]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi: Adjust some register reset values
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 SCSIDevice *dev;
179 uint32_t dma_len;
180 uint8_t *dma_buf;
181 uint32_t pending;
182 int out;
183 QTAILQ_ENTRY(lsi_request) next;
184 } lsi_request;
185
186 typedef struct {
187 PCIDevice dev;
188 int mmio_io_addr;
189 int ram_io_addr;
190 uint32_t script_ram_base;
191
192 int carry; /* ??? Should this be an a visible register somewhere? */
193 int sense;
194 /* Action to take at the end of a MSG IN phase.
195 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
196 int msg_action;
197 int msg_len;
198 uint8_t msg[LSI_MAX_MSGIN_LEN];
199 /* 0 if SCRIPTS are running or stopped.
200 * 1 if a Wait Reselect instruction has been issued.
201 * 2 if processing DMA from lsi_execute_script.
202 * 3 if a DMA operation is in progress. */
203 int waiting;
204 SCSIBus bus;
205 SCSIDevice *select_dev;
206 int current_lun;
207 /* The tag is a combination of the device ID and the SCSI tag. */
208 uint32_t select_tag;
209 int command_complete;
210 QTAILQ_HEAD(, lsi_request) queue;
211 lsi_request *current;
212
213 uint32_t dsa;
214 uint32_t temp;
215 uint32_t dnad;
216 uint32_t dbc;
217 uint8_t istat0;
218 uint8_t istat1;
219 uint8_t dcmd;
220 uint8_t dstat;
221 uint8_t dien;
222 uint8_t sist0;
223 uint8_t sist1;
224 uint8_t sien0;
225 uint8_t sien1;
226 uint8_t mbox0;
227 uint8_t mbox1;
228 uint8_t dfifo;
229 uint8_t ctest2;
230 uint8_t ctest3;
231 uint8_t ctest4;
232 uint8_t ctest5;
233 uint8_t ccntl0;
234 uint8_t ccntl1;
235 uint32_t dsp;
236 uint32_t dsps;
237 uint8_t dmode;
238 uint8_t dcntl;
239 uint8_t scntl0;
240 uint8_t scntl1;
241 uint8_t scntl2;
242 uint8_t scntl3;
243 uint8_t sstat0;
244 uint8_t sstat1;
245 uint8_t scid;
246 uint8_t sxfer;
247 uint8_t socl;
248 uint8_t sdid;
249 uint8_t ssid;
250 uint8_t sfbr;
251 uint8_t stest1;
252 uint8_t stest2;
253 uint8_t stest3;
254 uint8_t sidl;
255 uint8_t stime0;
256 uint8_t respid0;
257 uint8_t respid1;
258 uint32_t mmrs;
259 uint32_t mmws;
260 uint32_t sfs;
261 uint32_t drs;
262 uint32_t sbms;
263 uint32_t dbms;
264 uint32_t dnad64;
265 uint32_t pmjad1;
266 uint32_t pmjad2;
267 uint32_t rbc;
268 uint32_t ua;
269 uint32_t ia;
270 uint32_t sbc;
271 uint32_t csbc;
272 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
273 uint8_t sbr;
274
275 /* Script ram is stored as 32-bit words in host byteorder. */
276 uint32_t script_ram[2048];
277 } LSIState;
278
279 static inline int lsi_irq_on_rsl(LSIState *s)
280 {
281 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
282 }
283
284 static void lsi_soft_reset(LSIState *s)
285 {
286 lsi_request *p;
287
288 DPRINTF("Reset\n");
289 s->carry = 0;
290
291 s->msg_action = 0;
292 s->msg_len = 0;
293 s->waiting = 0;
294 s->dsa = 0;
295 s->dnad = 0;
296 s->dbc = 0;
297 s->temp = 0;
298 memset(s->scratch, 0, sizeof(s->scratch));
299 s->istat0 = 0;
300 s->istat1 = 0;
301 s->dcmd = 0x40;
302 s->dstat = LSI_DSTAT_DFE;
303 s->dien = 0;
304 s->sist0 = 0;
305 s->sist1 = 0;
306 s->sien0 = 0;
307 s->sien1 = 0;
308 s->mbox0 = 0;
309 s->mbox1 = 0;
310 s->dfifo = 0;
311 s->ctest2 = LSI_CTEST2_DACK;
312 s->ctest3 = 0;
313 s->ctest4 = 0;
314 s->ctest5 = 0;
315 s->ccntl0 = 0;
316 s->ccntl1 = 0;
317 s->dsp = 0;
318 s->dsps = 0;
319 s->dmode = 0;
320 s->dcntl = 0;
321 s->scntl0 = 0xc0;
322 s->scntl1 = 0;
323 s->scntl2 = 0;
324 s->scntl3 = 0;
325 s->sstat0 = 0;
326 s->sstat1 = 0;
327 s->scid = 7;
328 s->sxfer = 0;
329 s->socl = 0;
330 s->sdid = 0;
331 s->ssid = 0;
332 s->stest1 = 0;
333 s->stest2 = 0;
334 s->stest3 = 0;
335 s->sidl = 0;
336 s->stime0 = 0;
337 s->respid0 = 0x80;
338 s->respid1 = 0;
339 s->mmrs = 0;
340 s->mmws = 0;
341 s->sfs = 0;
342 s->drs = 0;
343 s->sbms = 0;
344 s->dbms = 0;
345 s->dnad64 = 0;
346 s->pmjad1 = 0;
347 s->pmjad2 = 0;
348 s->rbc = 0;
349 s->ua = 0;
350 s->ia = 0;
351 s->sbc = 0;
352 s->csbc = 0;
353 s->sbr = 0;
354 while (!QTAILQ_EMPTY(&s->queue)) {
355 p = QTAILQ_FIRST(&s->queue);
356 QTAILQ_REMOVE(&s->queue, p, next);
357 qemu_free(p);
358 }
359 if (s->current) {
360 qemu_free(s->current);
361 s->current = NULL;
362 }
363 }
364
365 static int lsi_dma_40bit(LSIState *s)
366 {
367 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
368 return 1;
369 return 0;
370 }
371
372 static int lsi_dma_ti64bit(LSIState *s)
373 {
374 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
375 return 1;
376 return 0;
377 }
378
379 static int lsi_dma_64bit(LSIState *s)
380 {
381 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
382 return 1;
383 return 0;
384 }
385
386 static uint8_t lsi_reg_readb(LSIState *s, int offset);
387 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
388 static void lsi_execute_script(LSIState *s);
389 static void lsi_reselect(LSIState *s, lsi_request *p);
390
391 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
392 {
393 uint32_t buf;
394
395 /* Optimize reading from SCRIPTS RAM. */
396 if ((addr & 0xffffe000) == s->script_ram_base) {
397 return s->script_ram[(addr & 0x1fff) >> 2];
398 }
399 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
400 return cpu_to_le32(buf);
401 }
402
403 static void lsi_stop_script(LSIState *s)
404 {
405 s->istat1 &= ~LSI_ISTAT1_SRUN;
406 }
407
408 static void lsi_update_irq(LSIState *s)
409 {
410 int level;
411 static int last_level;
412 lsi_request *p;
