 break;
1091 case 0x10:
1092 addr_high = s->mmrs;
1093 break;
1094 case 0x11:
1095 addr_high = s->mmws;
1096 break;
1097 case 0x12:
1098 addr_high = s->sfs;
1099 break;
1100 case 0x13:
1101 addr_high = s->drs;
1102 break;
1103 case 0x14:
1104 addr_high = s->sbms;
1105 break;
1106 case 0x15:
1107 addr_high = s->dbms;
1108 break;
1109 default:
1110 BADF("Illegal selector specified (0x%x > 0x15)"
1111 " for 64-bit DMA block move", selector);
1112 break;
1113 }
1114 }
1115 } else if (lsi_dma_64bit(s)) {
1116 /* fetch a 3rd dword if 64-bit direct move is enabled and
1117 only if we're not doing table indirect or indirect addressing */
1118 s->dbms = read_dword(s, s->dsp);
1119 s->dsp += 4;
1120 s->ia = s->dsp - 12;
1121 }
1122 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1123 DPRINTF("Wrong phase got %d expected %d\n",
1124 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1125 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1126 break;
1127 }
1128 s->dnad = addr;
1129 s->dnad64 = addr_high;
1130 switch (s->sstat1 & 0x7) {
1131 case PHASE_DO:
1132 s->waiting = 2;
1133 lsi_do_dma(s, 1);
1134 if (s->waiting)
1135 s->waiting = 3;
1136 break;
1137 case PHASE_DI:
1138 s->waiting = 2;
1139 lsi_do_dma(s, 0);
1140 if (s->waiting)
1141 s->waiting = 3;
1142 break;
1143 case PHASE_CMD:
1144 lsi_do_command(s);
1145 break;
1146 case PHASE_ST:
1147 lsi_do_status(s);
1148 break;
1149 case PHASE_MO:
1150 lsi_do_msgout(s);
1151 break;
1152 case PHASE_MI:
1153 lsi_do_msgin(s);
1154 break;
1155 default:
1156 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1157 exit(1);
1158 }
1159 s->dfifo = s->dbc & 0xff;
1160 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1161 s->sbc = s->dbc;
1162 s->rbc -= s->dbc;
1163 s->ua = addr + s->dbc;
1164 break;
1165
1166 case 1: /* IO or Read/Write instruction. */
1167 opcode = (insn >> 27) & 7;
1168 if (opcode < 5) {
1169 uint32_t id;
1170
1171 if (insn & (1 << 25)) {
1172 id = read_dword(s, s->dsa + sxt24(insn));
1173 } else {
1174 id = insn;
1175 }
1176 id = (id >> 16) & 0xf;
1177 if (insn & (1 << 26)) {
1178 addr = s->dsp + sxt24(addr);
1179 }
1180 s->dnad = addr;
1181 switch (opcode) {
1182 case 0: /* Select */
1183 s->sdid = id;
1184 if (s->scntl1 & LSI_SCNTL1_CON) {
1185 DPRINTF("Already reselected, jumping to alternative address\n");
1186 s->dsp = s->dnad;
1187 break;
1188 }
1189 s->sstat0 |= LSI_SSTAT0_WOA;
1190 s->scntl1 &= ~LSI_SCNTL1_IARB;
1191 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1192 lsi_bad_selection(s, id);
1193 break;
1194 }
1195 DPRINTF("Selected target %d%s\n",
1196 id, insn & (1 << 3) ? " ATN" : "");
1197 /* ??? Linux drivers compain when this is set. Maybe
1198 it only applies in low-level mode (unimplemented).
1199 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1200 s->select_tag = id << 8;
1201 s->scntl1 |= LSI_SCNTL1_CON;
1202 if (insn & (1 << 3)) {
1203 s->socl |= LSI_SOCL_ATN;
1204 }
1205 lsi_set_phase(s, PHASE_MO);
1206 break;
1207 case 1: /* Disconnect */
1208 DPRINTF("Wait Disconnect\n");
1209 s->scntl1 &= ~LSI_SCNTL1_CON;
1210 break;
1211 case 2: /* Wait Reselect */
1212 if (!lsi_irq_on_rsl(s)) {
1213 lsi_wait_reselect(s);
1214 }
1215 break;
1216 case 3: /* Set */
1217 DPRINTF("Set%s%s%s%s\n",
1218 insn & (1 << 3) ? " ATN" : "",
1219 insn & (1 << 6) ? " ACK" : "",
1220 insn & (1 << 9) ? " TM" : "",
1221 insn & (1 << 10) ? " CC" : "");
1222 if (insn & (1 << 3)) {
1223 s->socl |= LSI_SOCL_ATN;
1224 lsi_set_phase(s, PHASE_MO);
1225 }
1226 if (insn & (1 << 9)) {
1227 BADF("Target mode not implemented\n");
1228 exit(1);
1229 }
1230 if (insn & (1 << 10))
1231 s->carry = 1;
1232 break;
1233 case 4: /* Clear */
1234 DPRINTF("Clear%s%s%s%s\n",
1235 insn & (1 << 3) ? " ATN" : "",
1236 insn & (1 << 6) ? " ACK" : "",
1237 insn & (1 << 9) ? " TM" : "",
1238 insn & (1 << 10) ? " CC" : "");
1239 if (insn & (1 << 3)) {
1240 s->socl &= ~LSI_SOCL_ATN;
1241 }
1242 if (insn & (1 << 10))
1243 s->carry = 0;
1244 break;
1245 }
1246 } else {
1247 uint8_t op0;
1248 uint8_t op1;
1249 uint8_t data8;
1250 int reg;
1251 int operator;
1252 #ifdef DEBUG_LSI
