]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi53c895a: Rename 'sense' to 'status'
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 uint32_t dma_len;
179 uint8_t *dma_buf;
180 uint32_t pending;
181 int out;
182 QTAILQ_ENTRY(lsi_request) next;
183 } lsi_request;
184
185 typedef struct {
186 PCIDevice dev;
187 int mmio_io_addr;
188 int ram_io_addr;
189 uint32_t script_ram_base;
190
191 int carry; /* ??? Should this be an a visible register somewhere? */
192 int status;
193 /* Action to take at the end of a MSG IN phase.
194 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
195 int msg_action;
196 int msg_len;
197 uint8_t msg[LSI_MAX_MSGIN_LEN];
198 /* 0 if SCRIPTS are running or stopped.
199 * 1 if a Wait Reselect instruction has been issued.
200 * 2 if processing DMA from lsi_execute_script.
201 * 3 if a DMA operation is in progress. */
202 int waiting;
203 SCSIBus bus;
204 int current_lun;
205 /* The tag is a combination of the device ID and the SCSI tag. */
206 uint32_t select_tag;
207 int command_complete;
208 QTAILQ_HEAD(, lsi_request) queue;
209 lsi_request *current;
210
211 uint32_t dsa;
212 uint32_t temp;
213 uint32_t dnad;
214 uint32_t dbc;
215 uint8_t istat0;
216 uint8_t istat1;
217 uint8_t dcmd;
218 uint8_t dstat;
219 uint8_t dien;
220 uint8_t sist0;
221 uint8_t sist1;
222 uint8_t sien0;
223 uint8_t sien1;
224 uint8_t mbox0;
225 uint8_t mbox1;
226 uint8_t dfifo;
227 uint8_t ctest2;
228 uint8_t ctest3;
229 uint8_t ctest4;
230 uint8_t ctest5;
231 uint8_t ccntl0;
232 uint8_t ccntl1;
233 uint32_t dsp;
234 uint32_t dsps;
235 uint8_t dmode;
236 uint8_t dcntl;
237 uint8_t scntl0;
238 uint8_t scntl1;
239 uint8_t scntl2;
240 uint8_t scntl3;
241 uint8_t sstat0;
242 uint8_t sstat1;
243 uint8_t scid;
244 uint8_t sxfer;
245 uint8_t socl;
246 uint8_t sdid;
247 uint8_t ssid;
248 uint8_t sfbr;
249 uint8_t stest1;
250 uint8_t stest2;
251 uint8_t stest3;
252 uint8_t sidl;
253 uint8_t stime0;
254 uint8_t respid0;
255 uint8_t respid1;
256 uint32_t mmrs;
257 uint32_t mmws;
258 uint32_t sfs;
259 uint32_t drs;
260 uint32_t sbms;
261 uint32_t dbms;
262 uint32_t dnad64;
263 uint32_t pmjad1;
264 uint32_t pmjad2;
265 uint32_t rbc;
266 uint32_t ua;
267 uint32_t ia;
268 uint32_t sbc;
269 uint32_t csbc;
270 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271 uint8_t sbr;
272
273 /* Script ram is stored as 32-bit words in host byteorder. */
274 uint32_t script_ram[2048];
275 } LSIState;
276
277 static inline int lsi_irq_on_rsl(LSIState *s)
278 {
279 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280 }
281
282 static void lsi_soft_reset(LSIState *s)
283 {
284 lsi_request *p;
285
286 DPRINTF("Reset\n");
287 s->carry = 0;
288
289 s->msg_action = 0;
290 s->msg_len = 0;
291 s->waiting = 0;
292 s->dsa = 0;
293 s->dnad = 0;
294 s->dbc = 0;
295 s->temp = 0;
296 memset(s->scratch, 0, sizeof(s->scratch));
297 s->istat0 = 0;
298 s->istat1 = 0;
299 s->dcmd = 0x40;
300 s->dstat = LSI_DSTAT_DFE;
301 s->dien = 0;
302 s->sist0 = 0;
303 s->sist1 = 0;
304 s->sien0 = 0;
305 s->sien1 = 0;
306 s->mbox0 = 0;
307 s->mbox1 = 0;
308 s->dfifo = 0;
309 s->ctest2 = LSI_CTEST2_DACK;
310 s->ctest3 = 0;
311 s->ctest4 = 0;
312 s->ctest5 = 0;
313 s->ccntl0 = 0;
314 s->ccntl1 = 0;
315 s->dsp = 0;
316 s->dsps = 0;
317 s->dmode = 0;
318 s->dcntl = 0;
319 s->scntl0 = 0xc0;
320 s->scntl1 = 0;
321 s->scntl2 = 0;
322 s->scntl3 = 0;
323 s->sstat0 = 0;
324 s->sstat1 = 0;
325 s->scid = 7;
326 s->sxfer = 0;
327 s->socl = 0;
328 s->sdid = 0;
329 s->ssid = 0;
330 s->stest1 = 0;
331 s->stest2 = 0;
332 s->stest3 = 0;
333 s->sidl = 0;
334 s->stime0 = 0;
335 s->respid0 = 0x80;
336 s->respid1 = 0;
337 s->mmrs = 0;
338 s->mmws = 0;
339 s->sfs = 0;
340 s->drs = 0;
341 s->sbms = 0;
342 s->dbms = 0;
343 s->dnad64 = 0;
344 s->pmjad1 = 0;
345 s->pmjad2 = 0;
346 s->rbc = 0;
347 s->ua = 0;
348 s->ia = 0;
349 s->sbc = 0;
350 s->csbc = 0;
351 s->sbr = 0;
352 while (!QTAILQ_EMPTY(&s->queue)) {
353 p = QTAILQ_FIRST(&s->queue);
354 QTAILQ_REMOVE(&s->queue, p, next);
355 qemu_free(p);
356 }
357 if (s->current) {
358 qemu_free(s->current);
359 s->current = NULL;
360 }
361 }
362
363 static int lsi_dma_40bit(LSIState *s)
364 {
365 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366 return 1;
367 return 0;
368 }
369
370 static int lsi_dma_ti64bit(LSIState *s)
371 {
372 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373 return 1;
374 return 0;
375 }
376
377 static int lsi_dma_64bit(LSIState *s)
378 {
379 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380 return 1;
381 return 0;
382 }
383
384 static uint8_t lsi_reg_readb(LSIState *s, int offset);
385 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386 static void lsi_execute_script(LSIState *s);
387 static void lsi_reselect(LSIState *s, lsi_request *p);
388
389 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390 {
391 uint32_t buf;
392
393 /* Optimize reading from SCRIPTS RAM. */
394 if ((addr & 0xffffe000) == s->script_ram_base) {
395 return s->script_ram[(addr & 0x1fff) >> 2];
396 }
397 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398 return cpu_to_le32(buf);
399 }
400
401 static void lsi_stop_script(LSIState *s)
402 {
403 s->istat1 &= ~LSI_ISTAT1_SRUN;
404 }
405
406 static void lsi_update_irq(LSIState *s)
407 {
408 int level;
409 static int last_level;
410 lsi_request *p;