413
414 /* It's unclear whether the DIP/SIP bits should be cleared when the
415 Interrupt Status Registers are cleared or when istat0 is read.
416 We currently do the formwer, which seems to work. */
417 level = 0;
418 if (s->dstat) {
419 if (s->dstat & s->dien)
420 level = 1;
421 s->istat0 |= LSI_ISTAT0_DIP;
422 } else {
423 s->istat0 &= ~LSI_ISTAT0_DIP;
424 }
425
426 if (s->sist0 || s->sist1) {
427 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
428 level = 1;
429 s->istat0 |= LSI_ISTAT0_SIP;
430 } else {
431 s->istat0 &= ~LSI_ISTAT0_SIP;
432 }
433 if (s->istat0 & LSI_ISTAT0_INTF)
434 level = 1;
435
436 if (level != last_level) {
437 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
438 level, s->dstat, s->sist1, s->sist0);
439 last_level = level;
440 }
441 qemu_set_irq(s->dev.irq[0], level);
442
443 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
444 DPRINTF("Handled IRQs & disconnected, looking for pending "
445 "processes\n");
446 QTAILQ_FOREACH(p, &s->queue, next) {
447 if (p->pending) {
448 lsi_reselect(s, p);
449 break;
450 }
451 }
452 }
453 }
454
455 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
456 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
457 {
458 uint32_t mask0;
459 uint32_t mask1;
460
461 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
462 stat1, stat0, s->sist1, s->sist0);
463 s->sist0 |= stat0;
464 s->sist1 |= stat1;
465 /* Stop processor on fatal or unmasked interrupt. As a special hack
466 we don't stop processing when raising STO. Instead continue
467 execution and stop at the next insn that accesses the SCSI bus. */
468 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
469 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
470 mask1 &= ~LSI_SIST1_STO;
471 if (s->sist0 & mask0 || s->sist1 & mask1) {
472 lsi_stop_script(s);
473 }
474 lsi_update_irq(s);
475 }
476
477 /* Stop SCRIPTS execution and raise a DMA interrupt. */
478 static void lsi_script_dma_interrupt(LSIState *s, int stat)
479 {
480 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
481 s->dstat |= stat;
482 lsi_update_irq(s);
483 lsi_stop_script(s);
484 }
485
486 static inline void lsi_set_phase(LSIState *s, int phase)
487 {
488 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
489 }
490
491 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
492 {
493 /* Trigger a phase mismatch. */
494 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
495 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
496 s->dsp = s->pmjad1;
497 } else {
498 s->dsp = s->pmjad2;
499 }
500 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
501 } else {
502 DPRINTF("Phase mismatch interrupt\n");
503 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
504 lsi_stop_script(s);
505 }
506 lsi_set_phase(s, new_phase);
507 }
508
509
510 /* Resume SCRIPTS execution after a DMA operation. */
511 static void lsi_resume_script(LSIState *s)
512 {
513 if (s->waiting != 2) {
514 s->waiting = 0;
515 lsi_execute_script(s);
516 } else {
517 s->waiting = 0;
518 }
519 }
520
521 /* Initiate a SCSI layer data transfer. */
522 static void lsi_do_dma(LSIState *s, int out)
523 {
524 uint32_t count;
525 target_phys_addr_t addr;
526
527 assert(s->current);
528 if (!s->current->dma_len) {
529 /* Wait until data is available. */
530 DPRINTF("DMA no data available\n");
531 return;
532 }
533
534 count = s->dbc;
535 if (count > s->current->dma_len)
536 count = s->current->dma_len;
537
538 addr = s->dnad;
539 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
540 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
541 addr |= ((uint64_t)s->dnad64 << 32);
542 else if (s->dbms)
543 addr |= ((uint64_t)s->dbms << 32);
544 else if (s->sbms)
545 addr |= ((uint64_t)s->sbms << 32);
546
547 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
548 s->csbc += count;
549 s->dnad += count;
550 s->dbc -= count;
551
552 if (s->current->dma_buf == NULL) {
553 s->current->dma_buf = s->current->dev->info->get_buf(s->current->dev,
554 s->current->tag);
555 }
556
557 /* ??? Set SFBR to first data byte. */
558 if (out) {
559 cpu_physical_memory_read(addr, s->current->dma_buf, count);
560 } else {
561 cpu_physical_memory_write(addr, s->current->dma_buf, count);
562 }
563 s->current->dma_len -= count;
564 if (s->current->dma_len == 0) {
565 s->current->dma_buf = NULL;
566 if (out) {
567 /* Write the data. */
568 s->current->dev->info->write_data(s->current->dev, s->current->tag);
569 } else {
570 /* Request any remaining data. */
571 s->current->dev->info->read_data(s->current->dev, s->current->tag);
572 }
573 } else {
574 s->current->dma_buf += count;
575 lsi_resume_script(s);
576 }
577 }
578
579
580 /* Add a command to the queue. */
581 static void lsi_queue_command(LSIState *s)
582 {
583 lsi_request *p = s->current;
584
585 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
586 assert(s->current != NULL);
587 assert(s->current->dma_len == 0);
588 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
589 s->current = NULL;
590
591 p->pending = 0;
592 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
593 }
594
595 /* Queue a byte for a MSG IN phase. */
596 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
597 {
598 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
599 BADF("MSG IN data too long\n");
600 } else {
601 DPRINTF("MSG IN 0x%02x\n", data);
602 s->msg[s->msg_len++] = data;
603 }
604 }
605
606 /* Perform reselection to continue a command. */
607 static void lsi_reselect(LSIState *s, lsi_request *p)
608 {
609 int id;
610
611 assert(s->current == NULL);
612 QTAILQ_REMOVE(&s->queue, p, next);
613 s->current = p;
614
615 id = (p->tag >> 8) & 0xf;
616 s->ssid = id | 0x80;
617 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
618 if (!(s->dcntl & LSI_DCNTL_COM)) {
619 s->sfbr = 1 << (id & 0x7);
620 }
621 DPRINTF("Reselected target %d\n", id);
622 s->scntl1 |= LSI_SCNTL1_CON;
623 lsi_set_phase(s, PHASE_MI);
624 s->msg_action = p->out ? 2 : 3;
625 s->current->dma_len = p->pending;
626 lsi_add_msg_byte(s, 0x80);
627 if (s->current->tag & LSI_TAG_VALID) {
628 lsi_add_msg_byte(s, 0x20);
629 lsi_add_msg_byte(s, p->tag & 0xff);
630 }
631
632 if (lsi_irq_on_rsl(s)) {
633 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
634 }
635 }
636
637 /* Record that data is available for a queued command. Returns zero if
638 the device was reselected, nonzero if the IO is deferred. */
639 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
640 {
641 lsi_request *p;
642
643 QTAILQ_FOREACH(p, &s->queue, next) {
644 if (p->tag == tag) {
645 if (p->pending) {
646 BADF("Multiple IO pending for tag %d\n", tag);
647 }
648 p->pending = arg;
649 /* Reselect if waiting for it, or if reselection triggers an IRQ
650 and the bus is free.