1253 static const char *opcode_names[3] =
1254 {"Write", "Read", "Read-Modify-Write"};
1255 static const char *operator_names[8] =
1256 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1257 #endif
1258
1259 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1260 data8 = (insn >> 8) & 0xff;
1261 opcode = (insn >> 27) & 7;
1262 operator = (insn >> 24) & 7;
1263 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1264 opcode_names[opcode - 5], reg,
1265 operator_names[operator], data8, s->sfbr,
1266 (insn & (1 << 23)) ? " SFBR" : "");
1267 op0 = op1 = 0;
1268 switch (opcode) {
1269 case 5: /* From SFBR */
1270 op0 = s->sfbr;
1271 op1 = data8;
1272 break;
1273 case 6: /* To SFBR */
1274 if (operator)
1275 op0 = lsi_reg_readb(s, reg);
1276 op1 = data8;
1277 break;
1278 case 7: /* Read-modify-write */
1279 if (operator)
1280 op0 = lsi_reg_readb(s, reg);
1281 if (insn & (1 << 23)) {
1282 op1 = s->sfbr;
1283 } else {
1284 op1 = data8;
1285 }
1286 break;
1287 }
1288
1289 switch (operator) {
1290 case 0: /* move */
1291 op0 = op1;
1292 break;
1293 case 1: /* Shift left */
1294 op1 = op0 >> 7;
1295 op0 = (op0 << 1) | s->carry;
1296 s->carry = op1;
1297 break;
1298 case 2: /* OR */
1299 op0 |= op1;
1300 break;
1301 case 3: /* XOR */
1302 op0 ^= op1;
1303 break;
1304 case 4: /* AND */
1305 op0 &= op1;
1306 break;
1307 case 5: /* SHR */
1308 op1 = op0 & 1;
1309 op0 = (op0 >> 1) | (s->carry << 7);
1310 s->carry = op1;
1311 break;
1312 case 6: /* ADD */
1313 op0 += op1;
1314 s->carry = op0 < op1;
1315 break;
1316 case 7: /* ADC */
1317 op0 += op1 + s->carry;
1318 if (s->carry)
1319 s->carry = op0 <= op1;
1320 else
1321 s->carry = op0 < op1;
1322 break;
1323 }
1324
1325 switch (opcode) {
1326 case 5: /* From SFBR */
1327 case 7: /* Read-modify-write */
1328 lsi_reg_writeb(s, reg, op0);
1329 break;
1330 case 6: /* To SFBR */
1331 s->sfbr = op0;
1332 break;
1333 }
1334 }
1335 break;
1336
1337 case 2: /* Transfer Control. */
1338 {
1339 int cond;
1340 int jmp;
1341
1342 if ((insn & 0x002e0000) == 0) {
1343 DPRINTF("NOP\n");
1344 break;
1345 }
1346 if (s->sist1 & LSI_SIST1_STO) {
1347 DPRINTF("Delayed select timeout\n");
1348 lsi_stop_script(s);
1349 break;
1350 }
1351 cond = jmp = (insn & (1 << 19)) != 0;
1352 if (cond == jmp && (insn & (1 << 21))) {
1353 DPRINTF("Compare carry %d\n", s->carry == jmp);
1354 cond = s->carry != 0;
1355 }
1356 if (cond == jmp && (insn & (1 << 17))) {
1357 DPRINTF("Compare phase %d %c= %d\n",
1358 (s->sstat1 & PHASE_MASK),
1359 jmp ? '=' : '!',
1360 ((insn >> 24) & 7));
1361 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1362 }
1363 if (cond == jmp && (insn & (1 << 18))) {
1364 uint8_t mask;
1365
1366 mask = (~insn >> 8) & 0xff;
1367 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1368 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1369 cond = (s->sfbr & mask) == (insn & mask);
1370 }
1371 if (cond == jmp) {
1372 if (insn & (1 << 23)) {
1373 /* Relative address. */
1374 addr = s->dsp + sxt24(addr);
1375 }
1376 switch ((insn >> 27) & 7) {
1377 case 0: /* Jump */
1378 DPRINTF("Jump to 0x%08x\n", addr);
1379 s->dsp = addr;
1380 break;
1381 case 1: /* Call */
1382 DPRINTF("Call 0x%08x\n", addr);
1383 s->temp = s->dsp;
1384 s->dsp = addr;
1385 break;
1386 case 2: /* Return */
1387 DPRINTF("Return to 0x%08x\n", s->temp);
1388 s->dsp = s->temp;
1389 break;
1390 case 3: /* Interrupt */
1391 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1392 if ((insn & (1 << 20)) != 0) {
1393 s->istat0 |= LSI_ISTAT0_INTF;
1394 lsi_update_irq(s);
1395 } else {
1396 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1397 }
1398 break;
1399 default:
1400 DPRINTF("Illegal transfer control\n");
1401 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1402 break;
1403 }
1404 } else {
1405 DPRINTF("Control condition failed\n");
1406 }
1407 }
1408 break;
1409
1410 case 3:
1411 if ((insn & (1 << 29)) == 0) {
1412 /* Memory move. */
1413 uint32_t dest;
1414 /* ??? The docs imply the destination address is loaded into
1415 the TEMP register. However the Linux drivers rely on
1416 the value being presrved. */
1417 dest = read_dword(s, s->dsp);