411
412 /* It's unclear whether the DIP/SIP bits should be cleared when the
413 Interrupt Status Registers are cleared or when istat0 is read.
414 We currently do the formwer, which seems to work. */
415 level = 0;
416 if (s->dstat) {
417 if (s->dstat & s->dien)
418 level = 1;
419 s->istat0 |= LSI_ISTAT0_DIP;
420 } else {
421 s->istat0 &= ~LSI_ISTAT0_DIP;
422 }
423
424 if (s->sist0 || s->sist1) {
425 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426 level = 1;
427 s->istat0 |= LSI_ISTAT0_SIP;
428 } else {
429 s->istat0 &= ~LSI_ISTAT0_SIP;
430 }
431 if (s->istat0 & LSI_ISTAT0_INTF)
432 level = 1;
433
434 if (level != last_level) {
435 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436 level, s->dstat, s->sist1, s->sist0);
437 last_level = level;
438 }
439 qemu_set_irq(s->dev.irq[0], level);
440
441 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442 DPRINTF("Handled IRQs & disconnected, looking for pending "
443 "processes\n");
444 QTAILQ_FOREACH(p, &s->queue, next) {
445 if (p->pending) {
446 lsi_reselect(s, p);
447 break;
448 }
449 }
450 }
451 }
452
453 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
454 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455 {
456 uint32_t mask0;
457 uint32_t mask1;
458
459 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460 stat1, stat0, s->sist1, s->sist0);
461 s->sist0 |= stat0;
462 s->sist1 |= stat1;
463 /* Stop processor on fatal or unmasked interrupt. As a special hack
464 we don't stop processing when raising STO. Instead continue
465 execution and stop at the next insn that accesses the SCSI bus. */
466 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468 mask1 &= ~LSI_SIST1_STO;
469 if (s->sist0 & mask0 || s->sist1 & mask1) {
470 lsi_stop_script(s);
471 }
472 lsi_update_irq(s);
473 }
474
475 /* Stop SCRIPTS execution and raise a DMA interrupt. */
476 static void lsi_script_dma_interrupt(LSIState *s, int stat)
477 {
478 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479 s->dstat |= stat;
480 lsi_update_irq(s);
481 lsi_stop_script(s);
482 }
483
484 static inline void lsi_set_phase(LSIState *s, int phase)
485 {
486 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487 }
488
489 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490 {
491 /* Trigger a phase mismatch. */
492 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494 s->dsp = out ? s->pmjad1 : s->pmjad2;
495 } else {
496 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497 }
498 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499 } else {
500 DPRINTF("Phase mismatch interrupt\n");
501 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502 lsi_stop_script(s);
503 }
504 lsi_set_phase(s, new_phase);
505 }
506
507
508 /* Resume SCRIPTS execution after a DMA operation. */
509 static void lsi_resume_script(LSIState *s)
510 {
511 if (s->waiting != 2) {
512 s->waiting = 0;
513 lsi_execute_script(s);
514 } else {
515 s->waiting = 0;
516 }
517 }
518
519 static void lsi_disconnect(LSIState *s)
520 {
521 s->scntl1 &= ~LSI_SCNTL1_CON;
522 s->sstat1 &= ~PHASE_MASK;
523 }
524
525 static void lsi_bad_selection(LSIState *s, uint32_t id)
526 {
527 DPRINTF("Selected absent target %d\n", id);
528 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529 lsi_disconnect(s);
530 }
531
532 /* Initiate a SCSI layer data transfer. */
533 static void lsi_do_dma(LSIState *s, int out)
534 {
535 uint32_t count, id;
536 target_phys_addr_t addr;
537 SCSIDevice *dev;
538
539 assert(s->current);
540 if (!s->current->dma_len) {
541 /* Wait until data is available. */
542 DPRINTF("DMA no data available\n");
543 return;
544 }
545
546 id = (s->current->tag >> 8) & 0xf;
547 dev = s->bus.devs[id];
548 if (!dev) {
549 lsi_bad_selection(s, id);
550 return;
551 }
552
553 count = s->dbc;
554 if (count > s->current->dma_len)
555 count = s->current->dma_len;
556
557 addr = s->dnad;
558 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560 addr |= ((uint64_t)s->dnad64 << 32);
561 else if (s->dbms)
562 addr |= ((uint64_t)s->dbms << 32);
563 else if (s->sbms)
564 addr |= ((uint64_t)s->sbms << 32);
565
566 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567 s->csbc += count;
568 s->dnad += count;
569 s->dbc -= count;
570
571 if (s->current->dma_buf == NULL) {
572 s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573 }
574
575 /* ??? Set SFBR to first data byte. */
576 if (out) {
577 cpu_physical_memory_read(addr, s->current->dma_buf, count);
578 } else {
579 cpu_physical_memory_write(addr, s->current->dma_buf, count);
580 }
581 s->current->dma_len -= count;
582 if (s->current->dma_len == 0) {
583 s->current->dma_buf = NULL;
584 if (out) {
585 /* Write the data. */
586 dev->info->write_data(dev, s->current->tag);
587 } else {
588 /* Request any remaining data. */
589 dev->info->read_data(dev, s->current->tag);
590 }
591 } else {
592 s->current->dma_buf += count;
593 lsi_resume_script(s);
594 }
595 }
596
597
598 /* Add a command to the queue. */
599 static void lsi_queue_command(LSIState *s)
600 {
601 lsi_request *p = s->current;
602
603 DPRINTF("Queueing tag=0x%x\n", p->tag);
604 assert(s->current != NULL);
605 assert(s->current->dma_len == 0);
606 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607 s->current = NULL;
608
609 p->pending = 0;
610 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611 }
612
613 /* Queue a byte for a MSG IN phase. */
614 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615 {
616 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617 BADF("MSG IN data too long\n");
618 } else {
619 DPRINTF("MSG IN 0x%02x\n", data);
620 s->msg[s->msg_len++] = data;
621 }
622 }
623
624 /* Perform reselection to continue a command. */
625 static void lsi_reselect(LSIState *s, lsi_request *p)
626 {
627 int id;
628
629 assert(s->current == NULL);
630 QTAILQ_REMOVE(&s->queue, p, next);
631 s->current = p;
632
633 id = (p->tag >> 8) & 0xf;
634 s->ssid = id | 0x80;
635 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636 if (!(s->dcntl & LSI_DCNTL_COM)) {
637 s->sfbr = 1 << (id & 0x7);
638 }
639 DPRINTF("Reselected target %d\n", id);
640 s->scntl1 |= LSI_SCNTL1_CON;
641 lsi_set_phase(s, PHASE_MI);
642 s->msg_action = p->out ? 2 : 3;
643 s->current->dma_len = p->pending;
644 lsi_add_msg_byte(s, 0x80);
645 if (s->current->tag & LSI_TAG_VALID) {
646 lsi_add_msg_byte(s, 0x20);
647 lsi_add_msg_byte(s, p->tag & 0xff);
648 }
649
650 if (lsi_irq_on_rsl(s)) {
651 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652 }
653 }
654
655 /* Record that data is available for a queued command. Returns zero if
656 the device was reselected, nonzero if the IO is deferred. */
657 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
658 {
659 lsi_request *p;
660
661 QTAILQ_FOREACH(p, &s->queue, next) {
662 if (p->tag == tag) {
663 if (p->pending) {
664 BADF("Multiple IO pending for tag %d\n", tag);
665 }
666 p->pending = arg;
667 /* Reselect if waiting for it, or if reselection triggers an IRQ
668 and the bus is free.