651 Since no interrupt stacking is implemented in the emulation, it
652 is also required that there are no pending interrupts waiting
653 for service from the device driver. */
654 if (s->waiting == 1 ||
655 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
656 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
657 /* Reselect device. */
658 lsi_reselect(s, p);
659 return 0;
660 } else {
661 DPRINTF("Queueing IO tag=0x%x\n", tag);
662 p->pending = arg;
663 return 1;
664 }
665 }
666 }
667 BADF("IO with unknown tag %d\n", tag);
668 return 1;
669 }
670
671 /* Callback to indicate that the SCSI layer has completed a transfer. */
672 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
673 uint32_t arg)
674 {
675 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
676 int out;
677
678 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
679 if (reason == SCSI_REASON_DONE) {
680 DPRINTF("Command complete sense=%d\n", (int)arg);
681 s->sense = arg;
682 s->command_complete = 2;
683 if (s->waiting && s->dbc != 0) {
684 /* Raise phase mismatch for short transfers. */
685 lsi_bad_phase(s, out, PHASE_ST);
686 } else {
687 lsi_set_phase(s, PHASE_ST);
688 }
689
690 qemu_free(s->current);
691 s->current = NULL;
692
693 lsi_resume_script(s);
694 return;
695 }
696
697 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
698 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
699 if (lsi_queue_tag(s, tag, arg))
700 return;
701 }
702
703 /* host adapter (re)connected */
704 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
705 s->current->dma_len = arg;
706 s->command_complete = 1;
707 if (!s->waiting)
708 return;
709 if (s->waiting == 1 || s->dbc == 0) {
710 lsi_resume_script(s);
711 } else {
712 lsi_do_dma(s, out);
713 }
714 }
715
716 static void lsi_do_command(LSIState *s)
717 {
718 uint8_t buf[16];
719 int n;
720
721 DPRINTF("Send command len=%d\n", s->dbc);
722 if (s->dbc > 16)
723 s->dbc = 16;
724 cpu_physical_memory_read(s->dnad, buf, s->dbc);
725 s->sfbr = buf[0];
726 s->command_complete = 0;
727
728 assert(s->current == NULL);
729 s->current = qemu_mallocz(sizeof(lsi_request));
730 s->current->tag = s->select_tag;
731 s->current->dev = s->select_dev;
732
733 n = s->current->dev->info->send_command(s->current->dev, s->current->tag, buf,
734 s->current_lun);
735 if (n > 0) {
736 lsi_set_phase(s, PHASE_DI);
737 s->current->dev->info->read_data(s->current->dev, s->current->tag);
738 } else if (n < 0) {
739 lsi_set_phase(s, PHASE_DO);
740 s->current->dev->info->write_data(s->current->dev, s->current->tag);
741 }
742
743 if (!s->command_complete) {
744 if (n) {
745 /* Command did not complete immediately so disconnect. */
746 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
747 lsi_add_msg_byte(s, 4); /* DISCONNECT */
748 /* wait data */
749 lsi_set_phase(s, PHASE_MI);
750 s->msg_action = 1;
751 lsi_queue_command(s);
752 } else {
753 /* wait command complete */
754 lsi_set_phase(s, PHASE_DI);
755 }
756 }
757 }
758
759 static void lsi_do_status(LSIState *s)
760 {
761 uint8_t sense;
762 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
763 if (s->dbc != 1)
764 BADF("Bad Status move\n");
765 s->dbc = 1;
766 sense = s->sense;
767 s->sfbr = sense;
768 cpu_physical_memory_write(s->dnad, &sense, 1);
769 lsi_set_phase(s, PHASE_MI);
770 s->msg_action = 1;
771 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
772 }
773
774 static void lsi_disconnect(LSIState *s)
775 {
776 s->scntl1 &= ~LSI_SCNTL1_CON;
777 s->sstat1 &= ~PHASE_MASK;
778 }
779
780 static void lsi_do_msgin(LSIState *s)
781 {
782 int len;
783 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
784 s->sfbr = s->msg[0];
785 len = s->msg_len;
786 if (len > s->dbc)
787 len = s->dbc;
788 cpu_physical_memory_write(s->dnad, s->msg, len);
789 /* Linux drivers rely on the last byte being in the SIDL. */
790 s->sidl = s->msg[len - 1];
791 s->msg_len -= len;
792 if (s->msg_len) {
793 memmove(s->msg, s->msg + len, s->msg_len);
794 } else {
795 /* ??? Check if ATN (not yet implemented) is asserted and maybe
796 switch to PHASE_MO. */
797 switch (s->msg_action) {
798 case 0:
799 lsi_set_phase(s, PHASE_CMD);
800 break;
801 case 1:
802 lsi_disconnect(s);
803 break;
804 case 2:
805 lsi_set_phase(s, PHASE_DO);
806 break;
807 case 3:
808 lsi_set_phase(s, PHASE_DI);
809 break;
810 default:
811 abort();
812 }
813 }
814 }
815
816 /* Read the next byte during a MSGOUT phase. */
817 static uint8_t lsi_get_msgbyte(LSIState *s)
818 {
819 uint8_t data;
820 cpu_physical_memory_read(s->dnad, &data, 1);
821 s->dnad++;
822 s->dbc--;
823 return data;
824 }
825
826 static void lsi_do_msgout(LSIState *s)
827 {
828 uint8_t msg;
829 int len;
830
831 DPRINTF("MSG out len=%d\n", s->dbc);
832 while (s->dbc) {
833 msg = lsi_get_msgbyte(s);
834 s->sfbr = msg;
835
836 switch (msg) {
837 case 0x04:
838 DPRINTF("MSG: Disconnect\n");
839 lsi_disconnect(s);
840 break;
841 case 0x08:
842 DPRINTF("MSG: No Operation\n");
843 lsi_set_phase(s, PHASE_CMD);
844 break;
845 case 0x01:
846 len = lsi_get_msgbyte(s);
847 msg = lsi_get_msgbyte(s);
848 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
849 switch (msg) {
850 case 1:
851 DPRINTF("SDTR (ignored)\n");
852 s->dbc -= 2;
853 break;
854 case 3:
855 DPRINTF("WDTR (ignored)\n");
856 s->dbc -= 1;
857 break;
858 default:
859 goto bad;
860 }
861 break;
862 case 0x20: /* SIMPLE queue */
863 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
864 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
865 break;
866 case 0x21: /* HEAD of queue */
867 BADF("HEAD queue not implemented\n");
868 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
869 break;
870 case 0x22: /* ORDERED queue */
871 BADF("ORDERED queue not implemented\n");
872 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
873 break;
874 default:
875 if ((msg & 0x80) == 0) {
876 goto bad;
877 }
878 s->current_lun = msg & 7;
879 DPRINTF("Select LUN %d\n", s->current_lun);
880 lsi_set_phase(s, PHASE_CMD);
881 break;
882 }
883 }
884 return;
885 bad:
886 BADF("Unimplemented message 0x%02x\n", msg);
887 lsi_set_phase(s, PHASE_MI);
888 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
889 s->msg_action = 0;
890 }
891
892 /* Sign extend a 24-bit value. */
893 static inline int32_t sxt24(int32_t n)
894 {
895 return (n << 8) >> 8;
896 }
897
898 #define LSI_BUF_SIZE 4096
899 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
900 {
901 int n;
902 uint8_t buf[LSI_BUF_SIZE];
903
904 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
905 while (count) {
906 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
907 cpu_physical_memory_read(src, buf, n);
908 cpu_physical_memory_write(dest, buf, n);
909 src += n;
910 dest += n;
911 count -= n;
912 }
913 }
914
915 static void lsi_wait_reselect(LSIState *s)
916 {
917 lsi_request *p;
918
919 DPRINTF("Wait Reselect\n");
920
921 QTAILQ_FOREACH(p, &s->queue, next) {
922 if (p->pending) {
923 lsi_reselect(s, p);
924 break;
925 }
926 }
927 if (s->current == NULL) {