1418 s->dsp += 4;
1419 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1420 } else {
1421 uint8_t data[7];
1422 int reg;
1423 int n;
1424 int i;
1425
1426 if (insn & (1 << 28)) {
1427 addr = s->dsa + sxt24(addr);
1428 }
1429 n = (insn & 7);
1430 reg = (insn >> 16) & 0xff;
1431 if (insn & (1 << 24)) {
1432 cpu_physical_memory_read(addr, data, n);
1433 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1434 addr, *(int *)data);
1435 for (i = 0; i < n; i++) {
1436 lsi_reg_writeb(s, reg + i, data[i]);
1437 }
1438 } else {
1439 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1440 for (i = 0; i < n; i++) {
1441 data[i] = lsi_reg_readb(s, reg + i);
1442 }
1443 cpu_physical_memory_write(addr, data, n);
1444 }
1445 }
1446 }
1447 if (insn_processed > 10000 && !s->waiting) {
1448 /* Some windows drivers make the device spin waiting for a memory
1449 location to change. If we have been executed a lot of code then
1450 assume this is the case and force an unexpected device disconnect.
1451 This is apparently sufficient to beat the drivers into submission.
1452 */
1453 if (!(s->sien0 & LSI_SIST0_UDC))
1454 fprintf(stderr, "inf. loop with UDC masked\n");
1455 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1456 lsi_disconnect(s);
1457 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1458 if (s->dcntl & LSI_DCNTL_SSM) {
1459 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1460 } else {
1461 goto again;
1462 }
1463 }
1464 DPRINTF("SCRIPTS execution stopped\n");
1465 }
1466
1467 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1468 {
1469 uint8_t tmp;
1470 #define CASE_GET_REG24(name, addr) \
1471 case addr: return s->name & 0xff; \
1472 case addr + 1: return (s->name >> 8) & 0xff; \
1473 case addr + 2: return (s->name >> 16) & 0xff;
1474
1475 #define CASE_GET_REG32(name, addr) \
1476 case addr: return s->name & 0xff; \
1477 case addr + 1: return (s->name >> 8) & 0xff; \
1478 case addr + 2: return (s->name >> 16) & 0xff; \
1479 case addr + 3: return (s->name >> 24) & 0xff;
1480
1481 #ifdef DEBUG_LSI_REG
1482 DPRINTF("Read reg %x\n", offset);
1483 #endif
1484 switch (offset) {
1485 case 0x00: /* SCNTL0 */
1486 return s->scntl0;
1487 case 0x01: /* SCNTL1 */
1488 return s->scntl1;
1489 case 0x02: /* SCNTL2 */
1490 return s->scntl2;
1491 case 0x03: /* SCNTL3 */
1492 return s->scntl3;
1493 case 0x04: /* SCID */
1494 return s->scid;
1495 case 0x05: /* SXFER */
1496 return s->sxfer;
1497 case 0x06: /* SDID */
1498 return s->sdid;
1499 case 0x07: /* GPREG0 */
1500 return 0x7f;
1501 case 0x08: /* Revision ID */
1502 return 0x00;
1503 case 0xa: /* SSID */
1504 return s->ssid;
1505 case 0xb: /* SBCL */
1506 /* ??? This is not correct. However it's (hopefully) only
1507 used for diagnostics, so should be ok. */
1508 return 0;
1509 case 0xc: /* DSTAT */
1510 tmp = s->dstat | 0x80;
1511 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1512 s->dstat = 0;
1513 lsi_update_irq(s);
1514 return tmp;
1515 case 0x0d: /* SSTAT0 */
1516 return s->sstat0;
1517 case 0x0e: /* SSTAT1 */
1518 return s->sstat1;
1519 case 0x0f: /* SSTAT2 */
1520 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1521 CASE_GET_REG32(dsa, 0x10)
1522 case 0x14: /* ISTAT0 */
1523 return s->istat0;
1524 case 0x15: /* ISTAT1 */
1525 return s->istat1;
1526 case 0x16: /* MBOX0 */
1527 return s->mbox0;
1528 case 0x17: /* MBOX1 */
1529 return s->mbox1;
1530 case 0x18: /* CTEST0 */
1531 return 0xff;
1532 case 0x19: /* CTEST1 */
1533 return 0;
1534 case 0x1a: /* CTEST2 */
1535 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1536 if (s->istat0 & LSI_ISTAT0_SIGP) {
1537 s->istat0 &= ~LSI_ISTAT0_SIGP;
1538 tmp |= LSI_CTEST2_SIGP;
1539 }
1540 return tmp;
1541 case 0x1b: /* CTEST3 */
1542 return s->ctest3;
1543 CASE_GET_REG32(temp, 0x1c)
1544 case 0x20: /* DFIFO */
1545 return 0;
1546 case 0x21: /* CTEST4 */
1547 return s->ctest4;
1548 case 0x22: /* CTEST5 */
1549 return s->ctest5;
1550 case 0x23: /* CTEST6 */
1551 return 0;
1552 CASE_GET_REG24(dbc, 0x24)
1553 case 0x27: /* DCMD */
1554 return s->dcmd;
1555 CASE_GET_REG32(dnad, 0x28)
1556 CASE_GET_REG32(dsp, 0x2c)
