]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi53c895a: Update dnad when skipping MSGOUT bytes
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 uint32_t dma_len;
179 uint8_t *dma_buf;
180 uint32_t pending;
181 int out;
182 QTAILQ_ENTRY(lsi_request) next;
183 } lsi_request;
184
185 typedef struct {
186 PCIDevice dev;
187 int mmio_io_addr;
188 int ram_io_addr;
189 uint32_t script_ram_base;
190
191 int carry; /* ??? Should this be an a visible register somewhere? */
192 int sense;
193 /* Action to take at the end of a MSG IN phase.
194 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
195 int msg_action;
196 int msg_len;
197 uint8_t msg[LSI_MAX_MSGIN_LEN];
198 /* 0 if SCRIPTS are running or stopped.
199 * 1 if a Wait Reselect instruction has been issued.
200 * 2 if processing DMA from lsi_execute_script.
201 * 3 if a DMA operation is in progress. */
202 int waiting;
203 SCSIBus bus;
204 int current_lun;
205 /* The tag is a combination of the device ID and the SCSI tag. */
206 uint32_t select_tag;
207 int command_complete;
208 QTAILQ_HEAD(, lsi_request) queue;
209 lsi_request *current;
210
211 uint32_t dsa;
212 uint32_t temp;
213 uint32_t dnad;
214 uint32_t dbc;
215 uint8_t istat0;
216 uint8_t istat1;
217 uint8_t dcmd;
218 uint8_t dstat;
219 uint8_t dien;
220 uint8_t sist0;
221 uint8_t sist1;
222 uint8_t sien0;
223 uint8_t sien1;
224 uint8_t mbox0;
225 uint8_t mbox1;
226 uint8_t dfifo;
227 uint8_t ctest2;
228 uint8_t ctest3;
229 uint8_t ctest4;
230 uint8_t ctest5;
231 uint8_t ccntl0;
232 uint8_t ccntl1;
233 uint32_t dsp;
234 uint32_t dsps;
235 uint8_t dmode;
236 uint8_t dcntl;
237 uint8_t scntl0;
238 uint8_t scntl1;
239 uint8_t scntl2;
240 uint8_t scntl3;
241 uint8_t sstat0;
242 uint8_t sstat1;
243 uint8_t scid;
244 uint8_t sxfer;
245 uint8_t socl;
246 uint8_t sdid;
247 uint8_t ssid;
248 uint8_t sfbr;
249 uint8_t stest1;
250 uint8_t stest2;
251 uint8_t stest3;
252 uint8_t sidl;
253 uint8_t stime0;
254 uint8_t respid0;
255 uint8_t respid1;
256 uint32_t mmrs;
257 uint32_t mmws;
258 uint32_t sfs;
259 uint32_t drs;
260 uint32_t sbms;
261 uint32_t dbms;
262 uint32_t dnad64;
263 uint32_t pmjad1;
264 uint32_t pmjad2;
265 uint32_t rbc;
266 uint32_t ua;
267 uint32_t ia;
268 uint32_t sbc;
269 uint32_t csbc;
270 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271 uint8_t sbr;
272
273 /* Script ram is stored as 32-bit words in host byteorder. */
274 uint32_t script_ram[2048];
275 } LSIState;
276
277 static inline int lsi_irq_on_rsl(LSIState *s)
278 {
279 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280 }
281
282 static void lsi_soft_reset(LSIState *s)
283 {
284 lsi_request *p;
285
286 DPRINTF("Reset\n");
287 s->carry = 0;
288
289 s->msg_action = 0;
290 s->msg_len = 0;
291 s->waiting = 0;
292 s->dsa = 0;
293 s->dnad = 0;
294 s->dbc = 0;
295 s->temp = 0;
296 memset(s->scratch, 0, sizeof(s->scratch));
297 s->istat0 = 0;
298 s->istat1 = 0;
299 s->dcmd = 0x40;
300 s->dstat = LSI_DSTAT_DFE;
301 s->dien = 0;
302 s->sist0 = 0;
303 s->sist1 = 0;
304 s->sien0 = 0;
305 s->sien1 = 0;
306 s->mbox0 = 0;
307 s->mbox1 = 0;
308 s->dfifo = 0;
309 s->ctest2 = LSI_CTEST2_DACK;
310 s->ctest3 = 0;
311 s->ctest4 = 0;
312 s->ctest5 = 0;
313 s->ccntl0 = 0;
314 s->ccntl1 = 0;
315 s->dsp = 0;
316 s->dsps = 0;
317 s->dmode = 0;
318 s->dcntl = 0;
319 s->scntl0 = 0xc0;
320 s->scntl1 = 0;
321 s->scntl2 = 0;
322 s->scntl3 = 0;
323 s->sstat0 = 0;
324 s->sstat1 = 0;
325 s->scid = 7;
326 s->sxfer = 0;
327 s->socl = 0;
328 s->sdid = 0;
329 s->ssid = 0;
330 s->stest1 = 0;
331 s->stest2 = 0;
332 s->stest3 = 0;
333 s->sidl = 0;
334 s->stime0 = 0;
335 s->respid0 = 0x80;
336 s->respid1 = 0;
337 s->mmrs = 0;
338 s->mmws = 0;
339 s->sfs = 0;
340 s->drs = 0;
341 s->sbms = 0;
342 s->dbms = 0;
343 s->dnad64 = 0;
344 s->pmjad1 = 0;
345 s->pmjad2 = 0;
346 s->rbc = 0;
347 s->ua = 0;
348 s->ia = 0;
349 s->sbc = 0;
350 s->csbc = 0;
351 s->sbr = 0;
352 while (!QTAILQ_EMPTY(&s->queue)) {
353 p = QTAILQ_FIRST(&s->queue);
354 QTAILQ_REMOVE(&s->queue, p, next);
355 qemu_free(p);
356 }
357 if (s->current) {
358 qemu_free(s->current);
359 s->current = NULL;
360 }
361 }
362
363 static int lsi_dma_40bit(LSIState *s)
364 {
365 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366 return 1;
367 return 0;
368 }
369
370 static int lsi_dma_ti64bit(LSIState *s)
371 {
372 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373 return 1;
374 return 0;
375 }
376
377 static int lsi_dma_64bit(LSIState *s)
378 {
379 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380 return 1;
381 return 0;
382 }
383
384 static uint8_t lsi_reg_readb(LSIState *s, int offset);
385 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386 static void lsi_execute_script(LSIState *s);
387 static void lsi_reselect(LSIState *s, lsi_request *p);
388
389 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390 {
391 uint32_t buf;
392
393 /* Optimize reading from SCRIPTS RAM. */
394 if ((addr & 0xffffe000) == s->script_ram_base) {
395 return s->script_ram[(addr & 0x1fff) >> 2];
396 }
397 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398 return cpu_to_le32(buf);
399 }
400
401 static void lsi_stop_script(LSIState *s)
402 {
403 s->istat1 &= ~LSI_ISTAT1_SRUN;
404 }
405
406 static void lsi_update_irq(LSIState *s)
407 {
408 int level;
409 static int last_level;
410 lsi_request *p;