928 s->waiting = 1;
929 }
930 }
931
932 static void lsi_execute_script(LSIState *s)
933 {
934 uint32_t insn;
935 uint32_t addr, addr_high;
936 int opcode;
937 int insn_processed = 0;
938
939 s->istat1 |= LSI_ISTAT1_SRUN;
940 again:
941 insn_processed++;
942 insn = read_dword(s, s->dsp);
943 if (!insn) {
944 /* If we receive an empty opcode increment the DSP by 4 bytes
945 instead of 8 and execute the next opcode at that location */
946 s->dsp += 4;
947 goto again;
948 }
949 addr = read_dword(s, s->dsp + 4);
950 addr_high = 0;
951 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
952 s->dsps = addr;
953 s->dcmd = insn >> 24;
954 s->dsp += 8;
955 switch (insn >> 30) {
956 case 0: /* Block move. */
957 if (s->sist1 & LSI_SIST1_STO) {
958 DPRINTF("Delayed select timeout\n");
959 lsi_stop_script(s);
960 break;
961 }
962 s->dbc = insn & 0xffffff;
963 s->rbc = s->dbc;
964 /* ??? Set ESA. */
965 s->ia = s->dsp - 8;
966 if (insn & (1 << 29)) {
967 /* Indirect addressing. */
968 addr = read_dword(s, addr);
969 } else if (insn & (1 << 28)) {
970 uint32_t buf[2];
971 int32_t offset;
972 /* Table indirect addressing. */
973
974 /* 32-bit Table indirect */
975 offset = sxt24(addr);
976 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
977 /* byte count is stored in bits 0:23 only */
978 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
979 s->rbc = s->dbc;
980 addr = cpu_to_le32(buf[1]);
981
982 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
983 * table, bits [31:24] */
984 if (lsi_dma_40bit(s))
985 addr_high = cpu_to_le32(buf[0]) >> 24;
986 else if (lsi_dma_ti64bit(s)) {
987 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
988 switch (selector) {
989 case 0 ... 0x0f:
990 /* offset index into scratch registers since
991 * TI64 mode can use registers C to R */
992 addr_high = s->scratch[2 + selector];
993 break;
994 case 0x10:
995 addr_high = s->mmrs;
996 break;
997 case 0x11:
998 addr_high = s->mmws;
999 break;
1000 case 0x12:
1001 addr_high = s->sfs;
1002 break;
1003 case 0x13:
1004 addr_high = s->drs;
1005 break;
1006 case 0x14:
1007 addr_high = s->sbms;
1008 break;
1009 case 0x15:
1010 addr_high = s->dbms;
1011 break;
1012 default:
1013 BADF("Illegal selector specified (0x%x > 0x15)"
1014 " for 64-bit DMA block move", selector);
1015 break;
1016 }
1017 }
1018 } else if (lsi_dma_64bit(s)) {
1019 /* fetch a 3rd dword if 64-bit direct move is enabled and
1020 only if we're not doing table indirect or indirect addressing */
1021 s->dbms = read_dword(s, s->dsp);
1022 s->dsp += 4;
1023 s->ia = s->dsp - 12;
1024 }
1025 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1026 DPRINTF("Wrong phase got %d expected %d\n",
1027 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1028 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1029 break;
1030 }
1031 s->dnad = addr;
1032 s->dnad64 = addr_high;
1033 switch (s->sstat1 & 0x7) {
1034 case PHASE_DO:
1035 s->waiting = 2;
1036 lsi_do_dma(s, 1);
1037 if (s->waiting)
1038 s->waiting = 3;
1039 break;
1040 case PHASE_DI:
1041 s->waiting = 2;
1042 lsi_do_dma(s, 0);
1043 if (s->waiting)
1044 s->waiting = 3;
1045 break;
1046 case PHASE_CMD:
1047 lsi_do_command(s);
1048 break;
1049 case PHASE_ST:
1050 lsi_do_status(s);
1051 break;
1052 case PHASE_MO:
1053 lsi_do_msgout(s);
1054 break;
1055 case PHASE_MI:
1056 lsi_do_msgin(s);
1057 break;
1058 default:
1059 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1060 exit(1);
1061 }
1062 s->dfifo = s->dbc & 0xff;
1063 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1064 s->sbc = s->dbc;
1065 s->rbc -= s->dbc;
1066 s->ua = addr + s->dbc;
1067 break;
1068
1069 case 1: /* IO or Read/Write instruction. */
1070 opcode = (insn >> 27) & 7;
1071 if (opcode < 5) {
1072 uint32_t id;
1073
1074 if (insn & (1 << 25)) {
1075 id = read_dword(s, s->dsa + sxt24(insn));
1076 } else {
1077 id = insn;
1078 }
1079 id = (id >> 16) & 0xf;
1080 if (insn & (1 << 26)) {
1081 addr = s->dsp + sxt24(addr);
1082 }
1083 s->dnad = addr;
1084 switch (opcode) {
1085 case 0: /* Select */
1086 s->sdid = id;
1087 if (s->scntl1 & LSI_SCNTL1_CON) {
1088 DPRINTF("Already reselected, jumping to alternative address\n");
1089 s->dsp = s->dnad;
1090 break;
1091 }
1092 s->sstat0 |= LSI_SSTAT0_WOA;
1093 s->scntl1 &= ~LSI_SCNTL1_IARB;
1094 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1095 DPRINTF("Selected absent target %d\n", id);
1096 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1097 lsi_disconnect(s);
1098 break;
1099 }
1100 DPRINTF("Selected target %d%s\n",
1101 id, insn & (1 << 3) ? " ATN" : "");
1102 /* ??? Linux drivers compain when this is set. Maybe
1103 it only applies in low-level mode (unimplemented).
1104 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1105 s->select_dev = s->bus.devs[id];
1106 s->select_tag = id << 8;
1107 s->scntl1 |= LSI_SCNTL1_CON;
1108 if (insn & (1 << 3)) {
1109 s->socl |= LSI_SOCL_ATN;
1110 }
1111 lsi_set_phase(s, PHASE_MO);
1112 break;
1113 case 1: /* Disconnect */
1114 DPRINTF("Wait Disconnect\n");
1115 s->scntl1 &= ~LSI_SCNTL1_CON;
1116 break;
1117 case 2: /* Wait Reselect */
1118 if (!lsi_irq_on_rsl(s)) {
1119 lsi_wait_reselect(s);
1120 }
1121 break;
1122 case 3: /* Set */
1123 DPRINTF("Set%s%s%s%s\n",
1124 insn & (1 << 3) ? " ATN" : "",
1125 insn & (1 << 6) ? " ACK" : "",
1126 insn & (1 << 9) ? " TM" : "",
1127 insn & (1 << 10) ? " CC" : "");
1128 if (insn & (1 << 3)) {
1129 s->socl |= LSI_SOCL_ATN;
1130 lsi_set_phase(s, PHASE_MO);
1131 }
1132 if (insn & (1 << 9)) {
1133 BADF("Target mode not implemented\n");
1134 exit(1);
1135 }
1136 if (insn & (1 << 10))
1137 s->carry = 1;
1138 break;
1139 case 4: /* Clear */
1140 DPRINTF("Clear%s%s%s%s\n",
1141 insn & (1 << 3) ? " ATN" : "",
1142 insn & (1 << 6) ? " ACK" : "",
1143 insn & (1 << 9) ? " TM" : "",
1144 insn & (1 << 10) ? " CC" : "");
1145 if (insn & (1 << 3)) {
1146 s->socl &= ~LSI_SOCL_ATN;
1147 }
1148 if (insn & (1 << 10))
1149 s->carry = 0;
1150 break;
1151 }
1152 } else {
1153 uint8_t op0;
1154 uint8_t op1;
1155 uint8_t data8;
1156 int reg;
1157 int operator;
1158 #ifdef DEBUG_LSI
1159 static const char *opcode_names[3] =
1160 {"Write", "Read", "Read-Modify-Write"};
1161 static const char *operator_names[8] =
1162 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1163 #endif
1164
1165 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1166 data8 = (insn >> 8) & 0xff;
1167 opcode = (insn >> 27) & 7;
1168 operator = (insn >> 24) & 7;
1169 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1170 opcode_names[opcode - 5], reg,
1171 operator_names[operator], data8, s->sfbr,
1172 (insn & (1 << 23)) ? " SFBR" : "");
1173 op0 = op1 = 0;
1174 switch (opcode) {
1175 case 5: /* From SFBR */
1176 op0 = s->sfbr;
1177 op1 = data8;
1178 break;
1179 case 6: /* To SFBR */
1180 if (operator)
1181 op0 = lsi_reg_readb(s, reg);
1182 op1 = data8;
1183 break;
1184 case 7: /* Read-modify-write */
1185 if (operator)
1186 op0 = lsi_reg_readb(s, reg);
1187 if (insn & (1 << 23)) {