1557 CASE_GET_REG32(dsps, 0x30)
1558 CASE_GET_REG32(scratch[0], 0x34)
1559 case 0x38: /* DMODE */
1560 return s->dmode;
1561 case 0x39: /* DIEN */
1562 return s->dien;
1563 case 0x3a: /* SBR */
1564 return s->sbr;
1565 case 0x3b: /* DCNTL */
1566 return s->dcntl;
1567 case 0x40: /* SIEN0 */
1568 return s->sien0;
1569 case 0x41: /* SIEN1 */
1570 return s->sien1;
1571 case 0x42: /* SIST0 */
1572 tmp = s->sist0;
1573 s->sist0 = 0;
1574 lsi_update_irq(s);
1575 return tmp;
1576 case 0x43: /* SIST1 */
1577 tmp = s->sist1;
1578 s->sist1 = 0;
1579 lsi_update_irq(s);
1580 return tmp;
1581 case 0x46: /* MACNTL */
1582 return 0x0f;
1583 case 0x47: /* GPCNTL0 */
1584 return 0x0f;
1585 case 0x48: /* STIME0 */
1586 return s->stime0;
1587 case 0x4a: /* RESPID0 */
1588 return s->respid0;
1589 case 0x4b: /* RESPID1 */
1590 return s->respid1;
1591 case 0x4d: /* STEST1 */
1592 return s->stest1;
1593 case 0x4e: /* STEST2 */
1594 return s->stest2;
1595 case 0x4f: /* STEST3 */
1596 return s->stest3;
1597 case 0x50: /* SIDL */
1598 /* This is needed by the linux drivers. We currently only update it
1599 during the MSG IN phase. */
1600 return s->sidl;
1601 case 0x52: /* STEST4 */
1602 return 0xe0;
1603 case 0x56: /* CCNTL0 */
1604 return s->ccntl0;
1605 case 0x57: /* CCNTL1 */
1606 return s->ccntl1;
1607 case 0x58: /* SBDL */
1608 /* Some drivers peek at the data bus during the MSG IN phase. */
1609 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1610 return s->msg[0];
1611 return 0;
1612 case 0x59: /* SBDL high */
1613 return 0;
1614 CASE_GET_REG32(mmrs, 0xa0)
1615 CASE_GET_REG32(mmws, 0xa4)
1616 CASE_GET_REG32(sfs, 0xa8)
1617 CASE_GET_REG32(drs, 0xac)
1618 CASE_GET_REG32(sbms, 0xb0)
1619 CASE_GET_REG32(dbms, 0xb4)
1620 CASE_GET_REG32(dnad64, 0xb8)
1621 CASE_GET_REG32(pmjad1, 0xc0)
1622 CASE_GET_REG32(pmjad2, 0xc4)
1623 CASE_GET_REG32(rbc, 0xc8)
1624 CASE_GET_REG32(ua, 0xcc)
1625 CASE_GET_REG32(ia, 0xd4)
1626 CASE_GET_REG32(sbc, 0xd8)
1627 CASE_GET_REG32(csbc, 0xdc)
1628 }
1629 if (offset >= 0x5c && offset < 0xa0) {
1630 int n;
1631 int shift;
1632 n = (offset - 0x58) >> 2;
1633 shift = (offset & 3) * 8;
1634 return (s->scratch[n] >> shift) & 0xff;
1635 }
1636 BADF("readb 0x%x\n", offset);
1637 exit(1);
1638 #undef CASE_GET_REG24
1639 #undef CASE_GET_REG32
1640 }
1641
1642 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1643 {
1644 #define CASE_SET_REG24(name, addr) \
1645 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1646 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1647 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1648
1649 #define CASE_SET_REG32(name, addr) \
1650 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1651 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1652 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1653 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1654
1655 #ifdef DEBUG_LSI_REG
1656 DPRINTF("Write reg %x = %02x\n", offset, val);
1657 #endif
1658 switch (offset) {
1659 case 0x00: /* SCNTL0 */
1660 s->scntl0 = val;
1661 if (val & LSI_SCNTL0_START) {
1662 BADF("Start sequence not implemented\n");
1663 }
1664 break;
1665 case 0x01: /* SCNTL1 */
1666 s->scntl1 = val & ~LSI_SCNTL1_SST;
1667 if (val & LSI_SCNTL1_IARB) {
1668 BADF("Immediate Arbritration not implemented\n");
1669 }
1670 if (val & LSI_SCNTL1_RST) {
1671 if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1672 DeviceState *dev;
1673 int id;
1674
1675 for (id = 0; id < s->bus.ndev; id++) {
1676 if (s->bus.devs[id]) {
1677 dev = &s->bus.devs[id]->qdev;
1678 dev->info->reset(dev);
1679 }
1680 }
1681 s->sstat0 |= LSI_SSTAT0_RST;
1682 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1683 }
1684 } else {
1685 s->sstat0 &= ~LSI_SSTAT0_RST;
1686 }
1687 break;
1688 case 0x02: /* SCNTL2 */
1689 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1690 s->scntl2 = val;
1691 break;
1692 case 0x03: /* SCNTL3 */
1693 s->scntl3 = val;
1694 break;
1695 case 0x04: /* SCID */
1696 s->scid = val;
1697 break;
1698 case 0x05: /* SXFER */
1699 s->sxfer = val;
1700 break;
1701 case 0x06: /* SDID */