411
412 /* It's unclear whether the DIP/SIP bits should be cleared when the
413 Interrupt Status Registers are cleared or when istat0 is read.
414 We currently do the formwer, which seems to work. */
415 level = 0;
416 if (s->dstat) {
417 if (s->dstat & s->dien)
418 level = 1;
419 s->istat0 |= LSI_ISTAT0_DIP;
420 } else {
421 s->istat0 &= ~LSI_ISTAT0_DIP;
422 }
423
424 if (s->sist0 || s->sist1) {
425 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426 level = 1;
427 s->istat0 |= LSI_ISTAT0_SIP;
428 } else {
429 s->istat0 &= ~LSI_ISTAT0_SIP;
430 }
431 if (s->istat0 & LSI_ISTAT0_INTF)
432 level = 1;
433
434 if (level != last_level) {
435 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436 level, s->dstat, s->sist1, s->sist0);
437 last_level = level;
438 }
439 qemu_set_irq(s->dev.irq[0], level);
440
441 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442 DPRINTF("Handled IRQs & disconnected, looking for pending "
443 "processes\n");
444 QTAILQ_FOREACH(p, &s->queue, next) {
445 if (p->pending) {
446 lsi_reselect(s, p);
447 break;
448 }
449 }
450 }
451 }
452
453 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
454 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455 {
456 uint32_t mask0;
457 uint32_t mask1;
458
459 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460 stat1, stat0, s->sist1, s->sist0);
461 s->sist0 |= stat0;
462 s->sist1 |= stat1;
463 /* Stop processor on fatal or unmasked interrupt. As a special hack
464 we don't stop processing when raising STO. Instead continue
465 execution and stop at the next insn that accesses the SCSI bus. */
466 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468 mask1 &= ~LSI_SIST1_STO;
469 if (s->sist0 & mask0 || s->sist1 & mask1) {
470 lsi_stop_script(s);
471 }
472 lsi_update_irq(s);
473 }
474
475 /* Stop SCRIPTS execution and raise a DMA interrupt. */
476 static void lsi_script_dma_interrupt(LSIState *s, int stat)
477 {
478 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479 s->dstat |= stat;
480 lsi_update_irq(s);
481 lsi_stop_script(s);
482 }
483
484 static inline void lsi_set_phase(LSIState *s, int phase)
485 {
486 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487 }
488
489 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490 {
491 /* Trigger a phase mismatch. */
492 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494 s->dsp = out ? s->pmjad1 : s->pmjad2;
495 } else {
496 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497 }
498 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499 } else {
500 DPRINTF("Phase mismatch interrupt\n");
501 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502 lsi_stop_script(s);
503 }
504 lsi_set_phase(s, new_phase);
505 }
506
507
508 /* Resume SCRIPTS execution after a DMA operation. */
509 static void lsi_resume_script(LSIState *s)
510 {
511 if (s->waiting != 2) {
512 s->waiting = 0;
513 lsi_execute_script(s);
514 } else {
515 s->waiting = 0;
516 }
517 }
518
519 static void lsi_disconnect(LSIState *s)
520 {
521 s->scntl1 &= ~LSI_SCNTL1_CON;
522 s->sstat1 &= ~PHASE_MASK;
523 }
524
525 static void lsi_bad_selection(LSIState *s, uint32_t id)
526 {
527 DPRINTF("Selected absent target %d\n", id);
528 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529 lsi_disconnect(s);
530 }
531
532 /* Initiate a SCSI layer data transfer. */
533 static void lsi_do_dma(LSIState *s, int out)
534 {
535 uint32_t count, id;
536 target_phys_addr_t addr;
537 SCSIDevice *dev;
538
539 assert(s->current);
540 if (!s->current->dma_len) {
541 /* Wait until data is available. */
542 DPRINTF("DMA no data available\n");
543 return;
544 }
545
546 id = (s->current->tag >> 8) & 0xf;
547 dev = s->bus.devs[id];
548 if (!dev) {
549 lsi_bad_selection(s, id);
550 return;
551 }
552
553 count = s->dbc;
554 if (count > s->current->dma_len)
555 count = s->current->dma_len;
556
557 addr = s->dnad;
558 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560 addr |= ((uint64_t)s->dnad64 << 32);
561 else if (s->dbms)
562 addr |= ((uint64_t)s->dbms << 32);
563 else if (s->sbms)
564 addr |= ((uint64_t)s->sbms << 32);
565
566 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567 s->csbc += count;
568 s->dnad += count;
569 s->dbc -= count;
570
571 if (s->current->dma_buf == NULL) {
572 s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573 }
574
575 /* ??? Set SFBR to first data byte. */
576 if (out) {
577 cpu_physical_memory_read(addr, s->current->dma_buf, count);
578 } else {
579 cpu_physical_memory_write(addr, s->current->dma_buf, count);
580 }
581 s->current->dma_len -= count;
582 if (s->current->dma_len == 0) {
583 s->current->dma_buf = NULL;
584 if (out) {
585 /* Write the data. */
586 dev->info->write_data(dev, s->current->tag);
587 } else {
588 /* Request any remaining data. */
589 dev->info->read_data(dev, s->current->tag);
590 }
591 } else {
592 s->current->dma_buf += count;
593 lsi_resume_script(s);
594 }
595 }
596
597
598 /* Add a command to the queue. */
599 static void lsi_queue_command(LSIState *s)
600 {
601 lsi_request *p = s->current;
602
603 DPRINTF("Queueing tag=0x%x\n", p->tag);
604 assert(s->current != NULL);
605 assert(s->current->dma_len == 0);
606 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607 s->current = NULL;
608
609 p->pending = 0;
610 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611 }
612
613 /* Queue a byte for a MSG IN phase. */
614 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615 {
616 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617 BADF("MSG IN data too long\n");
618 } else {
619 DPRINTF("MSG IN 0x%02x\n", data);
620 s->msg[s->msg_len++] = data;
621 }
622 }
623
624 /* Perform reselection to continue a command. */
625 static void lsi_reselect(LSIState *s, lsi_request *p)
626 {
627 int id;
628
629 assert(s->current == NULL);
630 QTAILQ_REMOVE(&s->queue, p, next);
631 s->current = p;
632
633 id = (p->tag >> 8) & 0xf;
634 s->ssid = id | 0x80;
635 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636 if (!(s->dcntl & LSI_DCNTL_COM)) {
637 s->sfbr = 1 << (id & 0x7);
638 }
639 DPRINTF("Reselected target %d\n", id);
640 s->scntl1 |= LSI_SCNTL1_CON;
641 lsi_set_phase(s, PHASE_MI);
642 s->msg_action = p->out ? 2 : 3;
643 s->current->dma_len = p->pending;
644 lsi_add_msg_byte(s, 0x80);
645 if (s->current->tag & LSI_TAG_VALID) {
646 lsi_add_msg_byte(s, 0x20);
647 lsi_add_msg_byte(s, p->tag & 0xff);
648 }
649
650 if (lsi_irq_on_rsl(s)) {
651 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652 }
653 }
654
655 /* Record that data is available for a queued command. Returns zero if
656 the device was reselected, nonzero if the IO is deferred. */
657 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
658 {
659 lsi_request *p;
660
661 QTAILQ_FOREACH(p, &s->queue, next) {
662 if (p->tag == tag) {
663 if (p->pending) {
664 BADF("Multiple IO pending for tag %d\n", tag);
665 }
666 p->pending = arg;
667 /* Reselect if waiting for it, or if reselection triggers an IRQ
668 and the bus is free.