1188 op1 = s->sfbr;
1189 } else {
1190 op1 = data8;
1191 }
1192 break;
1193 }
1194
1195 switch (operator) {
1196 case 0: /* move */
1197 op0 = op1;
1198 break;
1199 case 1: /* Shift left */
1200 op1 = op0 >> 7;
1201 op0 = (op0 << 1) | s->carry;
1202 s->carry = op1;
1203 break;
1204 case 2: /* OR */
1205 op0 |= op1;
1206 break;
1207 case 3: /* XOR */
1208 op0 ^= op1;
1209 break;
1210 case 4: /* AND */
1211 op0 &= op1;
1212 break;
1213 case 5: /* SHR */
1214 op1 = op0 & 1;
1215 op0 = (op0 >> 1) | (s->carry << 7);
1216 s->carry = op1;
1217 break;
1218 case 6: /* ADD */
1219 op0 += op1;
1220 s->carry = op0 < op1;
1221 break;
1222 case 7: /* ADC */
1223 op0 += op1 + s->carry;
1224 if (s->carry)
1225 s->carry = op0 <= op1;
1226 else
1227 s->carry = op0 < op1;
1228 break;
1229 }
1230
1231 switch (opcode) {
1232 case 5: /* From SFBR */
1233 case 7: /* Read-modify-write */
1234 lsi_reg_writeb(s, reg, op0);
1235 break;
1236 case 6: /* To SFBR */
1237 s->sfbr = op0;
1238 break;
1239 }
1240 }
1241 break;
1242
1243 case 2: /* Transfer Control. */
1244 {
1245 int cond;
1246 int jmp;
1247
1248 if ((insn & 0x002e0000) == 0) {
1249 DPRINTF("NOP\n");
1250 break;
1251 }
1252 if (s->sist1 & LSI_SIST1_STO) {
1253 DPRINTF("Delayed select timeout\n");
1254 lsi_stop_script(s);
1255 break;
1256 }
1257 cond = jmp = (insn & (1 << 19)) != 0;
1258 if (cond == jmp && (insn & (1 << 21))) {
1259 DPRINTF("Compare carry %d\n", s->carry == jmp);
1260 cond = s->carry != 0;
1261 }
1262 if (cond == jmp && (insn & (1 << 17))) {
1263 DPRINTF("Compare phase %d %c= %d\n",
1264 (s->sstat1 & PHASE_MASK),
1265 jmp ? '=' : '!',
1266 ((insn >> 24) & 7));
1267 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1268 }
1269 if (cond == jmp && (insn & (1 << 18))) {
1270 uint8_t mask;
1271
1272 mask = (~insn >> 8) & 0xff;
1273 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1274 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1275 cond = (s->sfbr & mask) == (insn & mask);
1276 }
1277 if (cond == jmp) {
1278 if (insn & (1 << 23)) {
1279 /* Relative address. */
1280 addr = s->dsp + sxt24(addr);
1281 }
1282 switch ((insn >> 27) & 7) {
1283 case 0: /* Jump */
1284 DPRINTF("Jump to 0x%08x\n", addr);
1285 s->dsp = addr;
1286 break;
1287 case 1: /* Call */
1288 DPRINTF("Call 0x%08x\n", addr);
1289 s->temp = s->dsp;
1290 s->dsp = addr;
1291 break;
1292 case 2: /* Return */
1293 DPRINTF("Return to 0x%08x\n", s->temp);
1294 s->dsp = s->temp;
1295 break;
1296 case 3: /* Interrupt */
1297 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1298 if ((insn & (1 << 20)) != 0) {
1299 s->istat0 |= LSI_ISTAT0_INTF;
1300 lsi_update_irq(s);
1301 } else {
1302 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1303 }
1304 break;
1305 default:
1306 DPRINTF("Illegal transfer control\n");
1307 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1308 break;
1309 }
1310 } else {
1311 DPRINTF("Control condition failed\n");
1312 }
1313 }
1314 break;
1315
1316 case 3:
1317 if ((insn & (1 << 29)) == 0) {
1318 /* Memory move. */
1319 uint32_t dest;
1320 /* ??? The docs imply the destination address is loaded into
1321 the TEMP register. However the Linux drivers rely on
1322 the value being presrved. */
1323 dest = read_dword(s, s->dsp);
1324 s->dsp += 4;
1325 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1326 } else {
1327 uint8_t data[7];
1328 int reg;
1329 int n;
1330 int i;
1331
1332 if (insn & (1 << 28)) {
1333 addr = s->dsa + sxt24(addr);
1334 }
1335 n = (insn & 7);
1336 reg = (insn >> 16) & 0xff;
1337 if (insn & (1 << 24)) {
1338 cpu_physical_memory_read(addr, data, n);
1339 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1340 addr, *(int *)data);
1341 for (i = 0; i < n; i++) {
1342 lsi_reg_writeb(s, reg + i, data[i]);
1343 }
1344 } else {
1345 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1346 for (i = 0; i < n; i++) {
1347 data[i] = lsi_reg_readb(s, reg + i);
1348 }
1349 cpu_physical_memory_write(addr, data, n);
1350 }
1351 }
1352 }
1353 if (insn_processed > 10000 && !s->waiting) {
1354 /* Some windows drivers make the device spin waiting for a memory
1355 location to change. If we have been executed a lot of code then
1356 assume this is the case and force an unexpected device disconnect.
1357 This is apparently sufficient to beat the drivers into submission.
1358 */
1359 if (!(s->sien0 & LSI_SIST0_UDC))
1360 fprintf(stderr, "inf. loop with UDC masked\n");
1361 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1362 lsi_disconnect(s);
1363 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1364 if (s->dcntl & LSI_DCNTL_SSM) {
1365 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1366 } else {
1367 goto again;
1368 }
1369 }
1370 DPRINTF("SCRIPTS execution stopped\n");
1371 }
1372
1373 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1374 {
1375 uint8_t tmp;
1376 #define CASE_GET_REG24(name, addr) \
1377 case addr: return s->name & 0xff; \
1378 case addr + 1: return (s->name >> 8) & 0xff; \
1379 case addr + 2: return (s->name >> 16) & 0xff;
1380
1381 #define CASE_GET_REG32(name, addr) \
1382 case addr: return s->name & 0xff; \
1383 case addr + 1: return (s->name >> 8) & 0xff; \
1384 case addr + 2: return (s->name >> 16) & 0xff; \
1385 case addr + 3: return (s->name >> 24) & 0xff;
1386
1387 #ifdef DEBUG_LSI_REG
1388 DPRINTF("Read reg %x\n", offset);
1389 #endif
1390 switch (offset) {
1391 case 0x00: /* SCNTL0 */
1392 return s->scntl0;
1393 case 0x01: /* SCNTL1 */
1394 return s->scntl1;
1395 case 0x02: /* SCNTL2 */
1396 return s->scntl2;
1397 case 0x03: /* SCNTL3 */
1398 return s->scntl3;
1399 case 0x04: /* SCID */
1400 return s->scid;
1401 case 0x05: /* SXFER */
1402 return s->sxfer;
1403 case 0x06: /* SDID */
1404 return s->sdid;
1405 case 0x07: /* GPREG0 */
1406 return 0x7f;
1407 case 0x08: /* Revision ID */
1408 return 0x00;
1409 case 0xa: /* SSID */
1410 return s->ssid;
1411 case 0xb: /* SBCL */
1412 /* ??? This is not correct. However it's (hopefully) only
1413 used for diagnostics, so should be ok. */
1414 return 0;
1415 case 0xc: /* DSTAT */
1416 tmp = s->dstat | 0x80;
1417 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1418 s->dstat = 0;
1419 lsi_update_irq(s);
1420 return tmp;
1421 case 0x0d: /* SSTAT0 */
1422 return s->sstat0;
1423 case 0x0e: /* SSTAT1 */
1424 return s->sstat1;
1425 case 0x0f: /* SSTAT2 */
1426 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1427 CASE_GET_REG32(dsa, 0x10)
1428 case 0x14: /* ISTAT0 */
1429 return s->istat0;
1430 case 0x15: /* ISTAT1 */
1431 return s->istat1;
1432 case 0x16: /* MBOX0 */
1433 return s->mbox0;
1434 case 0x17: /* MBOX1 */
1435 return s->mbox1;
1436 case 0x18: /* CTEST0 */
1437 return 0xff;
1438 case 0x19: /* CTEST1 */
1439 return 0;
1440 case 0x1a: /* CTEST2 */
1441 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1442 if (s->istat0 & LSI_ISTAT0_SIGP) {
1443 s->istat0 &= ~LSI_ISTAT0_SIGP;
1444 tmp |= LSI_CTEST2_SIGP;
1445 }
1446 return tmp;
1447 case 0x1b: /* CTEST3 */