669 Since no interrupt stacking is implemented in the emulation, it
670 is also required that there are no pending interrupts waiting
671 for service from the device driver. */
672 if (s->waiting == 1 ||
673 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
674 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
675 /* Reselect device. */
676 lsi_reselect(s, p);
677 return 0;
678 } else {
679 DPRINTF("Queueing IO tag=0x%x\n", tag);
680 p->pending = arg;
681 return 1;
682 }
683 }
684 }
685 BADF("IO with unknown tag %d\n", tag);
686 return 1;
687 }
688
689 /* Callback to indicate that the SCSI layer has completed a transfer. */
690 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
691 uint32_t arg)
692 {
693 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
694 int out;
695
696 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
697 if (reason == SCSI_REASON_DONE) {
698 DPRINTF("Command complete status=%d\n", (int)arg);
699 s->status = arg;
700 s->command_complete = 2;
701 if (s->waiting && s->dbc != 0) {
702 /* Raise phase mismatch for short transfers. */
703 lsi_bad_phase(s, out, PHASE_ST);
704 } else {
705 lsi_set_phase(s, PHASE_ST);
706 }
707
708 qemu_free(s->current);
709 s->current = NULL;
710
711 lsi_resume_script(s);
712 return;
713 }
714
715 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
716 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
717 if (lsi_queue_tag(s, tag, arg))
718 return;
719 }
720
721 /* host adapter (re)connected */
722 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
723 s->current->dma_len = arg;
724 s->command_complete = 1;
725 if (!s->waiting)
726 return;
727 if (s->waiting == 1 || s->dbc == 0) {
728 lsi_resume_script(s);
729 } else {
730 lsi_do_dma(s, out);
731 }
732 }
733
734 static void lsi_do_command(LSIState *s)
735 {
736 SCSIDevice *dev;
737 uint8_t buf[16];
738 uint32_t id;
739 int n;
740
741 DPRINTF("Send command len=%d\n", s->dbc);
742 if (s->dbc > 16)
743 s->dbc = 16;
744 cpu_physical_memory_read(s->dnad, buf, s->dbc);
745 s->sfbr = buf[0];
746 s->command_complete = 0;
747
748 id = (s->select_tag >> 8) & 0xf;
749 dev = s->bus.devs[id];
750 if (!dev) {
751 lsi_bad_selection(s, id);
752 return;
753 }
754
755 assert(s->current == NULL);
756 s->current = qemu_mallocz(sizeof(lsi_request));
757 s->current->tag = s->select_tag;
758
759 n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
760 if (n > 0) {
761 lsi_set_phase(s, PHASE_DI);
762 dev->info->read_data(dev, s->current->tag);
763 } else if (n < 0) {
764 lsi_set_phase(s, PHASE_DO);
765 dev->info->write_data(dev, s->current->tag);
766 }
767
768 if (!s->command_complete) {
769 if (n) {
770 /* Command did not complete immediately so disconnect. */
771 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
772 lsi_add_msg_byte(s, 4); /* DISCONNECT */
773 /* wait data */
774 lsi_set_phase(s, PHASE_MI);
775 s->msg_action = 1;
776 lsi_queue_command(s);
777 } else {
778 /* wait command complete */
779 lsi_set_phase(s, PHASE_DI);
780 }
781 }
782 }
783
784 static void lsi_do_status(LSIState *s)
785 {
786 uint8_t status;
787 DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
788 if (s->dbc != 1)
789 BADF("Bad Status move\n");
790 s->dbc = 1;
791 status = s->status;
792 s->sfbr = status;
793 cpu_physical_memory_write(s->dnad, &status, 1);
794 lsi_set_phase(s, PHASE_MI);
795 s->msg_action = 1;
796 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
797 }
798
799 static void lsi_do_msgin(LSIState *s)
800 {
801 int len;
802 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
803 s->sfbr = s->msg[0];
804 len = s->msg_len;
805 if (len > s->dbc)
806 len = s->dbc;
807 cpu_physical_memory_write(s->dnad, s->msg, len);
808 /* Linux drivers rely on the last byte being in the SIDL. */
809 s->sidl = s->msg[len - 1];
810 s->msg_len -= len;
811 if (s->msg_len) {
812 memmove(s->msg, s->msg + len, s->msg_len);
813 } else {
814 /* ??? Check if ATN (not yet implemented) is asserted and maybe
815 switch to PHASE_MO. */
816 switch (s->msg_action) {
817 case 0:
818 lsi_set_phase(s, PHASE_CMD);
819 break;
820 case 1:
821 lsi_disconnect(s);
822 break;
823 case 2:
824 lsi_set_phase(s, PHASE_DO);
825 break;
826 case 3:
827 lsi_set_phase(s, PHASE_DI);
828 break;
829 default:
830 abort();
831 }
832 }
833 }
834
835 /* Read the next byte during a MSGOUT phase. */
836 static uint8_t lsi_get_msgbyte(LSIState *s)
837 {
838 uint8_t data;
839 cpu_physical_memory_read(s->dnad, &data, 1);
840 s->dnad++;
841 s->dbc--;
842 return data;
843 }
844
845 /* Skip the next n bytes during a MSGOUT phase. */
846 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
847 {
848 s->dnad += n;
849 s->dbc -= n;
850 }
851
852 static void lsi_do_msgout(LSIState *s)
853 {
854 uint8_t msg;
855 int len;
856 uint32_t current_tag;
857 SCSIDevice *current_dev;
858 lsi_request *p, *p_next;
859 int id;
860
861 if (s->current) {
862 current_tag = s->current->tag;
863 } else {
864 current_tag = s->select_tag;
865 }
866 id = (current_tag >> 8) & 0xf;
867 current_dev = s->bus.devs[id];
868
869 DPRINTF("MSG out len=%d\n", s->dbc);
870 while (s->dbc) {
871 msg = lsi_get_msgbyte(s);
872 s->sfbr = msg;
873
874 switch (msg) {
875 case 0x04:
876 DPRINTF("MSG: Disconnect\n");
877 lsi_disconnect(s);
878 break;
879 case 0x08:
880 DPRINTF("MSG: No Operation\n");
881 lsi_set_phase(s, PHASE_CMD);
882 break;
883 case 0x01:
884 len = lsi_get_msgbyte(s);
885 msg = lsi_get_msgbyte(s);
886 (void)len; /* avoid a warning about unused variable*/
887 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
888 switch (msg) {
889 case 1:
890 DPRINTF("SDTR (ignored)\n");
891 lsi_skip_msgbytes(s, 2);
892 break;
893 case 3:
894 DPRINTF("WDTR (ignored)\n");
895 lsi_skip_msgbytes(s, 1);
896 break;
897 default:
898 goto bad;
899 }
900 break;
901 case 0x20: /* SIMPLE queue */
902 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
903 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
904 break;
905 case 0x21: /* HEAD of queue */
906 BADF("HEAD queue not implemented\n");
907 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
908 break;
909 case 0x22: /* ORDERED queue */
910 BADF("ORDERED queue not implemented\n");
911 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
912 break;
913 case 0x0d:
914 /* The ABORT TAG message clears the current I/O process only. */
915 DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
916 current_dev->info->cancel_io(current_dev, current_tag);
917 lsi_disconnect(s);
918 break;
919 case 0x06:
920 case 0x0e:
921 case 0x0c:
922 /* The ABORT message clears all I/O processes for the selecting
923 initiator on the specified logical unit of the target. */
924 if (msg == 0x06) {
925 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
926 }
927 /* The CLEAR QUEUE message clears all I/O processes for all
928 initiators on the specified logical unit of the target. */
929 if (msg == 0x0e) {
930 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
931 }
932 /* The BUS DEVICE RESET message clears all I/O processes for all
933 initiators on all logical units of the target. */
934 if (msg == 0x0c) {
935 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
936 }
937
938 /* clear the current I/O process */
939 current_dev->info->cancel_io(current_dev, current_tag);
940