669 Since no interrupt stacking is implemented in the emulation, it
670 is also required that there are no pending interrupts waiting
671 for service from the device driver. */
672 if (s->waiting == 1 ||
673 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
674 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
675 /* Reselect device. */
676 lsi_reselect(s, p);
677 return 0;
678 } else {
679 DPRINTF("Queueing IO tag=0x%x\n", tag);
680 p->pending = arg;
681 return 1;
682 }
683 }
684 }
685 BADF("IO with unknown tag %d\n", tag);
686 return 1;
687 }
688
689 /* Callback to indicate that the SCSI layer has completed a transfer. */
690 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
691 uint32_t arg)
692 {
693 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
694 int out;
695
696 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
697 if (reason == SCSI_REASON_DONE) {
698 DPRINTF("Command complete sense=%d\n", (int)arg);
699 s->sense = arg;
700 s->command_complete = 2;
701 if (s->waiting && s->dbc != 0) {
702 /* Raise phase mismatch for short transfers. */
703 lsi_bad_phase(s, out, PHASE_ST);
704 } else {
705 lsi_set_phase(s, PHASE_ST);
706 }
707
708 qemu_free(s->current);
709 s->current = NULL;
710
711 lsi_resume_script(s);
712 return;
713 }
714
715 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
716 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
717 if (lsi_queue_tag(s, tag, arg))
718 return;
719 }
720
721 /* host adapter (re)connected */
722 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
723 s->current->dma_len = arg;
724 s->command_complete = 1;
725 if (!s->waiting)
726 return;
727 if (s->waiting == 1 || s->dbc == 0) {
728 lsi_resume_script(s);
729 } else {
730 lsi_do_dma(s, out);
731 }
732 }
733
734 static void lsi_do_command(LSIState *s)
735 {
736 SCSIDevice *dev;
737 uint8_t buf[16];
738 uint32_t id;
739 int n;
740
741 DPRINTF("Send command len=%d\n", s->dbc);
742 if (s->dbc > 16)
743 s->dbc = 16;
744 cpu_physical_memory_read(s->dnad, buf, s->dbc);
745 s->sfbr = buf[0];
746 s->command_complete = 0;
747
748 id = (s->select_tag >> 8) & 0xf;
749 dev = s->bus.devs[id];
750 if (!dev) {
751 lsi_bad_selection(s, id);
752 return;
753 }
754
755 assert(s->current == NULL);
756 s->current = qemu_mallocz(sizeof(lsi_request));
757 s->current->tag = s->select_tag;
758
759 n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
760 if (n > 0) {
761 lsi_set_phase(s, PHASE_DI);
762 dev->info->read_data(dev, s->current->tag);
763 } else if (n < 0) {
764 lsi_set_phase(s, PHASE_DO);
765 dev->info->write_data(dev, s->current->tag);
766 }
767
768 if (!s->command_complete) {
769 if (n) {
770 /* Command did not complete immediately so disconnect. */
771 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
772 lsi_add_msg_byte(s, 4); /* DISCONNECT */
773 /* wait data */
774 lsi_set_phase(s, PHASE_MI);
775 s->msg_action = 1;
776 lsi_queue_command(s);
777 } else {
778 /* wait command complete */
779 lsi_set_phase(s, PHASE_DI);
780 }
781 }
782 }
783
784 static void lsi_do_status(LSIState *s)
785 {
786 uint8_t sense;
787 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
788 if (s->dbc != 1)
789 BADF("Bad Status move\n");
790 s->dbc = 1;
791 sense = s->sense;
792 s->sfbr = sense;
793 cpu_physical_memory_write(s->dnad, &sense, 1);
794 lsi_set_phase(s, PHASE_MI);
795 s->msg_action = 1;
796 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
797 }
798
799 static void lsi_do_msgin(LSIState *s)
800 {
801 int len;
802 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
803 s->sfbr = s->msg[0];
804 len = s->msg_len;
805 if (len > s->dbc)
806 len = s->dbc;
807 cpu_physical_memory_write(s->dnad, s->msg, len);
808 /* Linux drivers rely on the last byte being in the SIDL. */
809 s->sidl = s->msg[len - 1];
810 s->msg_len -= len;
811 if (s->msg_len) {
812 memmove(s->msg, s->msg + len, s->msg_len);
813 } else {
814 /* ??? Check if ATN (not yet implemented) is asserted and maybe
815 switch to PHASE_MO. */
816 switch (s->msg_action) {
817 case 0:
818 lsi_set_phase(s, PHASE_CMD);
819 break;
820 case 1:
821 lsi_disconnect(s);
822 break;
823 case 2:
824 lsi_set_phase(s, PHASE_DO);
825 break;
826 case 3:
827 lsi_set_phase(s, PHASE_DI);
828 break;
829 default:
830 abort();
831 }
832 }
833 }
834
835 /* Read the next byte during a MSGOUT phase. */
836 static uint8_t lsi_get_msgbyte(LSIState *s)
837 {
838 uint8_t data;
839 cpu_physical_memory_read(s->dnad, &data, 1);
840 s->dnad++;
841 s->dbc--;
842 return data;
843 }
844
845 /* Skip the next n bytes during a MSGOUT phase. */
846 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
847 {
848 s->dnad += n;
849 s->dbc -= n;
850 }
851
852 static void lsi_do_msgout(LSIState *s)
853 {
854 uint8_t msg;
855 int len;
856
857 DPRINTF("MSG out len=%d\n", s->dbc);
858 while (s->dbc) {
859 msg = lsi_get_msgbyte(s);
860 s->sfbr = msg;
861
862 switch (msg) {
863 case 0x04:
864 DPRINTF("MSG: Disconnect\n");
865 lsi_disconnect(s);
866 break;
867 case 0x08:
868 DPRINTF("MSG: No Operation\n");
869 lsi_set_phase(s, PHASE_CMD);
870 break;
871 case 0x01:
872 len = lsi_get_msgbyte(s);
873 msg = lsi_get_msgbyte(s);
874 (void)len; /* avoid a warning about unused variable*/
875 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
876 switch (msg) {
877 case 1:
878 DPRINTF("SDTR (ignored)\n");
879 lsi_skip_msgbytes(s, 2);
880 break;
881 case 3:
882 DPRINTF("WDTR (ignored)\n");
883 lsi_skip_msgbytes(s, 1);
884 break;
885 default:
886 goto bad;
887 }
888 break;
889 case 0x20: /* SIMPLE queue */
890 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
891 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
892 break;
893 case 0x21: /* HEAD of queue */
894 BADF("HEAD queue not implemented\n");
895 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
896 break;
897 case 0x22: /* ORDERED queue */
898 BADF("ORDERED queue not implemented\n");
899 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
900 break;
901 default:
902 if ((msg & 0x80) == 0) {
903 goto bad;
904 }
905 s->current_lun = msg & 7;
906 DPRINTF("Select LUN %d\n", s->current_lun);
907 lsi_set_phase(s, PHASE_CMD);
908 break;
909 }
910 }
911 return;
912 bad:
913 BADF("Unimplemented message 0x%02x\n", msg);
914 lsi_set_phase(s, PHASE_MI);
915 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
916 s->msg_action = 0;
917 }
918
919 /* Sign extend a 24-bit value. */
920 static inline int32_t sxt24(int32_t n)
921 {
922 return (n << 8) >> 8;
923 }
924
925 #define LSI_BUF_SIZE 4096
926 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
927 {
928 int n;
929 uint8_t buf[LSI_BUF_SIZE];
930
931 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
932 while (count) {
933 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
934 cpu_physical_memory_read(src, buf, n);
935 cpu_physical_memory_write(dest, buf, n);
936 src += n;
937 dest += n;
938 count -= n;
939 }
940 }
941
942 static void lsi_wait_reselect(LSIState *s)
943 {
944 lsi_request *p;
945
946 DPRINTF("Wait Reselect\n");
947