1702 if ((val & 0xf) != (s->ssid & 0xf))
1703 BADF("Destination ID does not match SSID\n");
1704 s->sdid = val & 0xf;
1705 break;
1706 case 0x07: /* GPREG0 */
1707 break;
1708 case 0x08: /* SFBR */
1709 /* The CPU is not allowed to write to this register. However the
1710 SCRIPTS register move instructions are. */
1711 s->sfbr = val;
1712 break;
1713 case 0x0a: case 0x0b:
1714 /* Openserver writes to these readonly registers on startup */
1715 return;
1716 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1717 /* Linux writes to these readonly registers on startup. */
1718 return;
1719 CASE_SET_REG32(dsa, 0x10)
1720 case 0x14: /* ISTAT0 */
1721 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1722 if (val & LSI_ISTAT0_ABRT) {
1723 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1724 }
1725 if (val & LSI_ISTAT0_INTF) {
1726 s->istat0 &= ~LSI_ISTAT0_INTF;
1727 lsi_update_irq(s);
1728 }
1729 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1730 DPRINTF("Woken by SIGP\n");
1731 s->waiting = 0;
1732 s->dsp = s->dnad;
1733 lsi_execute_script(s);
1734 }
1735 if (val & LSI_ISTAT0_SRST) {
1736 lsi_soft_reset(s);
1737 }
1738 break;
1739 case 0x16: /* MBOX0 */
1740 s->mbox0 = val;
1741 break;
1742 case 0x17: /* MBOX1 */
1743 s->mbox1 = val;
1744 break;
1745 case 0x1a: /* CTEST2 */
1746 s->ctest2 = val & LSI_CTEST2_PCICIE;
1747 break;
1748 case 0x1b: /* CTEST3 */
1749 s->ctest3 = val & 0x0f;
1750 break;
1751 CASE_SET_REG32(temp, 0x1c)
1752 case 0x21: /* CTEST4 */
1753 if (val & 7) {
1754 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1755 }
1756 s->ctest4 = val;
1757 break;
1758 case 0x22: /* CTEST5 */
1759 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1760 BADF("CTEST5 DMA increment not implemented\n");
1761 }
1762 s->ctest5 = val;
1763 break;
1764 CASE_SET_REG24(dbc, 0x24)
1765 CASE_SET_REG32(dnad, 0x28)
1766 case 0x2c: /* DSP[0:7] */
1767 s->dsp &= 0xffffff00;
1768 s->dsp |= val;
1769 break;
1770 case 0x2d: /* DSP[8:15] */
1771 s->dsp &= 0xffff00ff;
1772 s->dsp |= val << 8;
1773 break;
1774 case 0x2e: /* DSP[16:23] */
1775 s->dsp &= 0xff00ffff;
1776 s->dsp |= val << 16;
1777 break;
1778 case 0x2f: /* DSP[24:31] */
1779 s->dsp &= 0x00ffffff;
1780 s->dsp |= val << 24;
1781 if ((s->dmode & LSI_DMODE_MAN) == 0
1782 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1783 lsi_execute_script(s);
1784 break;
1785 CASE_SET_REG32(dsps, 0x30)
1786 CASE_SET_REG32(scratch[0], 0x34)
1787 case 0x38: /* DMODE */
1788 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1789 BADF("IO mappings not implemented\n");
1790 }
1791 s->dmode = val;
1792 break;
1793 case 0x39: /* DIEN */
1794 s->dien = val;
1795 lsi_update_irq(s);
1796 break;
1797 case 0x3a: /* SBR */
1798 s->sbr = val;
1799 break;
1800 case 0x3b: /* DCNTL */
1801 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1802 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1803 lsi_execute_script(s);
1804 break;
1805 case 0x40: /* SIEN0 */
1806 s->sien0 = val;
1807 lsi_update_irq(s);
1808 break;
1809 case 0x41: /* SIEN1 */
1810 s->sien1 = val;
1811 lsi_update_irq(s);
1812 break;
1813 case 0x47: /* GPCNTL0 */
1814 break;
1815 case 0x48: /* STIME0 */
1816 s->stime0 = val;
1817 break;
1818 case 0x49: /* STIME1 */
1819 if (val & 0xf) {
1820 DPRINTF("General purpose timer not implemented\n");
1821 /* ??? Raising the interrupt immediately seems to be sufficient
1822 to keep the FreeBSD driver happy. */
1823 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1824 }
1825 break;
1826 case 0x4a: /* RESPID0 */
1827 s->respid0 = val;
1828 break;
1829 case 0x4b: /* RESPID1 */
1830 s->respid1 = val;
1831 break;
1832 case 0x4d: /* STEST1 */
1833 s->stest1 = val;
1834 break;
1835 case 0x4e: /* STEST2 */
1836 if (val & 1) {
1837 BADF("Low level mode not implemented\n");
1838 }
1839 s->stest2 = val;
1840 break;
1841 case 0x4f: /* STEST3 */
1842 if (val & 0x41) {
1843 BADF("SCSI FIFO test mode not implemented\n");
1844 }
1845 s->stest3 = val;
1846 break;
1847 case 0x56: /* CCNTL0 */
1848 s->ccntl0 = val;
1849 break;
1850 case 0x57: /* CCNTL1 */
1851 s->ccntl1 = val;
1852 break;