941 /* As the current implemented devices scsi_disk and scsi_generic
942 only support one LUN, we don't need to keep track of LUNs.
943 Clearing I/O processes for other initiators could be possible
944 for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
945 device, but this is currently not implemented (and seems not
946 to be really necessary). So let's simply clear all queued
947 commands for the current device: */
948 id = current_tag & 0x0000ff00;
949 QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
950 if ((p->tag & 0x0000ff00) == id) {
951 current_dev->info->cancel_io(current_dev, p->tag);
952 QTAILQ_REMOVE(&s->queue, p, next);
953 }
954 }
955
956 lsi_disconnect(s);
957 break;
958 default:
959 if ((msg & 0x80) == 0) {
960 goto bad;
961 }
962 s->current_lun = msg & 7;
963 DPRINTF("Select LUN %d\n", s->current_lun);
964 lsi_set_phase(s, PHASE_CMD);
965 break;
966 }
967 }
968 return;
969 bad:
970 BADF("Unimplemented message 0x%02x\n", msg);
971 lsi_set_phase(s, PHASE_MI);
972 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
973 s->msg_action = 0;
974 }
975
976 /* Sign extend a 24-bit value. */
977 static inline int32_t sxt24(int32_t n)
978 {
979 return (n << 8) >> 8;
980 }
981
982 #define LSI_BUF_SIZE 4096
983 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
984 {
985 int n;
986 uint8_t buf[LSI_BUF_SIZE];
987
988 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
989 while (count) {
990 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
991 cpu_physical_memory_read(src, buf, n);
992 cpu_physical_memory_write(dest, buf, n);
993 src += n;
994 dest += n;
995 count -= n;
996 }
997 }
998
999 static void lsi_wait_reselect(LSIState *s)
1000 {
1001 lsi_request *p;
1002
1003 DPRINTF("Wait Reselect\n");
1004
1005 QTAILQ_FOREACH(p, &s->queue, next) {
1006 if (p->pending) {
1007 lsi_reselect(s, p);
1008 break;
1009 }
1010 }
1011 if (s->current == NULL) {
1012 s->waiting = 1;
1013 }
1014 }
1015
1016 static void lsi_execute_script(LSIState *s)
1017 {
1018 uint32_t insn;
1019 uint32_t addr, addr_high;
1020 int opcode;
1021 int insn_processed = 0;
1022
1023 s->istat1 |= LSI_ISTAT1_SRUN;
1024 again:
1025 insn_processed++;
1026 insn = read_dword(s, s->dsp);
1027 if (!insn) {
1028 /* If we receive an empty opcode increment the DSP by 4 bytes
1029 instead of 8 and execute the next opcode at that location */
1030 s->dsp += 4;
1031 goto again;
1032 }
1033 addr = read_dword(s, s->dsp + 4);
1034 addr_high = 0;
1035 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1036 s->dsps = addr;
1037 s->dcmd = insn >> 24;
1038 s->dsp += 8;
1039 switch (insn >> 30) {
1040 case 0: /* Block move. */
1041 if (s->sist1 & LSI_SIST1_STO) {
1042 DPRINTF("Delayed select timeout\n");
1043 lsi_stop_script(s);
1044 break;
1045 }
1046 s->dbc = insn & 0xffffff;
1047 s->rbc = s->dbc;
1048 /* ??? Set ESA. */
1049 s->ia = s->dsp - 8;
1050 if (insn & (1 << 29)) {
1051 /* Indirect addressing. */
1052 addr = read_dword(s, addr);
1053 } else if (insn & (1 << 28)) {
1054 uint32_t buf[2];
1055 int32_t offset;
1056 /* Table indirect addressing. */
1057
1058 /* 32-bit Table indirect */
1059 offset = sxt24(addr);
1060 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1061 /* byte count is stored in bits 0:23 only */
1062 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1063 s->rbc = s->dbc;
1064 addr = cpu_to_le32(buf[1]);
1065
1066 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1067 * table, bits [31:24] */
1068 if (lsi_dma_40bit(s))
1069 addr_high = cpu_to_le32(buf[0]) >> 24;
1070 else if (lsi_dma_ti64bit(s)) {
1071 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1072 switch (selector) {
1073 case 0 ... 0x0f:
1074 /* offset index into scratch registers since
1075 * TI64 mode can use registers C to R */
1076 addr_high = s->scratch[2 + selector];
1077 break;
1078 case 0x10:
1079 addr_high = s->mmrs;
1080 break;
1081 case 0x11:
1082 addr_high = s->mmws;
1083 break;
1084 case 0x12:
1085 addr_high = s->sfs;
1086 break;
1087 case 0x13:
1088 addr_high = s->drs;
1089 break;
1090 case 0x14:
1091 addr_high = s->sbms;
1092 break;
1093 case 0x15:
1094 addr_high = s->dbms;
1095 break;
1096 default:
1097 BADF("Illegal selector specified (0x%x > 0x15)"
1098 " for 64-bit DMA block move", selector);
1099 break;
1100 }
1101 }
1102 } else if (lsi_dma_64bit(s)) {
1103 /* fetch a 3rd dword if 64-bit direct move is enabled and
1104 only if we're not doing table indirect or indirect addressing */
1105 s->dbms = read_dword(s, s->dsp);
1106 s->dsp += 4;
1107 s->ia = s->dsp - 12;
1108 }
1109 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1110 DPRINTF("Wrong phase got %d expected %d\n",
1111 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1112 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1113 break;
1114 }
1115 s->dnad = addr;
1116 s->dnad64 = addr_high;
1117 switch (s->sstat1 & 0x7) {
1118 case PHASE_DO:
1119 s->waiting = 2;
1120 lsi_do_dma(s, 1);
1121 if (s->waiting)
1122 s->waiting = 3;
1123 break;
1124 case PHASE_DI:
1125 s->waiting = 2;
1126 lsi_do_dma(s, 0);
1127 if (s->waiting)
1128 s->waiting = 3;
1129 break;
1130 case PHASE_CMD:
1131 lsi_do_command(s);
1132 break;
1133 case PHASE_ST:
1134 lsi_do_status(s);
1135 break;
1136 case PHASE_MO:
1137 lsi_do_msgout(s);
1138 break;
1139 case PHASE_MI:
1140 lsi_do_msgin(s);
1141 break;
1142 default:
1143 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1144 exit(1);
1145 }
1146 s->dfifo = s->dbc & 0xff;
1147 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1148 s->sbc = s->dbc;
1149 s->rbc -= s->dbc;
1150 s->ua = addr + s->dbc;
1151 break;
1152
1153 case 1: /* IO or Read/Write instruction. */
1154 opcode = (insn >> 27) & 7;
1155 if (opcode < 5) {
1156 uint32_t id;
1157
1158 if (insn & (1 << 25)) {
1159 id = read_dword(s, s->dsa + sxt24(insn));
1160 } else {
1161 id = insn;
1162 }
1163 id = (id >> 16) & 0xf;
1164 if (insn & (1 << 26)) {
1165 addr = s->dsp + sxt24(addr);
1166 }
1167 s->dnad = addr;
1168 switch (opcode) {
1169 case 0: /* Select */
1170 s->sdid = id;
1171 if (s->scntl1 & LSI_SCNTL1_CON) {
1172 DPRINTF("Already reselected, jumping to alternative address\n");
1173 s->dsp = s->dnad;
1174 break;
1175 }
1176 s->sstat0 |= LSI_SSTAT0_WOA;
1177 s->scntl1 &= ~LSI_SCNTL1_IARB;
1178 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1179 lsi_bad_selection(s, id);
1180 break;
1181 }
1182 DPRINTF("Selected target %d%s\n",
1183 id, insn & (1 << 3) ? " ATN" : "");
1184 /* ??? Linux drivers compain when this is set. Maybe
1185 it only applies in low-level mode (unimplemented).
1186 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1187 s->select_tag = id << 8;
1188 s->scntl1 |= LSI_SCNTL1_CON;
1189 if (insn & (1 << 3)) {
1190 s->socl |= LSI_SOCL_ATN;
1191 }
1192 lsi_set_phase(s, PHASE_MO);
1193 break;
1194 case 1: /* Disconnect */
1195 DPRINTF("Wait Disconnect\n");
1196 s->scntl1 &= ~LSI_SCNTL1_CON;
1197 break;
1198 case 2: /* Wait Reselect */
1199 if (!lsi_irq_on_rsl(s)) {
1200 lsi_wait_reselect(s);
1201 }
1202 break;
1203 case 3: /* Set */
1204 DPRINTF("Set%s%s%s%s\n",
1205 insn & (1 << 3) ? " ATN" : "",
1206 insn & (1 << 6) ? " ACK" : "",
1207 insn & (1 << 9) ? " TM" : "",
1208 insn & (1 << 10) ? " CC" : "");
1209 if (insn & (1 << 3)) {
1210 s->socl |= LSI_SOCL_ATN;
1211 lsi_set_phase(s, PHASE_MO);
1212 }
1213 if (insn & (1 << 9)) {