948 QTAILQ_FOREACH(p, &s->queue, next) {
949 if (p->pending) {
950 lsi_reselect(s, p);
951 break;
952 }
953 }
954 if (s->current == NULL) {
955 s->waiting = 1;
956 }
957 }
958
959 static void lsi_execute_script(LSIState *s)
960 {
961 uint32_t insn;
962 uint32_t addr, addr_high;
963 int opcode;
964 int insn_processed = 0;
965
966 s->istat1 |= LSI_ISTAT1_SRUN;
967 again:
968 insn_processed++;
969 insn = read_dword(s, s->dsp);
970 if (!insn) {
971 /* If we receive an empty opcode increment the DSP by 4 bytes
972 instead of 8 and execute the next opcode at that location */
973 s->dsp += 4;
974 goto again;
975 }
976 addr = read_dword(s, s->dsp + 4);
977 addr_high = 0;
978 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
979 s->dsps = addr;
980 s->dcmd = insn >> 24;
981 s->dsp += 8;
982 switch (insn >> 30) {
983 case 0: /* Block move. */
984 if (s->sist1 & LSI_SIST1_STO) {
985 DPRINTF("Delayed select timeout\n");
986 lsi_stop_script(s);
987 break;
988 }
989 s->dbc = insn & 0xffffff;
990 s->rbc = s->dbc;
991 /* ??? Set ESA. */
992 s->ia = s->dsp - 8;
993 if (insn & (1 << 29)) {
994 /* Indirect addressing. */
995 addr = read_dword(s, addr);
996 } else if (insn & (1 << 28)) {
997 uint32_t buf[2];
998 int32_t offset;
999 /* Table indirect addressing. */
1000
1001 /* 32-bit Table indirect */
1002 offset = sxt24(addr);
1003 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1004 /* byte count is stored in bits 0:23 only */
1005 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1006 s->rbc = s->dbc;
1007 addr = cpu_to_le32(buf[1]);
1008
1009 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1010 * table, bits [31:24] */
1011 if (lsi_dma_40bit(s))
1012 addr_high = cpu_to_le32(buf[0]) >> 24;
1013 else if (lsi_dma_ti64bit(s)) {
1014 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1015 switch (selector) {
1016 case 0 ... 0x0f:
1017 /* offset index into scratch registers since
1018 * TI64 mode can use registers C to R */
1019 addr_high = s->scratch[2 + selector];
1020 break;
1021 case 0x10:
1022 addr_high = s->mmrs;
1023 break;
1024 case 0x11:
1025 addr_high = s->mmws;
1026 break;
1027 case 0x12:
1028 addr_high = s->sfs;
1029 break;
1030 case 0x13:
1031 addr_high = s->drs;
1032 break;
1033 case 0x14:
1034 addr_high = s->sbms;
1035 break;
1036 case 0x15:
1037 addr_high = s->dbms;
1038 break;
1039 default:
1040 BADF("Illegal selector specified (0x%x > 0x15)"
1041 " for 64-bit DMA block move", selector);
1042 break;
1043 }
1044 }
1045 } else if (lsi_dma_64bit(s)) {
1046 /* fetch a 3rd dword if 64-bit direct move is enabled and
1047 only if we're not doing table indirect or indirect addressing */
1048 s->dbms = read_dword(s, s->dsp);
1049 s->dsp += 4;
1050 s->ia = s->dsp - 12;
1051 }
1052 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1053 DPRINTF("Wrong phase got %d expected %d\n",
1054 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1055 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1056 break;
1057 }
1058 s->dnad = addr;
1059 s->dnad64 = addr_high;
1060 switch (s->sstat1 & 0x7) {
1061 case PHASE_DO:
1062 s->waiting = 2;
1063 lsi_do_dma(s, 1);
1064 if (s->waiting)
1065 s->waiting = 3;
1066 break;
1067 case PHASE_DI:
1068 s->waiting = 2;
1069 lsi_do_dma(s, 0);
1070 if (s->waiting)
1071 s->waiting = 3;
1072 break;
1073 case PHASE_CMD:
1074 lsi_do_command(s);
1075 break;
1076 case PHASE_ST:
1077 lsi_do_status(s);
1078 break;
1079 case PHASE_MO:
1080 lsi_do_msgout(s);
1081 break;
1082 case PHASE_MI:
1083 lsi_do_msgin(s);
1084 break;
1085 default:
1086 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1087 exit(1);
1088 }
1089 s->dfifo = s->dbc & 0xff;
1090 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1091 s->sbc = s->dbc;
1092 s->rbc -= s->dbc;
1093 s->ua = addr + s->dbc;
1094 break;
1095
1096 case 1: /* IO or Read/Write instruction. */
1097 opcode = (insn >> 27) & 7;
1098 if (opcode < 5) {
1099 uint32_t id;
1100
1101 if (insn & (1 << 25)) {
1102 id = read_dword(s, s->dsa + sxt24(insn));
1103 } else {
1104 id = insn;
1105 }
1106 id = (id >> 16) & 0xf;
1107 if (insn & (1 << 26)) {
1108 addr = s->dsp + sxt24(addr);
1109 }
1110 s->dnad = addr;
1111 switch (opcode) {
1112 case 0: /* Select */
1113 s->sdid = id;
1114 if (s->scntl1 & LSI_SCNTL1_CON) {
1115 DPRINTF("Already reselected, jumping to alternative address\n");
1116 s->dsp = s->dnad;
1117 break;
1118 }
1119 s->sstat0 |= LSI_SSTAT0_WOA;
1120 s->scntl1 &= ~LSI_SCNTL1_IARB;
1121 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1122 lsi_bad_selection(s, id);
1123 break;
1124 }
1125 DPRINTF("Selected target %d%s\n",
1126 id, insn & (1 << 3) ? " ATN" : "");
1127 /* ??? Linux drivers compain when this is set. Maybe
1128 it only applies in low-level mode (unimplemented).
1129 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1130 s->select_tag = id << 8;
1131 s->scntl1 |= LSI_SCNTL1_CON;
1132 if (insn & (1 << 3)) {
1133 s->socl |= LSI_SOCL_ATN;
1134 }
1135 lsi_set_phase(s, PHASE_MO);
1136 break;
1137 case 1: /* Disconnect */
1138 DPRINTF("Wait Disconnect\n");
1139 s->scntl1 &= ~LSI_SCNTL1_CON;
1140 break;
1141 case 2: /* Wait Reselect */
1142 if (!lsi_irq_on_rsl(s)) {
1143 lsi_wait_reselect(s);
1144 }
1145 break;
1146 case 3: /* Set */
1147 DPRINTF("Set%s%s%s%s\n",
1148 insn & (1 << 3) ? " ATN" : "",
1149 insn & (1 << 6) ? " ACK" : "",
1150 insn & (1 << 9) ? " TM" : "",
1151 insn & (1 << 10) ? " CC" : "");
1152 if (insn & (1 << 3)) {
1153 s->socl |= LSI_SOCL_ATN;
1154 lsi_set_phase(s, PHASE_MO);
1155 }
1156 if (insn & (1 << 9)) {
1157 BADF("Target mode not implemented\n");
1158 exit(1);
1159 }
1160 if (insn & (1 << 10))
1161 s->carry = 1;
1162 break;
1163 case 4: /* Clear */
1164 DPRINTF("Clear%s%s%s%s\n",
1165 insn & (1 << 3) ? " ATN" : "",
1166 insn & (1 << 6) ? " ACK" : "",
1167 insn & (1 << 9) ? " TM" : "",
1168 insn & (1 << 10) ? " CC" : "");
1169 if (insn & (1 << 3)) {
1170 s->socl &= ~LSI_SOCL_ATN;
1171 }
1172 if (insn & (1 << 10))
1173 s->carry = 0;
1174 break;
1175 }
1176 } else {
1177 uint8_t op0;
1178 uint8_t op1;
1179 uint8_t data8;
1180 int reg;
1181 int operator;
1182 #ifdef DEBUG_LSI
1183 static const char *opcode_names[3] =
1184 {"Write", "Read", "Read-Modify-Write"};
1185 static const char *operator_names[8] =
1186 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1187 #endif
1188
1189 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1190 data8 = (insn >> 8) & 0xff;
1191 opcode = (insn >> 27) & 7;
1192 operator = (insn >> 24) & 7;
1193 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1194 opcode_names[opcode - 5], reg,
1195 operator_names[operator], data8, s->sfbr,
1196 (insn & (1 << 23)) ? " SFBR" : "");
1197 op0 = op1 = 0;
1198 switch (opcode) {
1199 case 5: /* From SFBR */
1200 op0 = s->sfbr;
1201 op1 = data8;
1202 break;
1203 case 6: /* To SFBR */
1204 if (operator)
1205 op0 = lsi_reg_readb(s, reg);
1206 op1 = data8;
1207 break;
1208 case 7: /* Read-modify-write */
1209 if (operator)
1210 op0 = lsi_reg_readb(s, reg);
1211 if (insn & (1 << 23)) {
1212 op1 = s->sfbr;