1853 CASE_SET_REG32(mmrs, 0xa0)
1854 CASE_SET_REG32(mmws, 0xa4)
1855 CASE_SET_REG32(sfs, 0xa8)
1856 CASE_SET_REG32(drs, 0xac)
1857 CASE_SET_REG32(sbms, 0xb0)
1858 CASE_SET_REG32(dbms, 0xb4)
1859 CASE_SET_REG32(dnad64, 0xb8)
1860 CASE_SET_REG32(pmjad1, 0xc0)
1861 CASE_SET_REG32(pmjad2, 0xc4)
1862 CASE_SET_REG32(rbc, 0xc8)
1863 CASE_SET_REG32(ua, 0xcc)
1864 CASE_SET_REG32(ia, 0xd4)
1865 CASE_SET_REG32(sbc, 0xd8)
1866 CASE_SET_REG32(csbc, 0xdc)
1867 default:
1868 if (offset >= 0x5c && offset < 0xa0) {
1869 int n;
1870 int shift;
1871 n = (offset - 0x58) >> 2;
1872 shift = (offset & 3) * 8;
1873 s->scratch[n] &= ~(0xff << shift);
1874 s->scratch[n] |= (val & 0xff) << shift;
1875 } else {
1876 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1877 }
1878 }
1879 #undef CASE_SET_REG24
1880 #undef CASE_SET_REG32
1881 }
1882
1883 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1884 {
1885 LSIState *s = opaque;
1886
1887 lsi_reg_writeb(s, addr & 0xff, val);
1888 }
1889
1890 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1891 {
1892 LSIState *s = opaque;
1893
1894 addr &= 0xff;
1895 lsi_reg_writeb(s, addr, val & 0xff);
1896 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1897 }
1898
1899 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1900 {
1901 LSIState *s = opaque;
1902
1903 addr &= 0xff;
1904 lsi_reg_writeb(s, addr, val & 0xff);
1905 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1906 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1907 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1908 }
1909
1910 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1911 {
1912 LSIState *s = opaque;
1913
1914 return lsi_reg_readb(s, addr & 0xff);
1915 }
1916
1917 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1918 {
1919 LSIState *s = opaque;
1920 uint32_t val;
1921
1922 addr &= 0xff;
1923 val = lsi_reg_readb(s, addr);
1924 val |= lsi_reg_readb(s, addr + 1) << 8;
1925 return val;
1926 }
1927
1928 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1929 {
1930 LSIState *s = opaque;
1931 uint32_t val;
1932 addr &= 0xff;
1933 val = lsi_reg_readb(s, addr);
1934 val |= lsi_reg_readb(s, addr + 1) << 8;
1935 val |= lsi_reg_readb(s, addr + 2) << 16;
1936 val |= lsi_reg_readb(s, addr + 3) << 24;
1937 return val;
1938 }
1939
1940 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1941 lsi_mmio_readb,
1942 lsi_mmio_readw,
1943 lsi_mmio_readl,
1944 };
1945
1946 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1947 lsi_mmio_writeb,
1948 lsi_mmio_writew,
1949 lsi_mmio_writel,
1950 };
1951
1952 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1953 {
1954 LSIState *s = opaque;
1955 uint32_t newval;
1956 int shift;
1957
1958 addr &= 0x1fff;
1959 newval = s->script_ram[addr >> 2];
1960 shift = (addr & 3) * 8;
1961 newval &= ~(0xff << shift);
1962 newval |= val << shift;
1963 s->script_ram[addr >> 2] = newval;
1964 }
1965
1966 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1967 {
1968 LSIState *s = opaque;
1969 uint32_t newval;
1970
1971 addr &= 0x1fff;
1972 newval = s->script_ram[addr >> 2];
1973 if (addr & 2) {
1974 newval = (newval & 0xffff) | (val << 16);
1975 } else {
1976 newval = (newval & 0xffff0000) | val;
1977 }
1978 s->script_ram[addr >> 2] = newval;
1979 }
1980
1981
1982 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1983 {
1984 LSIState *s = opaque;
1985
1986 addr &= 0x1fff;
1987 s->script_ram[addr >> 2] = val;
1988 }
1989
1990 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1991 {
1992 LSIState *s = opaque;
1993 uint32_t val;
1994
1995 addr &= 0x1fff;
1996 val = s->script_ram[addr >> 2];
1997 val >>= (addr & 3) * 8;
1998 return val & 0xff;
1999 }
2000
2001 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
2002 {
2003 LSIState *s = opaque;
2004 uint32_t val;
2005
2006 addr &= 0x1fff;
2007 val = s->script_ram[addr >> 2];
2008 if (addr & 2)
2009 val >>= 16;
2010 return val;
2011 }
2012
2013 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
2014 {
2015 LSIState *s = opaque;
2016
2017 addr &= 0x1fff;
2018 return s->script_ram[addr >> 2];
2019 }
2020
2021 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