1448 return s->ctest3;
1449 CASE_GET_REG32(temp, 0x1c)
1450 case 0x20: /* DFIFO */
1451 return 0;
1452 case 0x21: /* CTEST4 */
1453 return s->ctest4;
1454 case 0x22: /* CTEST5 */
1455 return s->ctest5;
1456 case 0x23: /* CTEST6 */
1457 return 0;
1458 CASE_GET_REG24(dbc, 0x24)
1459 case 0x27: /* DCMD */
1460 return s->dcmd;
1461 CASE_GET_REG32(dnad, 0x28)
1462 CASE_GET_REG32(dsp, 0x2c)
1463 CASE_GET_REG32(dsps, 0x30)
1464 CASE_GET_REG32(scratch[0], 0x34)
1465 case 0x38: /* DMODE */
1466 return s->dmode;
1467 case 0x39: /* DIEN */
1468 return s->dien;
1469 case 0x3a: /* SBR */
1470 return s->sbr;
1471 case 0x3b: /* DCNTL */
1472 return s->dcntl;
1473 case 0x40: /* SIEN0 */
1474 return s->sien0;
1475 case 0x41: /* SIEN1 */
1476 return s->sien1;
1477 case 0x42: /* SIST0 */
1478 tmp = s->sist0;
1479 s->sist0 = 0;
1480 lsi_update_irq(s);
1481 return tmp;
1482 case 0x43: /* SIST1 */
1483 tmp = s->sist1;
1484 s->sist1 = 0;
1485 lsi_update_irq(s);
1486 return tmp;
1487 case 0x46: /* MACNTL */
1488 return 0x0f;
1489 case 0x47: /* GPCNTL0 */
1490 return 0x0f;
1491 case 0x48: /* STIME0 */
1492 return s->stime0;
1493 case 0x4a: /* RESPID0 */
1494 return s->respid0;
1495 case 0x4b: /* RESPID1 */
1496 return s->respid1;
1497 case 0x4d: /* STEST1 */
1498 return s->stest1;
1499 case 0x4e: /* STEST2 */
1500 return s->stest2;
1501 case 0x4f: /* STEST3 */
1502 return s->stest3;
1503 case 0x50: /* SIDL */
1504 /* This is needed by the linux drivers. We currently only update it
1505 during the MSG IN phase. */
1506 return s->sidl;
1507 case 0x52: /* STEST4 */
1508 return 0xe0;
1509 case 0x56: /* CCNTL0 */
1510 return s->ccntl0;
1511 case 0x57: /* CCNTL1 */
1512 return s->ccntl1;
1513 case 0x58: /* SBDL */
1514 /* Some drivers peek at the data bus during the MSG IN phase. */
1515 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1516 return s->msg[0];
1517 return 0;
1518 case 0x59: /* SBDL high */
1519 return 0;
1520 CASE_GET_REG32(mmrs, 0xa0)
1521 CASE_GET_REG32(mmws, 0xa4)
1522 CASE_GET_REG32(sfs, 0xa8)
1523 CASE_GET_REG32(drs, 0xac)
1524 CASE_GET_REG32(sbms, 0xb0)
1525 CASE_GET_REG32(dbms, 0xb4)
1526 CASE_GET_REG32(dnad64, 0xb8)
1527 CASE_GET_REG32(pmjad1, 0xc0)
1528 CASE_GET_REG32(pmjad2, 0xc4)
1529 CASE_GET_REG32(rbc, 0xc8)
1530 CASE_GET_REG32(ua, 0xcc)
1531 CASE_GET_REG32(ia, 0xd4)
1532 CASE_GET_REG32(sbc, 0xd8)
1533 CASE_GET_REG32(csbc, 0xdc)
1534 }
1535 if (offset >= 0x5c && offset < 0xa0) {
1536 int n;
1537 int shift;
1538 n = (offset - 0x58) >> 2;
1539 shift = (offset & 3) * 8;
1540 return (s->scratch[n] >> shift) & 0xff;
1541 }
1542 BADF("readb 0x%x\n", offset);
1543 exit(1);
1544 #undef CASE_GET_REG24
1545 #undef CASE_GET_REG32
1546 }
1547
1548 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1549 {
1550 #define CASE_SET_REG24(name, addr) \
1551 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1552 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1553 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1554
1555 #define CASE_SET_REG32(name, addr) \
1556 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1557 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1558 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1559 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1560
1561 #ifdef DEBUG_LSI_REG
1562 DPRINTF("Write reg %x = %02x\n", offset, val);
1563 #endif
1564 switch (offset) {
1565 case 0x00: /* SCNTL0 */
1566 s->scntl0 = val;
1567 if (val & LSI_SCNTL0_START) {
1568 BADF("Start sequence not implemented\n");
1569 }
1570 break;
1571 case 0x01: /* SCNTL1 */
1572 s->scntl1 = val & ~LSI_SCNTL1_SST;
1573 if (val & LSI_SCNTL1_IARB) {
1574 BADF("Immediate Arbritration not implemented\n");
1575 }
1576 if (val & LSI_SCNTL1_RST) {
1577 s->sstat0 |= LSI_SSTAT0_RST;
1578 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1579 } else {
1580 s->sstat0 &= ~LSI_SSTAT0_RST;
1581 }
1582 break;
1583 case 0x02: /* SCNTL2 */
1584 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1585 s->scntl2 = val;
1586 break;
1587 case 0x03: /* SCNTL3 */
1588 s->scntl3 = val;
1589 break;
1590 case 0x04: /* SCID */
1591 s->scid = val;
1592 break;
1593 case 0x05: /* SXFER */
1594 s->sxfer = val;
1595 break;
1596 case 0x06: /* SDID */
1597 if ((val & 0xf) != (s->ssid & 0xf))
1598 BADF("Destination ID does not match SSID\n");
1599 s->sdid = val & 0xf;
1600 break;
1601 case 0x07: /* GPREG0 */
1602 break;
1603 case 0x08: /* SFBR */
1604 /* The CPU is not allowed to write to this register. However the
1605 SCRIPTS register move instructions are. */
1606 s->sfbr = val;
1607 break;
1608 case 0x0a: case 0x0b:
1609 /* Openserver writes to these readonly registers on startup */
1610 return;
1611 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1612 /* Linux writes to these readonly registers on startup. */
1613 return;
1614 CASE_SET_REG32(dsa, 0x10)
1615 case 0x14: /* ISTAT0 */
1616 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1617 if (val & LSI_ISTAT0_ABRT) {
1618 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1619 }
1620 if (val & LSI_ISTAT0_INTF) {
1621 s->istat0 &= ~LSI_ISTAT0_INTF;
1622 lsi_update_irq(s);
1623 }
1624 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1625 DPRINTF("Woken by SIGP\n");
1626 s->waiting = 0;
1627 s->dsp = s->dnad;
1628 lsi_execute_script(s);
1629 }
1630 if (val & LSI_ISTAT0_SRST) {
1631 lsi_soft_reset(s);
1632 }
1633 break;
1634 case 0x16: /* MBOX0 */
1635 s->mbox0 = val;
1636 break;
1637 case 0x17: /* MBOX1 */
1638 s->mbox1 = val;
1639 break;
1640 case 0x1a: /* CTEST2 */
1641 s->ctest2 = val & LSI_CTEST2_PCICIE;
1642 break;
1643 case 0x1b: /* CTEST3 */
1644 s->ctest3 = val & 0x0f;
1645 break;
1646 CASE_SET_REG32(temp, 0x1c)
1647 case 0x21: /* CTEST4 */
1648 if (val & 7) {
1649 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1650 }
1651 s->ctest4 = val;
1652 break;
1653 case 0x22: /* CTEST5 */
1654 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1655 BADF("CTEST5 DMA increment not implemented\n");
1656 }
1657 s->ctest5 = val;
1658 break;
1659 CASE_SET_REG24(dbc, 0x24)
1660 CASE_SET_REG32(dnad, 0x28)
1661 case 0x2c: /* DSP[0:7] */
1662 s->dsp &= 0xffffff00;
1663 s->dsp |= val;
1664 break;
1665 case 0x2d: /* DSP[8:15] */
1666 s->dsp &= 0xffff00ff;
1667 s->dsp |= val << 8;
1668 break;
1669 case 0x2e: /* DSP[16:23] */
1670 s->dsp &= 0xff00ffff;
1671 s->dsp |= val << 16;
1672 break;
1673 case 0x2f: /* DSP[24:31] */
1674 s->dsp &= 0x00ffffff;
1675 s->dsp |= val << 24;
1676 if ((s->dmode & LSI_DMODE_MAN) == 0
1677 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1678 lsi_execute_script(s);
1679 break;
1680 CASE_SET_REG32(dsps, 0x30)
1681 CASE_SET_REG32(scratch[0], 0x34)
1682 case 0x38: /* DMODE */
1683 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1684 BADF("IO mappings not implemented\n");
1685 }
1686 s->dmode = val;
1687 break;
1688 case 0x39: /* DIEN */
1689 s->dien = val;
1690 lsi_update_irq(s);
1691 break;
1692 case 0x3a: /* SBR */
1693 s->sbr = val;
1694 break;
1695 case 0x3b: /* DCNTL */