1213 } else {
1214 op1 = data8;
1215 }
1216 break;
1217 }
1218
1219 switch (operator) {
1220 case 0: /* move */
1221 op0 = op1;
1222 break;
1223 case 1: /* Shift left */
1224 op1 = op0 >> 7;
1225 op0 = (op0 << 1) | s->carry;
1226 s->carry = op1;
1227 break;
1228 case 2: /* OR */
1229 op0 |= op1;
1230 break;
1231 case 3: /* XOR */
1232 op0 ^= op1;
1233 break;
1234 case 4: /* AND */
1235 op0 &= op1;
1236 break;
1237 case 5: /* SHR */
1238 op1 = op0 & 1;
1239 op0 = (op0 >> 1) | (s->carry << 7);
1240 s->carry = op1;
1241 break;
1242 case 6: /* ADD */
1243 op0 += op1;
1244 s->carry = op0 < op1;
1245 break;
1246 case 7: /* ADC */
1247 op0 += op1 + s->carry;
1248 if (s->carry)
1249 s->carry = op0 <= op1;
1250 else
1251 s->carry = op0 < op1;
1252 break;
1253 }
1254
1255 switch (opcode) {
1256 case 5: /* From SFBR */
1257 case 7: /* Read-modify-write */
1258 lsi_reg_writeb(s, reg, op0);
1259 break;
1260 case 6: /* To SFBR */
1261 s->sfbr = op0;
1262 break;
1263 }
1264 }
1265 break;
1266
1267 case 2: /* Transfer Control. */
1268 {
1269 int cond;
1270 int jmp;
1271
1272 if ((insn & 0x002e0000) == 0) {
1273 DPRINTF("NOP\n");
1274 break;
1275 }
1276 if (s->sist1 & LSI_SIST1_STO) {
1277 DPRINTF("Delayed select timeout\n");
1278 lsi_stop_script(s);
1279 break;
1280 }
1281 cond = jmp = (insn & (1 << 19)) != 0;
1282 if (cond == jmp && (insn & (1 << 21))) {
1283 DPRINTF("Compare carry %d\n", s->carry == jmp);
1284 cond = s->carry != 0;
1285 }
1286 if (cond == jmp && (insn & (1 << 17))) {
1287 DPRINTF("Compare phase %d %c= %d\n",
1288 (s->sstat1 & PHASE_MASK),
1289 jmp ? '=' : '!',
1290 ((insn >> 24) & 7));
1291 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1292 }
1293 if (cond == jmp && (insn & (1 << 18))) {
1294 uint8_t mask;
1295
1296 mask = (~insn >> 8) & 0xff;
1297 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1298 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1299 cond = (s->sfbr & mask) == (insn & mask);
1300 }
1301 if (cond == jmp) {
1302 if (insn & (1 << 23)) {
1303 /* Relative address. */
1304 addr = s->dsp + sxt24(addr);
1305 }
1306 switch ((insn >> 27) & 7) {
1307 case 0: /* Jump */
1308 DPRINTF("Jump to 0x%08x\n", addr);
1309 s->dsp = addr;
1310 break;
1311 case 1: /* Call */
1312 DPRINTF("Call 0x%08x\n", addr);
1313 s->temp = s->dsp;
1314 s->dsp = addr;
1315 break;
1316 case 2: /* Return */
1317 DPRINTF("Return to 0x%08x\n", s->temp);
1318 s->dsp = s->temp;
1319 break;
1320 case 3: /* Interrupt */
1321 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1322 if ((insn & (1 << 20)) != 0) {
1323 s->istat0 |= LSI_ISTAT0_INTF;
1324 lsi_update_irq(s);
1325 } else {
1326 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1327 }
1328 break;
1329 default:
1330 DPRINTF("Illegal transfer control\n");
1331 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1332 break;
1333 }
1334 } else {
1335 DPRINTF("Control condition failed\n");
1336 }
1337 }
1338 break;
1339
1340 case 3:
1341 if ((insn & (1 << 29)) == 0) {
1342 /* Memory move. */
1343 uint32_t dest;
1344 /* ??? The docs imply the destination address is loaded into
1345 the TEMP register. However the Linux drivers rely on
1346 the value being presrved. */
1347 dest = read_dword(s, s->dsp);
1348 s->dsp += 4;
1349 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1350 } else {
1351 uint8_t data[7];
1352 int reg;
1353 int n;
1354 int i;
1355
1356 if (insn & (1 << 28)) {
1357 addr = s->dsa + sxt24(addr);
1358 }
1359 n = (insn & 7);
1360 reg = (insn >> 16) & 0xff;
1361 if (insn & (1 << 24)) {
1362 cpu_physical_memory_read(addr, data, n);
1363 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1364 addr, *(int *)data);
1365 for (i = 0; i < n; i++) {
1366 lsi_reg_writeb(s, reg + i, data[i]);
1367 }
1368 } else {
1369 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1370 for (i = 0; i < n; i++) {
1371 data[i] = lsi_reg_readb(s, reg + i);
1372 }
1373 cpu_physical_memory_write(addr, data, n);
1374 }
1375 }
1376 }
1377 if (insn_processed > 10000 && !s->waiting) {
1378 /* Some windows drivers make the device spin waiting for a memory
1379 location to change. If we have been executed a lot of code then
1380 assume this is the case and force an unexpected device disconnect.
1381 This is apparently sufficient to beat the drivers into submission.
1382 */
1383 if (!(s->sien0 & LSI_SIST0_UDC))
1384 fprintf(stderr, "inf. loop with UDC masked\n");
1385 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1386 lsi_disconnect(s);
1387 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1388 if (s->dcntl & LSI_DCNTL_SSM) {
1389 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1390 } else {
1391 goto again;
1392 }
1393 }
1394 DPRINTF("SCRIPTS execution stopped\n");
1395 }
1396
1397 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1398 {
1399 uint8_t tmp;
1400 #define CASE_GET_REG24(name, addr) \
1401 case addr: return s->name & 0xff; \
1402 case addr + 1: return (s->name >> 8) & 0xff; \
1403 case addr + 2: return (s->name >> 16) & 0xff;
1404
1405 #define CASE_GET_REG32(name, addr) \
1406 case addr: return s->name & 0xff; \
1407 case addr + 1: return (s->name >> 8) & 0xff; \
1408 case addr + 2: return (s->name >> 16) & 0xff; \
1409 case addr + 3: return (s->name >> 24) & 0xff;
1410
1411 #ifdef DEBUG_LSI_REG
1412 DPRINTF("Read reg %x\n", offset);
1413 #endif
1414 switch (offset) {
1415 case 0x00: /* SCNTL0 */
1416 return s->scntl0;
1417 case 0x01: /* SCNTL1 */
1418 return s->scntl1;
1419 case 0x02: /* SCNTL2 */
1420 return s->scntl2;
1421 case 0x03: /* SCNTL3 */
1422 return s->scntl3;
1423 case 0x04: /* SCID */
1424 return s->scid;
1425 case 0x05: /* SXFER */
1426 return s->sxfer;
1427 case 0x06: /* SDID */
1428 return s->sdid;
1429 case 0x07: /* GPREG0 */
1430 return 0x7f;
1431 case 0x08: /* Revision ID */
1432 return 0x00;
1433 case 0xa: /* SSID */
1434 return s->ssid;
1435 case 0xb: /* SBCL */
1436 /* ??? This is not correct. However it's (hopefully) only
1437 used for diagnostics, so should be ok. */
1438 return 0;
1439 case 0xc: /* DSTAT */
1440 tmp = s->dstat | 0x80;
1441 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1442 s->dstat = 0;
1443 lsi_update_irq(s);
1444 return tmp;
1445 case 0x0d: /* SSTAT0 */
1446 return s->sstat0;
1447 case 0x0e: /* SSTAT1 */
1448 return s->sstat1;
1449 case 0x0f: /* SSTAT2 */
1450 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1451 CASE_GET_REG32(dsa, 0x10)
1452 case 0x14: /* ISTAT0 */
1453 return s->istat0;
1454 case 0x15: /* ISTAT1 */
1455 return s->istat1;
1456 case 0x16: /* MBOX0 */
1457 return s->mbox0;
1458 case 0x17: /* MBOX1 */
1459 return s->mbox1;
1460 case 0x18: /* CTEST0 */
1461 return 0xff;
1462 case 0x19: /* CTEST1 */
1463 return 0;
1464 case 0x1a: /* CTEST2 */
1465 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1466 if (s->istat0 & LSI_ISTAT0_SIGP) {
1467 s->istat0 &= ~LSI_ISTAT0_SIGP;
1468 tmp |= LSI_CTEST2_SIGP;
1469 }
1470 return tmp;
1471 case 0x1b: /* CTEST3 */
1472 return s->ctest3;
1473 CASE_GET_REG32(temp, 0x1c)
1474 case 0x20: /* DFIFO */