2022 lsi_ram_readb,
2023 lsi_ram_readw,
2024 lsi_ram_readl,
2025 };
2026
2027 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
2028 lsi_ram_writeb,
2029 lsi_ram_writew,
2030 lsi_ram_writel,
2031 };
2032
2033 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
2034 {
2035 LSIState *s = opaque;
2036 return lsi_reg_readb(s, addr & 0xff);
2037 }
2038
2039 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
2040 {
2041 LSIState *s = opaque;
2042 uint32_t val;
2043 addr &= 0xff;
2044 val = lsi_reg_readb(s, addr);
2045 val |= lsi_reg_readb(s, addr + 1) << 8;
2046 return val;
2047 }
2048
2049 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
2050 {
2051 LSIState *s = opaque;
2052 uint32_t val;
2053 addr &= 0xff;
2054 val = lsi_reg_readb(s, addr);
2055 val |= lsi_reg_readb(s, addr + 1) << 8;
2056 val |= lsi_reg_readb(s, addr + 2) << 16;
2057 val |= lsi_reg_readb(s, addr + 3) << 24;
2058 return val;
2059 }
2060
2061 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
2062 {
2063 LSIState *s = opaque;
2064 lsi_reg_writeb(s, addr & 0xff, val);
2065 }
2066
2067 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
2068 {
2069 LSIState *s = opaque;
2070 addr &= 0xff;
2071 lsi_reg_writeb(s, addr, val & 0xff);
2072 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2073 }
2074
2075 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2076 {
2077 LSIState *s = opaque;
2078 addr &= 0xff;
2079 lsi_reg_writeb(s, addr, val & 0xff);
2080 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2081 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2082 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2083 }
2084
2085 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2086 pcibus_t addr, pcibus_t size, int type)
2087 {
2088 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2089
2090 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2091
2092 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2093 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2094 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2095 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2096 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2097 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2098 }
2099
2100 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2101 pcibus_t addr, pcibus_t size, int type)
2102 {
2103 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2104
2105 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2106 s->script_ram_base = addr;
2107 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2108 }
2109
2110 static void lsi_scsi_reset(DeviceState *dev)
2111 {
2112 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2113
2114 lsi_soft_reset(s);
2115 }
2116
2117 static void lsi_pre_save(void *opaque)
2118 {
2119 LSIState *s = opaque;
2120
2121 if (s->current) {
2122 assert(s->current->dma_buf == NULL);
2123 assert(s->current->dma_len == 0);
2124 }
2125 assert(QTAILQ_EMPTY(&s->queue));
2126 }
2127
2128 static const VMStateDescription vmstate_lsi_scsi = {
2129 .name = "lsiscsi",
2130 .version_id = 0,
2131 .minimum_version_id = 0,
2132 .minimum_version_id_old = 0,
2133 .pre_save = lsi_pre_save,
2134 .fields = (VMStateField []) {
2135 VMSTATE_PCI_DEVICE(dev, LSIState),
2136
2137 VMSTATE_INT32(carry, LSIState),
2138 VMSTATE_INT32(status, LSIState),
2139 VMSTATE_INT32(msg_action, LSIState),
2140 VMSTATE_INT32(msg_len, LSIState),
2141 VMSTATE_BUFFER(msg, LSIState),
2142 VMSTATE_INT32(waiting, LSIState),
2143
2144 VMSTATE_UINT32(dsa, LSIState),
2145 VMSTATE_UINT32(temp, LSIState),
2146 VMSTATE_UINT32(dnad, LSIState),
2147 VMSTATE_UINT32(dbc, LSIState),
2148 VMSTATE_UINT8(istat0, LSIState),
2149 VMSTATE_UINT8(istat1, LSIState),
2150 VMSTATE_UINT8(dcmd, LSIState),
2151 VMSTATE_UINT8(dstat, LSIState),
2152 VMSTATE_UINT8(dien, LSIState),
2153 VMSTATE_UINT8(sist0, LSIState),
2154 VMSTATE_UINT8(sist1, LSIState),
2155 VMSTATE_UINT8(sien0, LSIState),
2156 VMSTATE_UINT8(sien1, LSIState),
2157 VMSTATE_UINT8(mbox0, LSIState),
2158 VMSTATE_UINT8(mbox1, LSIState),
2159 VMSTATE_UINT8(dfifo, LSIState),