1696 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1697 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1698 lsi_execute_script(s);
1699 break;
1700 case 0x40: /* SIEN0 */
1701 s->sien0 = val;
1702 lsi_update_irq(s);
1703 break;
1704 case 0x41: /* SIEN1 */
1705 s->sien1 = val;
1706 lsi_update_irq(s);
1707 break;
1708 case 0x47: /* GPCNTL0 */
1709 break;
1710 case 0x48: /* STIME0 */
1711 s->stime0 = val;
1712 break;
1713 case 0x49: /* STIME1 */
1714 if (val & 0xf) {
1715 DPRINTF("General purpose timer not implemented\n");
1716 /* ??? Raising the interrupt immediately seems to be sufficient
1717 to keep the FreeBSD driver happy. */
1718 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1719 }
1720 break;
1721 case 0x4a: /* RESPID0 */
1722 s->respid0 = val;
1723 break;
1724 case 0x4b: /* RESPID1 */
1725 s->respid1 = val;
1726 break;
1727 case 0x4d: /* STEST1 */
1728 s->stest1 = val;
1729 break;
1730 case 0x4e: /* STEST2 */
1731 if (val & 1) {
1732 BADF("Low level mode not implemented\n");
1733 }
1734 s->stest2 = val;
1735 break;
1736 case 0x4f: /* STEST3 */
1737 if (val & 0x41) {
1738 BADF("SCSI FIFO test mode not implemented\n");
1739 }
1740 s->stest3 = val;
1741 break;
1742 case 0x56: /* CCNTL0 */
1743 s->ccntl0 = val;
1744 break;
1745 case 0x57: /* CCNTL1 */
1746 s->ccntl1 = val;
1747 break;
1748 CASE_SET_REG32(mmrs, 0xa0)
1749 CASE_SET_REG32(mmws, 0xa4)
1750 CASE_SET_REG32(sfs, 0xa8)
1751 CASE_SET_REG32(drs, 0xac)
1752 CASE_SET_REG32(sbms, 0xb0)
1753 CASE_SET_REG32(dbms, 0xb4)
1754 CASE_SET_REG32(dnad64, 0xb8)
1755 CASE_SET_REG32(pmjad1, 0xc0)
1756 CASE_SET_REG32(pmjad2, 0xc4)
1757 CASE_SET_REG32(rbc, 0xc8)
1758 CASE_SET_REG32(ua, 0xcc)
1759 CASE_SET_REG32(ia, 0xd4)
1760 CASE_SET_REG32(sbc, 0xd8)
1761 CASE_SET_REG32(csbc, 0xdc)
1762 default:
1763 if (offset >= 0x5c && offset < 0xa0) {
1764 int n;
1765 int shift;
1766 n = (offset - 0x58) >> 2;
1767 shift = (offset & 3) * 8;
1768 s->scratch[n] &= ~(0xff << shift);
1769 s->scratch[n] |= (val & 0xff) << shift;
1770 } else {
1771 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1772 }
1773 }
1774 #undef CASE_SET_REG24
1775 #undef CASE_SET_REG32
1776 }
1777
1778 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1779 {
1780 LSIState *s = opaque;
1781
1782 lsi_reg_writeb(s, addr & 0xff, val);
1783 }
1784
1785 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1786 {
1787 LSIState *s = opaque;
1788
1789 addr &= 0xff;
1790 lsi_reg_writeb(s, addr, val & 0xff);
1791 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1792 }
1793
1794 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1795 {
1796 LSIState *s = opaque;
1797
1798 addr &= 0xff;
1799 lsi_reg_writeb(s, addr, val & 0xff);
1800 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1801 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1802 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1803 }
1804
1805 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1806 {
1807 LSIState *s = opaque;
1808
1809 return lsi_reg_readb(s, addr & 0xff);
1810 }
1811
1812 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1813 {
1814 LSIState *s = opaque;
1815 uint32_t val;
1816
1817 addr &= 0xff;
1818 val = lsi_reg_readb(s, addr);
1819 val |= lsi_reg_readb(s, addr + 1) << 8;
1820 return val;
1821 }
1822
1823 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1824 {
1825 LSIState *s = opaque;
1826 uint32_t val;
1827 addr &= 0xff;
1828 val = lsi_reg_readb(s, addr);
1829 val |= lsi_reg_readb(s, addr + 1) << 8;
1830 val |= lsi_reg_readb(s, addr + 2) << 16;
1831 val |= lsi_reg_readb(s, addr + 3) << 24;
1832 return val;
1833 }
1834
1835 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1836 lsi_mmio_readb,
1837 lsi_mmio_readw,
1838 lsi_mmio_readl,
1839 };
1840
1841 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1842 lsi_mmio_writeb,
1843 lsi_mmio_writew,
1844 lsi_mmio_writel,
1845 };
1846
1847 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1848 {
1849 LSIState *s = opaque;
1850 uint32_t newval;
1851 int shift;
1852
1853 addr &= 0x1fff;
1854 newval = s->script_ram[addr >> 2];
1855 shift = (addr & 3) * 8;
1856 newval &= ~(0xff << shift);
1857 newval |= val << shift;
1858 s->script_ram[addr >> 2] = newval;
1859 }
1860
1861 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1862 {
1863 LSIState *s = opaque;
1864 uint32_t newval;
1865
1866 addr &= 0x1fff;
1867 newval = s->script_ram[addr >> 2];
1868 if (addr & 2) {
1869 newval = (newval & 0xffff) | (val << 16);
1870 } else {
1871 newval = (newval & 0xffff0000) | val;
1872 }
1873 s->script_ram[addr >> 2] = newval;
1874 }
1875
1876
1877 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1878 {
1879 LSIState *s = opaque;
1880
1881 addr &= 0x1fff;
1882 s->script_ram[addr >> 2] = val;
1883 }
1884
1885 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1886 {
1887 LSIState *s = opaque;
1888 uint32_t val;
1889
1890 addr &= 0x1fff;
1891 val = s->script_ram[addr >> 2];
1892 val >>= (addr & 3) * 8;
1893 return val & 0xff;
1894 }
1895
1896 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1897 {
1898 LSIState *s = opaque;
1899 uint32_t val;
1900
1901 addr &= 0x1fff;
1902 val = s->script_ram[addr >> 2];
1903 if (addr & 2)
1904 val >>= 16;
1905 return le16_to_cpu(val);
1906 }
1907
1908 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1909 {
1910 LSIState *s = opaque;
1911
1912 addr &= 0x1fff;
1913 return le32_to_cpu(s->script_ram[addr >> 2]);
1914 }
1915
1916 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1917 lsi_ram_readb,
1918 lsi_ram_readw,
1919 lsi_ram_readl,
1920 };
1921
1922 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1923 lsi_ram_writeb,
1924 lsi_ram_writew,
1925 lsi_ram_writel,
1926 };
1927
1928 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1929 {
1930 LSIState *s = opaque;
1931 return lsi_reg_readb(s, addr & 0xff);
1932 }
1933
1934 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1935 {
1936 LSIState *s = opaque;
1937 uint32_t val;
1938 addr &= 0xff;
1939 val = lsi_reg_readb(s, addr);
1940 val |= lsi_reg_readb(s, addr + 1) << 8;
1941 return val;
1942 }
1943
1944 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1945 {
1946 LSIState *s = opaque;
1947 uint32_t val;
1948 addr &= 0xff;
1949 val = lsi_reg_readb(s, addr);
1950 val |= lsi_reg_readb(s, addr + 1) << 8;
1951 val |= lsi_reg_readb(s, addr + 2) << 16;
1952 val |= lsi_reg_readb(s, addr + 3) << 24;
1953 return val;
1954 }
1955
1956 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1957 {
1958 LSIState *s = opaque;
1959 lsi_reg_writeb(s, addr & 0xff, val);
1960 }
1961
1962 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1963 {
1964 LSIState *s = opaque;
1965 addr &= 0xff;
1966 lsi_reg_writeb(s, addr, val & 0xff);
1967 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1968 }
1969
1970 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1971 {
1972 LSIState *s = opaque;
1973 addr &= 0xff;
1974 lsi_reg_writeb(s, addr, val & 0xff);