1475 return 0;
1476 case 0x21: /* CTEST4 */
1477 return s->ctest4;
1478 case 0x22: /* CTEST5 */
1479 return s->ctest5;
1480 case 0x23: /* CTEST6 */
1481 return 0;
1482 CASE_GET_REG24(dbc, 0x24)
1483 case 0x27: /* DCMD */
1484 return s->dcmd;
1485 CASE_GET_REG32(dnad, 0x28)
1486 CASE_GET_REG32(dsp, 0x2c)
1487 CASE_GET_REG32(dsps, 0x30)
1488 CASE_GET_REG32(scratch[0], 0x34)
1489 case 0x38: /* DMODE */
1490 return s->dmode;
1491 case 0x39: /* DIEN */
1492 return s->dien;
1493 case 0x3a: /* SBR */
1494 return s->sbr;
1495 case 0x3b: /* DCNTL */
1496 return s->dcntl;
1497 case 0x40: /* SIEN0 */
1498 return s->sien0;
1499 case 0x41: /* SIEN1 */
1500 return s->sien1;
1501 case 0x42: /* SIST0 */
1502 tmp = s->sist0;
1503 s->sist0 = 0;
1504 lsi_update_irq(s);
1505 return tmp;
1506 case 0x43: /* SIST1 */
1507 tmp = s->sist1;
1508 s->sist1 = 0;
1509 lsi_update_irq(s);
1510 return tmp;
1511 case 0x46: /* MACNTL */
1512 return 0x0f;
1513 case 0x47: /* GPCNTL0 */
1514 return 0x0f;
1515 case 0x48: /* STIME0 */
1516 return s->stime0;
1517 case 0x4a: /* RESPID0 */
1518 return s->respid0;
1519 case 0x4b: /* RESPID1 */
1520 return s->respid1;
1521 case 0x4d: /* STEST1 */
1522 return s->stest1;
1523 case 0x4e: /* STEST2 */
1524 return s->stest2;
1525 case 0x4f: /* STEST3 */
1526 return s->stest3;
1527 case 0x50: /* SIDL */
1528 /* This is needed by the linux drivers. We currently only update it
1529 during the MSG IN phase. */
1530 return s->sidl;
1531 case 0x52: /* STEST4 */
1532 return 0xe0;
1533 case 0x56: /* CCNTL0 */
1534 return s->ccntl0;
1535 case 0x57: /* CCNTL1 */
1536 return s->ccntl1;
1537 case 0x58: /* SBDL */
1538 /* Some drivers peek at the data bus during the MSG IN phase. */
1539 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1540 return s->msg[0];
1541 return 0;
1542 case 0x59: /* SBDL high */
1543 return 0;
1544 CASE_GET_REG32(mmrs, 0xa0)
1545 CASE_GET_REG32(mmws, 0xa4)
1546 CASE_GET_REG32(sfs, 0xa8)
1547 CASE_GET_REG32(drs, 0xac)
1548 CASE_GET_REG32(sbms, 0xb0)
1549 CASE_GET_REG32(dbms, 0xb4)
1550 CASE_GET_REG32(dnad64, 0xb8)
1551 CASE_GET_REG32(pmjad1, 0xc0)
1552 CASE_GET_REG32(pmjad2, 0xc4)
1553 CASE_GET_REG32(rbc, 0xc8)
1554 CASE_GET_REG32(ua, 0xcc)
1555 CASE_GET_REG32(ia, 0xd4)
1556 CASE_GET_REG32(sbc, 0xd8)
1557 CASE_GET_REG32(csbc, 0xdc)
1558 }
1559 if (offset >= 0x5c && offset < 0xa0) {
1560 int n;
1561 int shift;
1562 n = (offset - 0x58) >> 2;
1563 shift = (offset & 3) * 8;
1564 return (s->scratch[n] >> shift) & 0xff;
1565 }
1566 BADF("readb 0x%x\n", offset);
1567 exit(1);
1568 #undef CASE_GET_REG24
1569 #undef CASE_GET_REG32
1570 }
1571
1572 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1573 {
1574 #define CASE_SET_REG24(name, addr) \
1575 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1576 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1577 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1578
1579 #define CASE_SET_REG32(name, addr) \
1580 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1581 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1582 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1583 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1584
1585 #ifdef DEBUG_LSI_REG
1586 DPRINTF("Write reg %x = %02x\n", offset, val);
1587 #endif
1588 switch (offset) {
1589 case 0x00: /* SCNTL0 */
1590 s->scntl0 = val;
1591 if (val & LSI_SCNTL0_START) {
1592 BADF("Start sequence not implemented\n");
1593 }
1594 break;
1595 case 0x01: /* SCNTL1 */
1596 s->scntl1 = val & ~LSI_SCNTL1_SST;
1597 if (val & LSI_SCNTL1_IARB) {
1598 BADF("Immediate Arbritration not implemented\n");
1599 }
1600 if (val & LSI_SCNTL1_RST) {
1601 if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1602 DeviceState *dev;
1603 int id;
1604
1605 for (id = 0; id < s->bus.ndev; id++) {
1606 if (s->bus.devs[id]) {
1607 dev = &s->bus.devs[id]->qdev;
1608 dev->info->reset(dev);
1609 }
1610 }
1611 s->sstat0 |= LSI_SSTAT0_RST;
1612 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1613 }
1614 } else {
1615 s->sstat0 &= ~LSI_SSTAT0_RST;
1616 }
1617 break;
1618 case 0x02: /* SCNTL2 */
1619 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1620 s->scntl2 = val;
1621 break;
1622 case 0x03: /* SCNTL3 */
1623 s->scntl3 = val;
1624 break;
1625 case 0x04: /* SCID */
1626 s->scid = val;
1627 break;
1628 case 0x05: /* SXFER */
1629 s->sxfer = val;
1630 break;
1631 case 0x06: /* SDID */
1632 if ((val & 0xf) != (s->ssid & 0xf))
1633 BADF("Destination ID does not match SSID\n");
1634 s->sdid = val & 0xf;
1635 break;
1636 case 0x07: /* GPREG0 */
1637 break;
1638 case 0x08: /* SFBR */
1639 /* The CPU is not allowed to write to this register. However the
1640 SCRIPTS register move instructions are. */
1641 s->sfbr = val;
1642 break;
1643 case 0x0a: case 0x0b:
1644 /* Openserver writes to these readonly registers on startup */
1645 return;
1646 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1647 /* Linux writes to these readonly registers on startup. */
1648 return;
1649 CASE_SET_REG32(dsa, 0x10)
1650 case 0x14: /* ISTAT0 */
1651 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1652 if (val & LSI_ISTAT0_ABRT) {
1653 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1654 }
1655 if (val & LSI_ISTAT0_INTF) {
1656 s->istat0 &= ~LSI_ISTAT0_INTF;
1657 lsi_update_irq(s);
1658 }
1659 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1660 DPRINTF("Woken by SIGP\n");
1661 s->waiting = 0;
1662 s->dsp = s->dnad;
1663 lsi_execute_script(s);
1664 }
1665 if (val & LSI_ISTAT0_SRST) {
1666 lsi_soft_reset(s);
1667 }
1668 break;
1669 case 0x16: /* MBOX0 */
1670 s->mbox0 = val;
1671 break;
1672 case 0x17: /* MBOX1 */
1673 s->mbox1 = val;
1674 break;
1675 case 0x1a: /* CTEST2 */
1676 s->ctest2 = val & LSI_CTEST2_PCICIE;
1677 break;
1678 case 0x1b: /* CTEST3 */
1679 s->ctest3 = val & 0x0f;
1680 break;
1681 CASE_SET_REG32(temp, 0x1c)
1682 case 0x21: /* CTEST4 */
1683 if (val & 7) {
1684 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1685 }
1686 s->ctest4 = val;
1687 break;
1688 case 0x22: /* CTEST5 */
1689 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1690 BADF("CTEST5 DMA increment not implemented\n");
1691 }
1692 s->ctest5 = val;
1693 break;
1694 CASE_SET_REG24(dbc, 0x24)
1695 CASE_SET_REG32(dnad, 0x28)
1696 case 0x2c: /* DSP[0:7] */
1697 s->dsp &= 0xffffff00;
1698 s->dsp |= val;
1699 break;
1700 case 0x2d: /* DSP[8:15] */
1701 s->dsp &= 0xffff00ff;
1702 s->dsp |= val << 8;
1703 break;
1704 case 0x2e: /* DSP[16:23] */
1705 s->dsp &= 0xff00ffff;
1706 s->dsp |= val << 16;
1707 break;
1708 case 0x2f: /* DSP[24:31] */
1709 s->dsp &= 0x00ffffff;
1710 s->dsp |= val << 24;
1711 if ((s->dmode & LSI_DMODE_MAN) == 0
1712 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1713 lsi_execute_script(s);
1714 break;
1715 CASE_SET_REG32(dsps, 0x30)
1716 CASE_SET_REG32(scratch[0], 0x34)
1717 case 0x38: /* DMODE */
1718 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1719 BADF("IO mappings not implemented\n");
1720 }
1721 s->dmode = val;
1722 break;
1723 case 0x39: /* DIEN */