1214 BADF("Target mode not implemented\n");
1215 exit(1);
1216 }
1217 if (insn & (1 << 10))
1218 s->carry = 1;
1219 break;
1220 case 4: /* Clear */
1221 DPRINTF("Clear%s%s%s%s\n",
1222 insn & (1 << 3) ? " ATN" : "",
1223 insn & (1 << 6) ? " ACK" : "",
1224 insn & (1 << 9) ? " TM" : "",
1225 insn & (1 << 10) ? " CC" : "");
1226 if (insn & (1 << 3)) {
1227 s->socl &= ~LSI_SOCL_ATN;
1228 }
1229 if (insn & (1 << 10))
1230 s->carry = 0;
1231 break;
1232 }
1233 } else {
1234 uint8_t op0;
1235 uint8_t op1;
1236 uint8_t data8;
1237 int reg;
1238 int operator;
1239 #ifdef DEBUG_LSI
1240 static const char *opcode_names[3] =
1241 {"Write", "Read", "Read-Modify-Write"};
1242 static const char *operator_names[8] =
1243 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1244 #endif
1245
1246 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1247 data8 = (insn >> 8) & 0xff;
1248 opcode = (insn >> 27) & 7;
1249 operator = (insn >> 24) & 7;
1250 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1251 opcode_names[opcode - 5], reg,
1252 operator_names[operator], data8, s->sfbr,
1253 (insn & (1 << 23)) ? " SFBR" : "");
1254 op0 = op1 = 0;
1255 switch (opcode) {
1256 case 5: /* From SFBR */
1257 op0 = s->sfbr;
1258 op1 = data8;
1259 break;
1260 case 6: /* To SFBR */
1261 if (operator)
1262 op0 = lsi_reg_readb(s, reg);
1263 op1 = data8;
1264 break;
1265 case 7: /* Read-modify-write */
1266 if (operator)
1267 op0 = lsi_reg_readb(s, reg);
1268 if (insn & (1 << 23)) {
1269 op1 = s->sfbr;
1270 } else {
1271 op1 = data8;
1272 }
1273 break;
1274 }
1275
1276 switch (operator) {
1277 case 0: /* move */
1278 op0 = op1;
1279 break;
1280 case 1: /* Shift left */
1281 op1 = op0 >> 7;
1282 op0 = (op0 << 1) | s->carry;
1283 s->carry = op1;
1284 break;
1285 case 2: /* OR */
1286 op0 |= op1;
1287 break;
1288 case 3: /* XOR */
1289 op0 ^= op1;
1290 break;
1291 case 4: /* AND */
1292 op0 &= op1;
1293 break;
1294 case 5: /* SHR */
1295 op1 = op0 & 1;
1296 op0 = (op0 >> 1) | (s->carry << 7);
1297 s->carry = op1;
1298 break;
1299 case 6: /* ADD */
1300 op0 += op1;
1301 s->carry = op0 < op1;
1302 break;
1303 case 7: /* ADC */
1304 op0 += op1 + s->carry;
1305 if (s->carry)
1306 s->carry = op0 <= op1;
1307 else
1308 s->carry = op0 < op1;
1309 break;
1310 }
1311
1312 switch (opcode) {
1313 case 5: /* From SFBR */
1314 case 7: /* Read-modify-write */
1315 lsi_reg_writeb(s, reg, op0);
1316 break;
1317 case 6: /* To SFBR */
1318 s->sfbr = op0;
1319 break;
1320 }
1321 }
1322 break;
1323
1324 case 2: /* Transfer Control. */
1325 {
1326 int cond;
1327 int jmp;
1328
1329 if ((insn & 0x002e0000) == 0) {
1330 DPRINTF("NOP\n");
1331 break;
1332 }
1333 if (s->sist1 & LSI_SIST1_STO) {
1334 DPRINTF("Delayed select timeout\n");
1335 lsi_stop_script(s);
1336 break;
1337 }
1338 cond = jmp = (insn & (1 << 19)) != 0;
1339 if (cond == jmp && (insn & (1 << 21))) {
1340 DPRINTF("Compare carry %d\n", s->carry == jmp);
1341 cond = s->carry != 0;
1342 }
1343 if (cond == jmp && (insn & (1 << 17))) {
1344 DPRINTF("Compare phase %d %c= %d\n",
1345 (s->sstat1 & PHASE_MASK),
1346 jmp ? '=' : '!',
1347 ((insn >> 24) & 7));
1348 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1349 }
1350 if (cond == jmp && (insn & (1 << 18))) {
1351 uint8_t mask;
1352
1353 mask = (~insn >> 8) & 0xff;
1354 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1355 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1356 cond = (s->sfbr & mask) == (insn & mask);
1357 }
1358 if (cond == jmp) {
1359 if (insn & (1 << 23)) {
1360 /* Relative address. */
1361 addr = s->dsp + sxt24(addr);
1362 }
1363 switch ((insn >> 27) & 7) {
1364 case 0: /* Jump */
1365 DPRINTF("Jump to 0x%08x\n", addr);
1366 s->dsp = addr;
1367 break;
1368 case 1: /* Call */
1369 DPRINTF("Call 0x%08x\n", addr);
1370 s->temp = s->dsp;
1371 s->dsp = addr;
1372 break;
1373 case 2: /* Return */
1374 DPRINTF("Return to 0x%08x\n", s->temp);
1375 s->dsp = s->temp;
1376 break;
1377 case 3: /* Interrupt */
1378 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1379 if ((insn & (1 << 20)) != 0) {
1380 s->istat0 |= LSI_ISTAT0_INTF;
1381 lsi_update_irq(s);
1382 } else {
1383 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1384 }
1385 break;
1386 default:
1387 DPRINTF("Illegal transfer control\n");
1388 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1389 break;
1390 }
1391 } else {
1392 DPRINTF("Control condition failed\n");
1393 }
1394 }
1395 break;
1396
1397 case 3:
1398 if ((insn & (1 << 29)) == 0) {
1399 /* Memory move. */
1400 uint32_t dest;
1401 /* ??? The docs imply the destination address is loaded into
1402 the TEMP register. However the Linux drivers rely on
1403 the value being presrved. */
1404 dest = read_dword(s, s->dsp);
1405 s->dsp += 4;
1406 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1407 } else {
1408 uint8_t data[7];
1409 int reg;
1410 int n;
1411 int i;
1412
1413 if (insn & (1 << 28)) {
1414 addr = s->dsa + sxt24(addr);
1415 }
1416 n = (insn & 7);
1417 reg = (insn >> 16) & 0xff;
1418 if (insn & (1 << 24)) {
1419 cpu_physical_memory_read(addr, data, n);
1420 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1421 addr, *(int *)data);
1422 for (i = 0; i < n; i++) {
1423 lsi_reg_writeb(s, reg + i, data[i]);
1424 }
1425 } else {
1426 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1427 for (i = 0; i < n; i++) {
1428 data[i] = lsi_reg_readb(s, reg + i);
1429 }
1430 cpu_physical_memory_write(addr, data, n);
1431 }
1432 }
1433 }
1434 if (insn_processed > 10000 && !s->waiting) {
1435 /* Some windows drivers make the device spin waiting for a memory
1436 location to change. If we have been executed a lot of code then
1437 assume this is the case and force an unexpected device disconnect.
1438 This is apparently sufficient to beat the drivers into submission.
1439 */
1440 if (!(s->sien0 & LSI_SIST0_UDC))
1441 fprintf(stderr, "inf. loop with UDC masked\n");
1442 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1443 lsi_disconnect(s);
1444 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1445 if (s->dcntl & LSI_DCNTL_SSM) {
1446 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1447 } else {
1448 goto again;
1449 }
1450 }
1451 DPRINTF("SCRIPTS execution stopped\n");
1452 }
1453
1454 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1455 {
1456 uint8_t tmp;
1457 #define CASE_GET_REG24(name, addr) \
1458 case addr: return s->name & 0xff; \
1459 case addr + 1: return (s->name >> 8) & 0xff; \
1460 case addr + 2: return (s->name >> 16) & 0xff;
1461
1462 #define CASE_GET_REG32(name, addr) \
1463 case addr: return s->name & 0xff; \
1464 case addr + 1: return (s->name >> 8) & 0xff; \
1465 case addr + 2: return (s->name >> 16) & 0xff; \
1466 case addr + 3: return (s->name >> 24) & 0xff;
1467
1468 #ifdef DEBUG_LSI_REG
1469 DPRINTF("Read reg %x\n", offset);
1470 #endif
1471 switch (offset) {
1472 case 0x00: /* SCNTL0 */
1473 return s->scntl0;
1474 case 0x01: /* SCNTL1 */
1475 return s->scntl1;
1476 case 0x02: /* SCNTL2 */
1477 return s->scntl2;
1478 case 0x03: /* SCNTL3 */
1479 return s->scntl3;
1480 case 0x04: /* SCID */
1481 return s->scid;
1482 case 0x05: /* SXFER */
1483 return s->sxfer;
1484 case 0x06: /* SDID */
1485 return s->sdid;
1486 case 0x07: /* GPREG0 */
1487 return 0x7f;
1488 case 0x08: /* Revision ID */
1489 return 0x00;