1975 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1976 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1977 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1978 }
1979
1980 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1981 pcibus_t addr, pcibus_t size, int type)
1982 {
1983 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1984
1985 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
1986
1987 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1988 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1989 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1990 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1991 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1992 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1993 }
1994
1995 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1996 pcibus_t addr, pcibus_t size, int type)
1997 {
1998 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1999
2000 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2001 s->script_ram_base = addr;
2002 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2003 }
2004
2005 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2006 pcibus_t addr, pcibus_t size, int type)
2007 {
2008 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2009
2010 DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2011 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2012 }
2013
2014 static void lsi_scsi_reset(DeviceState *dev)
2015 {
2016 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2017
2018 lsi_soft_reset(s);
2019 }
2020
2021 static void lsi_pre_save(void *opaque)
2022 {
2023 LSIState *s = opaque;
2024
2025 if (s->current) {
2026 assert(s->current->dma_buf == NULL);
2027 assert(s->current->dma_len == 0);
2028 }
2029 assert(QTAILQ_EMPTY(&s->queue));
2030 }
2031
2032 static const VMStateDescription vmstate_lsi_scsi = {
2033 .name = "lsiscsi",
2034 .version_id = 0,
2035 .minimum_version_id = 0,
2036 .minimum_version_id_old = 0,
2037 .pre_save = lsi_pre_save,
2038 .fields = (VMStateField []) {
2039 VMSTATE_PCI_DEVICE(dev, LSIState),
2040
2041 VMSTATE_INT32(carry, LSIState),
2042 VMSTATE_INT32(sense, LSIState),
2043 VMSTATE_INT32(msg_action, LSIState),
2044 VMSTATE_INT32(msg_len, LSIState),
2045 VMSTATE_BUFFER(msg, LSIState),
2046 VMSTATE_INT32(waiting, LSIState),
2047
2048 VMSTATE_UINT32(dsa, LSIState),
2049 VMSTATE_UINT32(temp, LSIState),
2050 VMSTATE_UINT32(dnad, LSIState),
2051 VMSTATE_UINT32(dbc, LSIState),
2052 VMSTATE_UINT8(istat0, LSIState),
2053 VMSTATE_UINT8(istat1, LSIState),
2054 VMSTATE_UINT8(dcmd, LSIState),
2055 VMSTATE_UINT8(dstat, LSIState),
2056 VMSTATE_UINT8(dien, LSIState),
2057 VMSTATE_UINT8(sist0, LSIState),
2058 VMSTATE_UINT8(sist1, LSIState),
2059 VMSTATE_UINT8(sien0, LSIState),
2060 VMSTATE_UINT8(sien1, LSIState),
2061 VMSTATE_UINT8(mbox0, LSIState),
2062 VMSTATE_UINT8(mbox1, LSIState),
2063 VMSTATE_UINT8(dfifo, LSIState),
2064 VMSTATE_UINT8(ctest2, LSIState),
2065 VMSTATE_UINT8(ctest3, LSIState),
2066 VMSTATE_UINT8(ctest4, LSIState),
2067 VMSTATE_UINT8(ctest5, LSIState),
2068 VMSTATE_UINT8(ccntl0, LSIState),
2069 VMSTATE_UINT8(ccntl1, LSIState),
2070 VMSTATE_UINT32(dsp, LSIState),
2071 VMSTATE_UINT32(dsps, LSIState),
2072 VMSTATE_UINT8(dmode, LSIState),
2073 VMSTATE_UINT8(dcntl, LSIState),
2074 VMSTATE_UINT8(scntl0, LSIState),
2075 VMSTATE_UINT8(scntl1, LSIState),
2076 VMSTATE_UINT8(scntl2, LSIState),
2077 VMSTATE_UINT8(scntl3, LSIState),
2078 VMSTATE_UINT8(sstat0, LSIState),
2079 VMSTATE_UINT8(sstat1, LSIState),
2080 VMSTATE_UINT8(scid, LSIState),
2081 VMSTATE_UINT8(sxfer, LSIState),
2082 VMSTATE_UINT8(socl, LSIState),
2083 VMSTATE_UINT8(sdid, LSIState),
2084 VMSTATE_UINT8(ssid, LSIState),
2085 VMSTATE_UINT8(sfbr, LSIState),
2086 VMSTATE_UINT8(stest1, LSIState),
2087 VMSTATE_UINT8(stest2, LSIState),
2088 VMSTATE_UINT8(stest3, LSIState),
2089 VMSTATE_UINT8(sidl, LSIState),
2090 VMSTATE_UINT8(stime0, LSIState),
2091 VMSTATE_UINT8(respid0, LSIState),
2092 VMSTATE_UINT8(respid1, LSIState),
2093 VMSTATE_UINT32(mmrs, LSIState),
2094 VMSTATE_UINT32(mmws, LSIState),
2095 VMSTATE_UINT32(sfs, LSIState),
2096 VMSTATE_UINT32(drs, LSIState),
2097 VMSTATE_UINT32(sbms, LSIState),
2098 VMSTATE_UINT32(dbms, LSIState),
2099 VMSTATE_UINT32(dnad64, LSIState),
2100 VMSTATE_UINT32(pmjad1, LSIState),
2101 VMSTATE_UINT32(pmjad2, LSIState),
2102 VMSTATE_UINT32(rbc, LSIState),
2103 VMSTATE_UINT32(ua, LSIState),
2104 VMSTATE_UINT32(ia, LSIState),
2105 VMSTATE_UINT32(sbc, LSIState),
2106 VMSTATE_UINT32(csbc, LSIState),
2107 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2108 VMSTATE_UINT8(sbr, LSIState),
2109
2110 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2111 VMSTATE_END_OF_LIST()
2112 }
2113 };
2114
2115 static int lsi_scsi_uninit(PCIDevice *d)
2116 {
2117 LSIState *s = DO_UPCAST(LSIState, dev, d);
2118
2119 cpu_unregister_io_memory(s->mmio_io_addr);
2120 cpu_unregister_io_memory(s->ram_io_addr);
2121
2122 return 0;
2123 }
2124
2125 static int lsi_scsi_init(PCIDevice *dev)
2126 {
2127 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2128 uint8_t *pci_conf;
2129
2130 pci_conf = s->dev.config;
2131
2132 /* PCI Vendor ID (word) */
2133 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2134 /* PCI device ID (word) */
2135 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2136 /* PCI base class code */
2137 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2138 /* PCI subsystem ID */
2139 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2140 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2141 /* PCI latency timer = 255 */
2142 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2143 /* TODO: RST# value should be 0 */
2144 /* Interrupt pin 1 */
2145 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2146
2147 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2148 lsi_mmio_writefn, s);
2149 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2150 lsi_ram_writefn, s);
2151
2152 /* TODO: use dev and get rid of cast below */
2153 pci_register_bar((struct PCIDevice *)s, 0, 256,
2154 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2155 pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2156 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2157 pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2158 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2159 QTAILQ_INIT(&s->queue);
2160
2161 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2162 if (!dev->qdev.hotplugged) {
2163 scsi_bus_legacy_handle_cmdline(&s->bus);
2164 }
2165 return 0;
2166 }
2167
2168 static PCIDeviceInfo lsi_info = {
2169 .qdev.name = "lsi53c895a",
2170 .qdev.alias = "lsi",
2171 .qdev.size = sizeof(LSIState),
2172 .qdev.reset = lsi_scsi_reset,
2173 .qdev.vmsd = &vmstate_lsi_scsi,
2174 .init = lsi_scsi_init,
2175 .exit = lsi_scsi_uninit,
2176 };
2177
2178 static void lsi53c895a_register_devices(void)
2179 {
2180 pci_qdev_register(&lsi_info);
2181 }
2182
2183 device_init(lsi53c895a_register_devices);