2160 VMSTATE_UINT8(ctest2, LSIState),
2161 VMSTATE_UINT8(ctest3, LSIState),
2162 VMSTATE_UINT8(ctest4, LSIState),
2163 VMSTATE_UINT8(ctest5, LSIState),
2164 VMSTATE_UINT8(ccntl0, LSIState),
2165 VMSTATE_UINT8(ccntl1, LSIState),
2166 VMSTATE_UINT32(dsp, LSIState),
2167 VMSTATE_UINT32(dsps, LSIState),
2168 VMSTATE_UINT8(dmode, LSIState),
2169 VMSTATE_UINT8(dcntl, LSIState),
2170 VMSTATE_UINT8(scntl0, LSIState),
2171 VMSTATE_UINT8(scntl1, LSIState),
2172 VMSTATE_UINT8(scntl2, LSIState),
2173 VMSTATE_UINT8(scntl3, LSIState),
2174 VMSTATE_UINT8(sstat0, LSIState),
2175 VMSTATE_UINT8(sstat1, LSIState),
2176 VMSTATE_UINT8(scid, LSIState),
2177 VMSTATE_UINT8(sxfer, LSIState),
2178 VMSTATE_UINT8(socl, LSIState),
2179 VMSTATE_UINT8(sdid, LSIState),
2180 VMSTATE_UINT8(ssid, LSIState),
2181 VMSTATE_UINT8(sfbr, LSIState),
2182 VMSTATE_UINT8(stest1, LSIState),
2183 VMSTATE_UINT8(stest2, LSIState),
2184 VMSTATE_UINT8(stest3, LSIState),
2185 VMSTATE_UINT8(sidl, LSIState),
2186 VMSTATE_UINT8(stime0, LSIState),
2187 VMSTATE_UINT8(respid0, LSIState),
2188 VMSTATE_UINT8(respid1, LSIState),
2189 VMSTATE_UINT32(mmrs, LSIState),
2190 VMSTATE_UINT32(mmws, LSIState),
2191 VMSTATE_UINT32(sfs, LSIState),
2192 VMSTATE_UINT32(drs, LSIState),
2193 VMSTATE_UINT32(sbms, LSIState),
2194 VMSTATE_UINT32(dbms, LSIState),
2195 VMSTATE_UINT32(dnad64, LSIState),
2196 VMSTATE_UINT32(pmjad1, LSIState),
2197 VMSTATE_UINT32(pmjad2, LSIState),
2198 VMSTATE_UINT32(rbc, LSIState),
2199 VMSTATE_UINT32(ua, LSIState),
2200 VMSTATE_UINT32(ia, LSIState),
2201 VMSTATE_UINT32(sbc, LSIState),
2202 VMSTATE_UINT32(csbc, LSIState),
2203 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2204 VMSTATE_UINT8(sbr, LSIState),
2205
2206 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2207 VMSTATE_END_OF_LIST()
2208 }
2209 };
2210
2211 static int lsi_scsi_uninit(PCIDevice *d)
2212 {
2213 LSIState *s = DO_UPCAST(LSIState, dev, d);
2214
2215 cpu_unregister_io_memory(s->mmio_io_addr);
2216 cpu_unregister_io_memory(s->ram_io_addr);
2217
2218 return 0;
2219 }
2220
2221 static const struct SCSIBusOps lsi_scsi_ops = {
2222 .complete = lsi_command_complete
2223 };
2224
2225 static int lsi_scsi_init(PCIDevice *dev)
2226 {
2227 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2228 uint8_t *pci_conf;
2229
2230 pci_conf = s->dev.config;
2231
2232 /* PCI Vendor ID (word) */
2233 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2234 /* PCI device ID (word) */
2235 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2236 /* PCI base class code */
2237 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2238 /* PCI subsystem ID */
2239 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2240 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2241 /* PCI latency timer = 255 */
2242 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2243 /* TODO: RST# value should be 0 */
2244 /* Interrupt pin 1 */
2245 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2246
2247 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2248 lsi_mmio_writefn, s,
2249 DEVICE_NATIVE_ENDIAN);
2250 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2251 lsi_ram_writefn, s,
2252 DEVICE_NATIVE_ENDIAN);
2253
2254 pci_register_bar(&s->dev, 0, 256,
2255 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2256 pci_register_bar_simple(&s->dev, 1, 0x400, 0, s->mmio_io_addr);
2257 pci_register_bar(&s->dev, 2, 0x2000,
2258 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2259 QTAILQ_INIT(&s->queue);
2260
2261 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, &lsi_scsi_ops);
2262 if (!dev->qdev.hotplugged) {
2263 return scsi_bus_legacy_handle_cmdline(&s->bus);
2264 }
2265 return 0;
2266 }
2267
2268 static PCIDeviceInfo lsi_info = {
2269 .qdev.name = "lsi53c895a",
2270 .qdev.alias = "lsi",
2271 .qdev.size = sizeof(LSIState),
2272 .qdev.reset = lsi_scsi_reset,
2273 .qdev.vmsd = &vmstate_lsi_scsi,
2274 .init = lsi_scsi_init,
2275 .exit = lsi_scsi_uninit,
2276 };
2277
2278 static void lsi53c895a_register_devices(void)
2279 {
2280 pci_qdev_register(&lsi_info);
2281 }
2282
2283 device_init(lsi53c895a_register_devices);