1490 case 0xa: /* SSID */
1491 return s->ssid;
1492 case 0xb: /* SBCL */
1493 /* ??? This is not correct. However it's (hopefully) only
1494 used for diagnostics, so should be ok. */
1495 return 0;
1496 case 0xc: /* DSTAT */
1497 tmp = s->dstat | 0x80;
1498 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1499 s->dstat = 0;
1500 lsi_update_irq(s);
1501 return tmp;
1502 case 0x0d: /* SSTAT0 */
1503 return s->sstat0;
1504 case 0x0e: /* SSTAT1 */
1505 return s->sstat1;
1506 case 0x0f: /* SSTAT2 */
1507 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1508 CASE_GET_REG32(dsa, 0x10)
1509 case 0x14: /* ISTAT0 */
1510 return s->istat0;
1511 case 0x15: /* ISTAT1 */
1512 return s->istat1;
1513 case 0x16: /* MBOX0 */
1514 return s->mbox0;
1515 case 0x17: /* MBOX1 */
1516 return s->mbox1;
1517 case 0x18: /* CTEST0 */
1518 return 0xff;
1519 case 0x19: /* CTEST1 */
1520 return 0;
1521 case 0x1a: /* CTEST2 */
1522 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1523 if (s->istat0 & LSI_ISTAT0_SIGP) {
1524 s->istat0 &= ~LSI_ISTAT0_SIGP;
1525 tmp |= LSI_CTEST2_SIGP;
1526 }
1527 return tmp;
1528 case 0x1b: /* CTEST3 */
1529 return s->ctest3;
1530 CASE_GET_REG32(temp, 0x1c)
1531 case 0x20: /* DFIFO */
1532 return 0;
1533 case 0x21: /* CTEST4 */
1534 return s->ctest4;
1535 case 0x22: /* CTEST5 */
1536 return s->ctest5;
1537 case 0x23: /* CTEST6 */
1538 return 0;
1539 CASE_GET_REG24(dbc, 0x24)
1540 case 0x27: /* DCMD */
1541 return s->dcmd;
1542 CASE_GET_REG32(dnad, 0x28)
1543 CASE_GET_REG32(dsp, 0x2c)
1544 CASE_GET_REG32(dsps, 0x30)
1545 CASE_GET_REG32(scratch[0], 0x34)
1546 case 0x38: /* DMODE */
1547 return s->dmode;
1548 case 0x39: /* DIEN */
1549 return s->dien;
1550 case 0x3a: /* SBR */
1551 return s->sbr;
1552 case 0x3b: /* DCNTL */
1553 return s->dcntl;
1554 case 0x40: /* SIEN0 */
1555 return s->sien0;
1556 case 0x41: /* SIEN1 */
1557 return s->sien1;
1558 case 0x42: /* SIST0 */
1559 tmp = s->sist0;
1560 s->sist0 = 0;
1561 lsi_update_irq(s);
1562 return tmp;
1563 case 0x43: /* SIST1 */
1564 tmp = s->sist1;
1565 s->sist1 = 0;
1566 lsi_update_irq(s);
1567 return tmp;
1568 case 0x46: /* MACNTL */
1569 return 0x0f;
1570 case 0x47: /* GPCNTL0 */
1571 return 0x0f;
1572 case 0x48: /* STIME0 */
1573 return s->stime0;
1574 case 0x4a: /* RESPID0 */
1575 return s->respid0;
1576 case 0x4b: /* RESPID1 */
1577 return s->respid1;
1578 case 0x4d: /* STEST1 */
1579 return s->stest1;
1580 case 0x4e: /* STEST2 */
1581 return s->stest2;
1582 case 0x4f: /* STEST3 */
1583 return s->stest3;
1584 case 0x50: /* SIDL */
1585 /* This is needed by the linux drivers. We currently only update it
1586 during the MSG IN phase. */
1587 return s->sidl;
1588 case 0x52: /* STEST4 */
1589 return 0xe0;
1590 case 0x56: /* CCNTL0 */
1591 return s->ccntl0;
1592 case 0x57: /* CCNTL1 */
1593 return s->ccntl1;
1594 case 0x58: /* SBDL */
1595 /* Some drivers peek at the data bus during the MSG IN phase. */
1596 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1597 return s->msg[0];
1598 return 0;
1599 case 0x59: /* SBDL high */
1600 return 0;
1601 CASE_GET_REG32(mmrs, 0xa0)
1602 CASE_GET_REG32(mmws, 0xa4)
1603 CASE_GET_REG32(sfs, 0xa8)
1604 CASE_GET_REG32(drs, 0xac)
1605 CASE_GET_REG32(sbms, 0xb0)
1606 CASE_GET_REG32(dbms, 0xb4)
1607 CASE_GET_REG32(dnad64, 0xb8)
1608 CASE_GET_REG32(pmjad1, 0xc0)
1609 CASE_GET_REG32(pmjad2, 0xc4)
1610 CASE_GET_REG32(rbc, 0xc8)
1611 CASE_GET_REG32(ua, 0xcc)
1612 CASE_GET_REG32(ia, 0xd4)
1613 CASE_GET_REG32(sbc, 0xd8)
1614 CASE_GET_REG32(csbc, 0xdc)
1615 }
1616 if (offset >= 0x5c && offset < 0xa0) {
1617 int n;
1618 int shift;
1619 n = (offset - 0x58) >> 2;
1620 shift = (offset & 3) * 8;
1621 return (s->scratch[n] >> shift) & 0xff;
1622 }
1623 BADF("readb 0x%x\n", offset);
1624 exit(1);
1625 #undef CASE_GET_REG24
1626 #undef CASE_GET_REG32
1627 }
1628
1629 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1630 {
1631 #define CASE_SET_REG24(name, addr) \
1632 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1633 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1634 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1635
1636 #define CASE_SET_REG32(name, addr) \
1637 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1638 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1639 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1640 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1641
1642 #ifdef DEBUG_LSI_REG
1643 DPRINTF("Write reg %x = %02x\n", offset, val);
1644 #endif
1645 switch (offset) {
1646 case 0x00: /* SCNTL0 */
1647 s->scntl0 = val;
1648 if (val & LSI_SCNTL0_START) {
1649 BADF("Start sequence not implemented\n");
1650 }
1651 break;
1652 case 0x01: /* SCNTL1 */
1653 s->scntl1 = val & ~LSI_SCNTL1_SST;
1654 if (val & LSI_SCNTL1_IARB) {
1655 BADF("Immediate Arbritration not implemented\n");
1656 }
1657 if (val & LSI_SCNTL1_RST) {
1658 if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1659 DeviceState *dev;
1660 int id;
1661
1662 for (id = 0; id < s->bus.ndev; id++) {
1663 if (s->bus.devs[id]) {
1664 dev = &s->bus.devs[id]->qdev;
1665 dev->info->reset(dev);
1666 }
1667 }
1668 s->sstat0 |= LSI_SSTAT0_RST;
1669 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1670 }
1671 } else {
1672 s->sstat0 &= ~LSI_SSTAT0_RST;
1673 }
1674 break;
1675 case 0x02: /* SCNTL2 */
1676 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1677 s->scntl2 = val;
1678 break;
1679 case 0x03: /* SCNTL3 */
1680 s->scntl3 = val;
1681 break;
1682 case 0x04: /* SCID */
1683 s->scid = val;
1684 break;
1685 case 0x05: /* SXFER */
1686 s->sxfer = val;
1687 break;
1688 case 0x06: /* SDID */
1689 if ((val & 0xf) != (s->ssid & 0xf))
1690 BADF("Destination ID does not match SSID\n");
1691 s->sdid = val & 0xf;
1692 break;
1693 case 0x07: /* GPREG0 */
1694 break;
1695 case 0x08: /* SFBR */
1696 /* The CPU is not allowed to write to this register. However the
1697 SCRIPTS register move instructions are. */
1698 s->sfbr = val;
1699 break;
1700 case 0x0a: case 0x0b:
1701 /* Openserver writes to these readonly registers on startup */
1702 return;
1703 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1704 /* Linux writes to these readonly registers on startup. */
1705 return;
1706 CASE_SET_REG32(dsa, 0x10)
1707 case 0x14: /* ISTAT0 */
1708 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1709 if (val & LSI_ISTAT0_ABRT) {
1710 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1711 }
1712 if (val & LSI_ISTAT0_INTF) {
1713 s->istat0 &= ~LSI_ISTAT0_INTF;
1714 lsi_update_irq(s);
1715 }
1716 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1717 DPRINTF("Woken by SIGP\n");
1718 s->waiting = 0;
1719 s->dsp = s->dnad;
1720 lsi_execute_script(s);
1721 }
1722 if (val & LSI_ISTAT0_SRST) {
1723 lsi_soft_reset(s);
1724 }
1725 break;
1726 case 0x16: /* MBOX0 */
1727 s->mbox0 = val;
1728 break;
1729 case 0x17: /* MBOX1 */
1730 s->mbox1 = val;
1731 break;
1732 case 0x1a: /* CTEST2 */
1733 s->ctest2 = val & LSI_CTEST2_PCICIE;
1734 break;
1735 case 0x1b: /* CTEST3 */
1736 s->ctest3 = val & 0x0f;
1737 break;
1738 CASE_SET_REG32(temp, 0x1c)
1739 case 0x21: /* CTEST4 */
1740 if (val & 7) {
1741 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1742 }
1743 s->ctest4 = val;
1744 break;
1745 case 0x22: /* CTEST5 */
1746 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1747 BADF("CTEST5 DMA increment not implemented\n");