1724 s->dien = val;
1725 lsi_update_irq(s);
1726 break;
1727 case 0x3a: /* SBR */
1728 s->sbr = val;
1729 break;
1730 case 0x3b: /* DCNTL */
1731 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1732 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1733 lsi_execute_script(s);
1734 break;
1735 case 0x40: /* SIEN0 */
1736 s->sien0 = val;
1737 lsi_update_irq(s);
1738 break;
1739 case 0x41: /* SIEN1 */
1740 s->sien1 = val;
1741 lsi_update_irq(s);
1742 break;
1743 case 0x47: /* GPCNTL0 */
1744 break;
1745 case 0x48: /* STIME0 */
1746 s->stime0 = val;
1747 break;
1748 case 0x49: /* STIME1 */
1749 if (val & 0xf) {
1750 DPRINTF("General purpose timer not implemented\n");
1751 /* ??? Raising the interrupt immediately seems to be sufficient
1752 to keep the FreeBSD driver happy. */
1753 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1754 }
1755 break;
1756 case 0x4a: /* RESPID0 */
1757 s->respid0 = val;
1758 break;
1759 case 0x4b: /* RESPID1 */
1760 s->respid1 = val;
1761 break;
1762 case 0x4d: /* STEST1 */
1763 s->stest1 = val;
1764 break;
1765 case 0x4e: /* STEST2 */
1766 if (val & 1) {
1767 BADF("Low level mode not implemented\n");
1768 }
1769 s->stest2 = val;
1770 break;
1771 case 0x4f: /* STEST3 */
1772 if (val & 0x41) {
1773 BADF("SCSI FIFO test mode not implemented\n");
1774 }
1775 s->stest3 = val;
1776 break;
1777 case 0x56: /* CCNTL0 */
1778 s->ccntl0 = val;
1779 break;
1780 case 0x57: /* CCNTL1 */
1781 s->ccntl1 = val;
1782 break;
1783 CASE_SET_REG32(mmrs, 0xa0)
1784 CASE_SET_REG32(mmws, 0xa4)
1785 CASE_SET_REG32(sfs, 0xa8)
1786 CASE_SET_REG32(drs, 0xac)
1787 CASE_SET_REG32(sbms, 0xb0)
1788 CASE_SET_REG32(dbms, 0xb4)
1789 CASE_SET_REG32(dnad64, 0xb8)
1790 CASE_SET_REG32(pmjad1, 0xc0)
1791 CASE_SET_REG32(pmjad2, 0xc4)
1792 CASE_SET_REG32(rbc, 0xc8)
1793 CASE_SET_REG32(ua, 0xcc)
1794 CASE_SET_REG32(ia, 0xd4)
1795 CASE_SET_REG32(sbc, 0xd8)
1796 CASE_SET_REG32(csbc, 0xdc)
1797 default:
1798 if (offset >= 0x5c && offset < 0xa0) {
1799 int n;
1800 int shift;
1801 n = (offset - 0x58) >> 2;
1802 shift = (offset & 3) * 8;
1803 s->scratch[n] &= ~(0xff << shift);
1804 s->scratch[n] |= (val & 0xff) << shift;
1805 } else {
1806 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1807 }
1808 }
1809 #undef CASE_SET_REG24
1810 #undef CASE_SET_REG32
1811 }
1812
1813 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1814 {
1815 LSIState *s = opaque;
1816
1817 lsi_reg_writeb(s, addr & 0xff, val);
1818 }
1819
1820 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1821 {
1822 LSIState *s = opaque;
1823
1824 addr &= 0xff;
1825 lsi_reg_writeb(s, addr, val & 0xff);
1826 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1827 }
1828
1829 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1830 {
1831 LSIState *s = opaque;
1832
1833 addr &= 0xff;
1834 lsi_reg_writeb(s, addr, val & 0xff);
1835 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1836 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1837 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1838 }
1839
1840 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1841 {
1842 LSIState *s = opaque;
1843
1844 return lsi_reg_readb(s, addr & 0xff);
1845 }
1846
1847 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1848 {
1849 LSIState *s = opaque;
1850 uint32_t val;
1851
1852 addr &= 0xff;
1853 val = lsi_reg_readb(s, addr);
1854 val |= lsi_reg_readb(s, addr + 1) << 8;
1855 return val;
1856 }
1857
1858 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1859 {
1860 LSIState *s = opaque;
1861 uint32_t val;
1862 addr &= 0xff;
1863 val = lsi_reg_readb(s, addr);
1864 val |= lsi_reg_readb(s, addr + 1) << 8;
1865 val |= lsi_reg_readb(s, addr + 2) << 16;
1866 val |= lsi_reg_readb(s, addr + 3) << 24;
1867 return val;
1868 }
1869
1870 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1871 lsi_mmio_readb,
1872 lsi_mmio_readw,
1873 lsi_mmio_readl,
1874 };
1875
1876 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1877 lsi_mmio_writeb,
1878 lsi_mmio_writew,
1879 lsi_mmio_writel,
1880 };
1881
1882 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1883 {
1884 LSIState *s = opaque;
1885 uint32_t newval;
1886 int shift;
1887
1888 addr &= 0x1fff;
1889 newval = s->script_ram[addr >> 2];
1890 shift = (addr & 3) * 8;
1891 newval &= ~(0xff << shift);
1892 newval |= val << shift;
1893 s->script_ram[addr >> 2] = newval;
1894 }
1895
1896 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1897 {
1898 LSIState *s = opaque;
1899 uint32_t newval;
1900
1901 addr &= 0x1fff;
1902 newval = s->script_ram[addr >> 2];
1903 if (addr & 2) {
1904 newval = (newval & 0xffff) | (val << 16);
1905 } else {
1906 newval = (newval & 0xffff0000) | val;
1907 }
1908 s->script_ram[addr >> 2] = newval;
1909 }
1910
1911
1912 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1913 {
1914 LSIState *s = opaque;
1915
1916 addr &= 0x1fff;
1917 s->script_ram[addr >> 2] = val;
1918 }
1919
1920 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1921 {
1922 LSIState *s = opaque;
1923 uint32_t val;
1924
1925 addr &= 0x1fff;
1926 val = s->script_ram[addr >> 2];
1927 val >>= (addr & 3) * 8;
1928 return val & 0xff;
1929 }
1930
1931 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1932 {
1933 LSIState *s = opaque;
1934 uint32_t val;
1935
1936 addr &= 0x1fff;
1937 val = s->script_ram[addr >> 2];
1938 if (addr & 2)
1939 val >>= 16;
1940 return val;
1941 }
1942
1943 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1944 {
1945 LSIState *s = opaque;
1946
1947 addr &= 0x1fff;
1948 return s->script_ram[addr >> 2];
1949 }
1950
1951 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1952 lsi_ram_readb,
1953 lsi_ram_readw,
1954 lsi_ram_readl,
1955 };
1956
1957 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1958 lsi_ram_writeb,
1959 lsi_ram_writew,
1960 lsi_ram_writel,
1961 };
1962
1963 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1964 {
1965 LSIState *s = opaque;
1966 return lsi_reg_readb(s, addr & 0xff);
1967 }
1968
1969 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1970 {
1971 LSIState *s = opaque;
1972 uint32_t val;
1973 addr &= 0xff;
1974 val = lsi_reg_readb(s, addr);
1975 val |= lsi_reg_readb(s, addr + 1) << 8;
1976 return val;
1977 }
1978
1979 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1980 {
1981 LSIState *s = opaque;
1982 uint32_t val;
1983 addr &= 0xff;
1984 val = lsi_reg_readb(s, addr);
1985 val |= lsi_reg_readb(s, addr + 1) << 8;
1986 val |= lsi_reg_readb(s, addr + 2) << 16;
1987 val |= lsi_reg_readb(s, addr + 3) << 24;
1988 return val;
1989 }
1990
1991 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1992 {
1993 LSIState *s = opaque;
1994 lsi_reg_writeb(s, addr & 0xff, val);
1995 }
1996
1997 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1998 {
1999 LSIState *s = opaque;
2000 addr &= 0xff;
2001 lsi_reg_writeb(s, addr, val & 0xff);
2002 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2003 }
2004
2005 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2006 {
2007 LSIState *s = opaque;