1748 }
1749 s->ctest5 = val;
1750 break;
1751 CASE_SET_REG24(dbc, 0x24)
1752 CASE_SET_REG32(dnad, 0x28)
1753 case 0x2c: /* DSP[0:7] */
1754 s->dsp &= 0xffffff00;
1755 s->dsp |= val;
1756 break;
1757 case 0x2d: /* DSP[8:15] */
1758 s->dsp &= 0xffff00ff;
1759 s->dsp |= val << 8;
1760 break;
1761 case 0x2e: /* DSP[16:23] */
1762 s->dsp &= 0xff00ffff;
1763 s->dsp |= val << 16;
1764 break;
1765 case 0x2f: /* DSP[24:31] */
1766 s->dsp &= 0x00ffffff;
1767 s->dsp |= val << 24;
1768 if ((s->dmode & LSI_DMODE_MAN) == 0
1769 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1770 lsi_execute_script(s);
1771 break;
1772 CASE_SET_REG32(dsps, 0x30)
1773 CASE_SET_REG32(scratch[0], 0x34)
1774 case 0x38: /* DMODE */
1775 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1776 BADF("IO mappings not implemented\n");
1777 }
1778 s->dmode = val;
1779 break;
1780 case 0x39: /* DIEN */
1781 s->dien = val;
1782 lsi_update_irq(s);
1783 break;
1784 case 0x3a: /* SBR */
1785 s->sbr = val;
1786 break;
1787 case 0x3b: /* DCNTL */
1788 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1789 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1790 lsi_execute_script(s);
1791 break;
1792 case 0x40: /* SIEN0 */
1793 s->sien0 = val;
1794 lsi_update_irq(s);
1795 break;
1796 case 0x41: /* SIEN1 */
1797 s->sien1 = val;
1798 lsi_update_irq(s);
1799 break;
1800 case 0x47: /* GPCNTL0 */
1801 break;
1802 case 0x48: /* STIME0 */
1803 s->stime0 = val;
1804 break;
1805 case 0x49: /* STIME1 */
1806 if (val & 0xf) {
1807 DPRINTF("General purpose timer not implemented\n");
1808 /* ??? Raising the interrupt immediately seems to be sufficient
1809 to keep the FreeBSD driver happy. */
1810 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1811 }
1812 break;
1813 case 0x4a: /* RESPID0 */
1814 s->respid0 = val;
1815 break;
1816 case 0x4b: /* RESPID1 */
1817 s->respid1 = val;
1818 break;
1819 case 0x4d: /* STEST1 */
1820 s->stest1 = val;
1821 break;
1822 case 0x4e: /* STEST2 */
1823 if (val & 1) {
1824 BADF("Low level mode not implemented\n");
1825 }
1826 s->stest2 = val;
1827 break;
1828 case 0x4f: /* STEST3 */
1829 if (val & 0x41) {
1830 BADF("SCSI FIFO test mode not implemented\n");
1831 }
1832 s->stest3 = val;
1833 break;
1834 case 0x56: /* CCNTL0 */
1835 s->ccntl0 = val;
1836 break;
1837 case 0x57: /* CCNTL1 */
1838 s->ccntl1 = val;
1839 break;
1840 CASE_SET_REG32(mmrs, 0xa0)
1841 CASE_SET_REG32(mmws, 0xa4)
1842 CASE_SET_REG32(sfs, 0xa8)
1843 CASE_SET_REG32(drs, 0xac)
1844 CASE_SET_REG32(sbms, 0xb0)
1845 CASE_SET_REG32(dbms, 0xb4)
1846 CASE_SET_REG32(dnad64, 0xb8)
1847 CASE_SET_REG32(pmjad1, 0xc0)
1848 CASE_SET_REG32(pmjad2, 0xc4)
1849 CASE_SET_REG32(rbc, 0xc8)
1850 CASE_SET_REG32(ua, 0xcc)
1851 CASE_SET_REG32(ia, 0xd4)
1852 CASE_SET_REG32(sbc, 0xd8)
1853 CASE_SET_REG32(csbc, 0xdc)
1854 default:
1855 if (offset >= 0x5c && offset < 0xa0) {
1856 int n;
1857 int shift;
1858 n = (offset - 0x58) >> 2;
1859 shift = (offset & 3) * 8;
1860 s->scratch[n] &= ~(0xff << shift);
1861 s->scratch[n] |= (val & 0xff) << shift;
1862 } else {
1863 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1864 }
1865 }
1866 #undef CASE_SET_REG24
1867 #undef CASE_SET_REG32
1868 }
1869
1870 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1871 {
1872 LSIState *s = opaque;
1873
1874 lsi_reg_writeb(s, addr & 0xff, val);
1875 }
1876
1877 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1878 {
1879 LSIState *s = opaque;
1880
1881 addr &= 0xff;
1882 lsi_reg_writeb(s, addr, val & 0xff);
1883 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1884 }
1885
1886 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1887 {
1888 LSIState *s = opaque;
1889
1890 addr &= 0xff;
1891 lsi_reg_writeb(s, addr, val & 0xff);
1892 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1893 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1894 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1895 }
1896
1897 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1898 {
1899 LSIState *s = opaque;
1900
1901 return lsi_reg_readb(s, addr & 0xff);
1902 }
1903
1904 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1905 {
1906 LSIState *s = opaque;
1907 uint32_t val;
1908
1909 addr &= 0xff;
1910 val = lsi_reg_readb(s, addr);
1911 val |= lsi_reg_readb(s, addr + 1) << 8;
1912 return val;
1913 }
1914
1915 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1916 {
1917 LSIState *s = opaque;
1918 uint32_t val;
1919 addr &= 0xff;
1920 val = lsi_reg_readb(s, addr);
1921 val |= lsi_reg_readb(s, addr + 1) << 8;
1922 val |= lsi_reg_readb(s, addr + 2) << 16;
1923 val |= lsi_reg_readb(s, addr + 3) << 24;
1924 return val;
1925 }
1926
1927 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1928 lsi_mmio_readb,
1929 lsi_mmio_readw,
1930 lsi_mmio_readl,
1931 };
1932
1933 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1934 lsi_mmio_writeb,
1935 lsi_mmio_writew,
1936 lsi_mmio_writel,
1937 };
1938
1939 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1940 {
1941 LSIState *s = opaque;
1942 uint32_t newval;
1943 int shift;
1944
1945 addr &= 0x1fff;
1946 newval = s->script_ram[addr >> 2];
1947 shift = (addr & 3) * 8;
1948 newval &= ~(0xff << shift);
1949 newval |= val << shift;
1950 s->script_ram[addr >> 2] = newval;
1951 }
1952
1953 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1954 {
1955 LSIState *s = opaque;
1956 uint32_t newval;
1957
1958 addr &= 0x1fff;
1959 newval = s->script_ram[addr >> 2];
1960 if (addr & 2) {
1961 newval = (newval & 0xffff) | (val << 16);
1962 } else {
1963 newval = (newval & 0xffff0000) | val;
1964 }
1965 s->script_ram[addr >> 2] = newval;
1966 }
1967
1968
1969 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1970 {
1971 LSIState *s = opaque;
1972
1973 addr &= 0x1fff;
1974 s->script_ram[addr >> 2] = val;
1975 }
1976
1977 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1978 {
1979 LSIState *s = opaque;
1980 uint32_t val;
1981
1982 addr &= 0x1fff;
1983 val = s->script_ram[addr >> 2];
1984 val >>= (addr & 3) * 8;
1985 return val & 0xff;
1986 }
1987
1988 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1989 {
1990 LSIState *s = opaque;
1991 uint32_t val;
1992
1993 addr &= 0x1fff;
1994 val = s->script_ram[addr >> 2];
1995 if (addr & 2)
1996 val >>= 16;
1997 return val;
1998 }
1999
2000 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
2001 {
2002 LSIState *s = opaque;
2003
2004 addr &= 0x1fff;
2005 return s->script_ram[addr >> 2];
2006 }
2007
2008 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
2009 lsi_ram_readb,
2010 lsi_ram_readw,
2011 lsi_ram_readl,
2012 };
2013
2014 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
2015 lsi_ram_writeb,
2016 lsi_ram_writew,
2017 lsi_ram_writel,
2018 };
2019
2020 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
2021 {
2022 LSIState *s = opaque;
2023 return lsi_reg_readb(s, addr & 0xff);
2024 }
2025
2026 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
2027 {
2028 LSIState *s = opaque;
2029 uint32_t val;
2030 addr &= 0xff;
2031 val = lsi_reg_readb(s, addr);
2032 val |= lsi_reg_readb(s, addr + 1) << 8;
2033 return val;
2034 }
2035
2036 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
2037 {
2038 LSIState *s = opaque;
2039 uint32_t val;
2040 addr &= 0xff;
2041 val = lsi_reg_readb(s, addr);
2042 val |= lsi_reg_readb(s, addr + 1) << 8;
2043 val |= lsi_reg_readb(s, addr + 2) << 16;
2044 val |= lsi_reg_readb(s, addr + 3) << 24;
2045 return val;
2046 }
2047
2048 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
2049 {
2050 LSIState *s = opaque;
2051 lsi_reg_writeb(s, addr & 0xff, val);
2052 }
2053
2054 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
2055 {
2056 LSIState *s = opaque;
2057 addr &= 0xff;
2058 lsi_reg_writeb(s, addr, val & 0xff);
2059 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2060 }
2061
2062 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2063 {
2064 LSIState *s = opaque;
2065 addr &= 0xff;
2066 lsi_reg_writeb(s, addr, val & 0xff);
2067 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2068 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2069 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2070 }
2071
2072 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2073 pcibus_t addr, pcibus_t size, int type)
2074 {
2075 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2076
2077 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2078
2079 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2080 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2081 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2082 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2083 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2084 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2085 }
2086
2087 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2088 pcibus_t addr, pcibus_t size, int type)
2089 {
2090 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2091
2092 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2093 s->script_ram_base = addr;
2094 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2095 }
2096
2097 static void lsi_scsi_reset(DeviceState *dev)
2098 {
2099 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2100
2101 lsi_soft_reset(s);
2102 }
2103
2104 static void lsi_pre_save(void *opaque)
2105 {
2106 LSIState *s = opaque;
2107
2108 if (s->current) {
2109 assert(s->current->dma_buf == NULL);
2110 assert(s->current->dma_len == 0);
2111 }
2112 assert(QTAILQ_EMPTY(&s->queue));
2113 }
2114
2115 static const VMStateDescription vmstate_lsi_scsi = {
2116 .name = "lsiscsi",
2117 .version_id = 0,
2118 .minimum_version_id = 0,
2119 .minimum_version_id_old = 0,
2120 .pre_save = lsi_pre_save,
2121 .fields = (VMStateField []) {
2122 VMSTATE_PCI_DEVICE(dev, LSIState),
2123
2124 VMSTATE_INT32(carry, LSIState),
2125 VMSTATE_INT32(status, LSIState),
2126 VMSTATE_INT32(msg_action, LSIState),
2127 VMSTATE_INT32(msg_len, LSIState),
2128 VMSTATE_BUFFER(msg, LSIState),
2129 VMSTATE_INT32(waiting, LSIState),
2130
2131 VMSTATE_UINT32(dsa, LSIState),
2132 VMSTATE_UINT32(temp, LSIState),
2133 VMSTATE_UINT32(dnad, LSIState),
2134 VMSTATE_UINT32(dbc, LSIState),
2135 VMSTATE_UINT8(istat0, LSIState),
2136 VMSTATE_UINT8(istat1, LSIState),
2137 VMSTATE_UINT8(dcmd, LSIState),
2138 VMSTATE_UINT8(dstat, LSIState),
2139 VMSTATE_UINT8(dien, LSIState),
2140 VMSTATE_UINT8(sist0, LSIState),
2141 VMSTATE_UINT8(sist1, LSIState),
2142 VMSTATE_UINT8(sien0, LSIState),
2143 VMSTATE_UINT8(sien1, LSIState),
2144 VMSTATE_UINT8(mbox0, LSIState),
2145 VMSTATE_UINT8(mbox1, LSIState),
2146 VMSTATE_UINT8(dfifo, LSIState),
2147 VMSTATE_UINT8(ctest2, LSIState),
2148 VMSTATE_UINT8(ctest3, LSIState),
2149 VMSTATE_UINT8(ctest4, LSIState),
2150 VMSTATE_UINT8(ctest5, LSIState),
2151 VMSTATE_UINT8(ccntl0, LSIState),
2152 VMSTATE_UINT8(ccntl1, LSIState),
2153 VMSTATE_UINT32(dsp, LSIState),
2154 VMSTATE_UINT32(dsps, LSIState),
2155 VMSTATE_UINT8(dmode, LSIState),
2156 VMSTATE_UINT8(dcntl, LSIState),
2157 VMSTATE_UINT8(scntl0, LSIState),
2158 VMSTATE_UINT8(scntl1, LSIState),
2159 VMSTATE_UINT8(scntl2, LSIState),
2160 VMSTATE_UINT8(scntl3, LSIState),
2161 VMSTATE_UINT8(sstat0, LSIState),
2162 VMSTATE_UINT8(sstat1, LSIState),
2163 VMSTATE_UINT8(scid, LSIState),
2164 VMSTATE_UINT8(sxfer, LSIState),
2165 VMSTATE_UINT8(socl, LSIState),
2166 VMSTATE_UINT8(sdid, LSIState),
2167 VMSTATE_UINT8(ssid, LSIState),
2168 VMSTATE_UINT8(sfbr, LSIState),
2169 VMSTATE_UINT8(stest1, LSIState),
2170 VMSTATE_UINT8(stest2, LSIState),
2171 VMSTATE_UINT8(stest3, LSIState),
2172 VMSTATE_UINT8(sidl, LSIState),
2173 VMSTATE_UINT8(stime0, LSIState),
2174 VMSTATE_UINT8(respid0, LSIState),
2175 VMSTATE_UINT8(respid1, LSIState),
2176 VMSTATE_UINT32(mmrs, LSIState),
2177 VMSTATE_UINT32(mmws, LSIState),
2178 VMSTATE_UINT32(sfs, LSIState),
2179 VMSTATE_UINT32(drs, LSIState),
2180 VMSTATE_UINT32(sbms, LSIState),
2181 VMSTATE_UINT32(dbms, LSIState),
2182 VMSTATE_UINT32(dnad64, LSIState),
2183 VMSTATE_UINT32(pmjad1, LSIState),
2184 VMSTATE_UINT32(pmjad2, LSIState),
2185 VMSTATE_UINT32(rbc, LSIState),
2186 VMSTATE_UINT32(ua, LSIState),
2187 VMSTATE_UINT32(ia, LSIState),
2188 VMSTATE_UINT32(sbc, LSIState),
2189 VMSTATE_UINT32(csbc, LSIState),
2190 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2191 VMSTATE_UINT8(sbr, LSIState),
2192
2193 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2194 VMSTATE_END_OF_LIST()
2195 }
2196 };
2197
2198 static int lsi_scsi_uninit(PCIDevice *d)
2199 {
2200 LSIState *s = DO_UPCAST(LSIState, dev, d);
2201
2202 cpu_unregister_io_memory(s->mmio_io_addr);
2203 cpu_unregister_io_memory(s->ram_io_addr);
2204
2205 return 0;
2206 }
2207
2208 static int lsi_scsi_init(PCIDevice *dev)
2209 {
2210 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2211 uint8_t *pci_conf;
2212
2213 pci_conf = s->dev.config;
2214
2215 /* PCI Vendor ID (word) */
2216 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2217 /* PCI device ID (word) */
2218 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2219 /* PCI base class code */
2220 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2221 /* PCI subsystem ID */
2222 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2223 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2224 /* PCI latency timer = 255 */
2225 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2226 /* TODO: RST# value should be 0 */
2227 /* Interrupt pin 1 */
2228 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2229
2230 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2231 lsi_mmio_writefn, s,
2232 DEVICE_NATIVE_ENDIAN);
2233 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2234 lsi_ram_writefn, s,
2235 DEVICE_NATIVE_ENDIAN);
2236
2237 pci_register_bar(&s->dev, 0, 256,
2238 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2239 pci_register_bar_simple(&s->dev, 1, 0x400, 0, s->mmio_io_addr);
2240 pci_register_bar(&s->dev, 2, 0x2000,
2241 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2242 QTAILQ_INIT(&s->queue);
2243
2244 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2245 if (!dev->qdev.hotplugged) {
2246 return scsi_bus_legacy_handle_cmdline(&s->bus);
2247 }
2248 return 0;
2249 }
2250
2251 static PCIDeviceInfo lsi_info = {
2252 .qdev.name = "lsi53c895a",
2253 .qdev.alias = "lsi",
2254 .qdev.size = sizeof(LSIState),
2255 .qdev.reset = lsi_scsi_reset,
2256 .qdev.vmsd = &vmstate_lsi_scsi,
2257 .init = lsi_scsi_init,
2258 .exit = lsi_scsi_uninit,
2259 };
2260
2261 static void lsi53c895a_register_devices(void)
2262 {
2263 pci_qdev_register(&lsi_info);
2264 }
2265
2266 device_init(lsi53c895a_register_devices);