2008 addr &= 0xff;
2009 lsi_reg_writeb(s, addr, val & 0xff);
2010 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2011 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2012 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2013 }
2014
2015 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2016 pcibus_t addr, pcibus_t size, int type)
2017 {
2018 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2019
2020 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2021
2022 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2023 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2024 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2025 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2026 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2027 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2028 }
2029
2030 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2031 pcibus_t addr, pcibus_t size, int type)
2032 {
2033 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2034
2035 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2036 s->script_ram_base = addr;
2037 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2038 }
2039
2040 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2041 pcibus_t addr, pcibus_t size, int type)
2042 {
2043 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2044
2045 DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2046 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2047 }
2048
2049 static void lsi_scsi_reset(DeviceState *dev)
2050 {
2051 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2052
2053 lsi_soft_reset(s);
2054 }
2055
2056 static void lsi_pre_save(void *opaque)
2057 {
2058 LSIState *s = opaque;
2059
2060 if (s->current) {
2061 assert(s->current->dma_buf == NULL);
2062 assert(s->current->dma_len == 0);
2063 }
2064 assert(QTAILQ_EMPTY(&s->queue));
2065 }
2066
2067 static const VMStateDescription vmstate_lsi_scsi = {
2068 .name = "lsiscsi",
2069 .version_id = 0,
2070 .minimum_version_id = 0,
2071 .minimum_version_id_old = 0,
2072 .pre_save = lsi_pre_save,
2073 .fields = (VMStateField []) {
2074 VMSTATE_PCI_DEVICE(dev, LSIState),
2075
2076 VMSTATE_INT32(carry, LSIState),
2077 VMSTATE_INT32(sense, LSIState),
2078 VMSTATE_INT32(msg_action, LSIState),
2079 VMSTATE_INT32(msg_len, LSIState),
2080 VMSTATE_BUFFER(msg, LSIState),
2081 VMSTATE_INT32(waiting, LSIState),
2082
2083 VMSTATE_UINT32(dsa, LSIState),
2084 VMSTATE_UINT32(temp, LSIState),
2085 VMSTATE_UINT32(dnad, LSIState),
2086 VMSTATE_UINT32(dbc, LSIState),
2087 VMSTATE_UINT8(istat0, LSIState),
2088 VMSTATE_UINT8(istat1, LSIState),
2089 VMSTATE_UINT8(dcmd, LSIState),
2090 VMSTATE_UINT8(dstat, LSIState),
2091 VMSTATE_UINT8(dien, LSIState),
2092 VMSTATE_UINT8(sist0, LSIState),
2093 VMSTATE_UINT8(sist1, LSIState),
2094 VMSTATE_UINT8(sien0, LSIState),
2095 VMSTATE_UINT8(sien1, LSIState),
2096 VMSTATE_UINT8(mbox0, LSIState),
2097 VMSTATE_UINT8(mbox1, LSIState),
2098 VMSTATE_UINT8(dfifo, LSIState),
2099 VMSTATE_UINT8(ctest2, LSIState),
2100 VMSTATE_UINT8(ctest3, LSIState),
2101 VMSTATE_UINT8(ctest4, LSIState),
2102 VMSTATE_UINT8(ctest5, LSIState),
2103 VMSTATE_UINT8(ccntl0, LSIState),
2104 VMSTATE_UINT8(ccntl1, LSIState),
2105 VMSTATE_UINT32(dsp, LSIState),
2106 VMSTATE_UINT32(dsps, LSIState),
2107 VMSTATE_UINT8(dmode, LSIState),
2108 VMSTATE_UINT8(dcntl, LSIState),
2109 VMSTATE_UINT8(scntl0, LSIState),
2110 VMSTATE_UINT8(scntl1, LSIState),
2111 VMSTATE_UINT8(scntl2, LSIState),
2112 VMSTATE_UINT8(scntl3, LSIState),
2113 VMSTATE_UINT8(sstat0, LSIState),
2114 VMSTATE_UINT8(sstat1, LSIState),
2115 VMSTATE_UINT8(scid, LSIState),
2116 VMSTATE_UINT8(sxfer, LSIState),
2117 VMSTATE_UINT8(socl, LSIState),
2118 VMSTATE_UINT8(sdid, LSIState),
2119 VMSTATE_UINT8(ssid, LSIState),
2120 VMSTATE_UINT8(sfbr, LSIState),
2121 VMSTATE_UINT8(stest1, LSIState),
2122 VMSTATE_UINT8(stest2, LSIState),
2123 VMSTATE_UINT8(stest3, LSIState),
2124 VMSTATE_UINT8(sidl, LSIState),
2125 VMSTATE_UINT8(stime0, LSIState),
2126 VMSTATE_UINT8(respid0, LSIState),
2127 VMSTATE_UINT8(respid1, LSIState),
2128 VMSTATE_UINT32(mmrs, LSIState),
2129 VMSTATE_UINT32(mmws, LSIState),
2130 VMSTATE_UINT32(sfs, LSIState),
2131 VMSTATE_UINT32(drs, LSIState),
2132 VMSTATE_UINT32(sbms, LSIState),
2133 VMSTATE_UINT32(dbms, LSIState),
2134 VMSTATE_UINT32(dnad64, LSIState),
2135 VMSTATE_UINT32(pmjad1, LSIState),
2136 VMSTATE_UINT32(pmjad2, LSIState),
2137 VMSTATE_UINT32(rbc, LSIState),
2138 VMSTATE_UINT32(ua, LSIState),
2139 VMSTATE_UINT32(ia, LSIState),
2140 VMSTATE_UINT32(sbc, LSIState),
2141 VMSTATE_UINT32(csbc, LSIState),
2142 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2143 VMSTATE_UINT8(sbr, LSIState),
2144
2145 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2146 VMSTATE_END_OF_LIST()
2147 }
2148 };
2149
2150 static int lsi_scsi_uninit(PCIDevice *d)
2151 {
2152 LSIState *s = DO_UPCAST(LSIState, dev, d);
2153
2154 cpu_unregister_io_memory(s->mmio_io_addr);
2155 cpu_unregister_io_memory(s->ram_io_addr);
2156
2157 return 0;
2158 }
2159
2160 static int lsi_scsi_init(PCIDevice *dev)
2161 {
2162 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2163 uint8_t *pci_conf;
2164
2165 pci_conf = s->dev.config;
2166
2167 /* PCI Vendor ID (word) */
2168 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2169 /* PCI device ID (word) */
2170 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2171 /* PCI base class code */
2172 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2173 /* PCI subsystem ID */
2174 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2175 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2176 /* PCI latency timer = 255 */
2177 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2178 /* TODO: RST# value should be 0 */
2179 /* Interrupt pin 1 */
2180 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2181
2182 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2183 lsi_mmio_writefn, s,
2184 DEVICE_NATIVE_ENDIAN);
2185 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2186 lsi_ram_writefn, s,
2187 DEVICE_NATIVE_ENDIAN);
2188
2189 pci_register_bar(&s->dev, 0, 256,
2190 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2191 pci_register_bar(&s->dev, 1, 0x400,
2192 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2193 pci_register_bar(&s->dev, 2, 0x2000,
2194 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2195 QTAILQ_INIT(&s->queue);
2196
2197 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2198 if (!dev->qdev.hotplugged) {
2199 return scsi_bus_legacy_handle_cmdline(&s->bus);
2200 }
2201 return 0;
2202 }
2203
2204 static PCIDeviceInfo lsi_info = {
2205 .qdev.name = "lsi53c895a",
2206 .qdev.alias = "lsi",
2207 .qdev.size = sizeof(LSIState),
2208 .qdev.reset = lsi_scsi_reset,
2209 .qdev.vmsd = &vmstate_lsi_scsi,
2210 .init = lsi_scsi_init,
2211 .exit = lsi_scsi_uninit,
2212 };
2213
2214 static void lsi53c895a_register_devices(void)
2215 {
2216 pci_qdev_register(&lsi_info);
2217 }
2218
2219 device_init(lsi53c895a_register_devices);