]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi: Properly initialize controller state on reset
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 SCSIDevice *dev;
179 uint32_t dma_len;
180 uint8_t *dma_buf;
181 uint32_t pending;
182 int out;
183 QTAILQ_ENTRY(lsi_request) next;
184 } lsi_request;
185
186 typedef struct {
187 PCIDevice dev;
188 int mmio_io_addr;
189 int ram_io_addr;
190 uint32_t script_ram_base;
191
192 int carry; /* ??? Should this be an a visible register somewhere? */
193 int sense;
194 /* Action to take at the end of a MSG IN phase.
195 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
196 int msg_action;
197 int msg_len;
198 uint8_t msg[LSI_MAX_MSGIN_LEN];
199 /* 0 if SCRIPTS are running or stopped.
200 * 1 if a Wait Reselect instruction has been issued.
201 * 2 if processing DMA from lsi_execute_script.
202 * 3 if a DMA operation is in progress. */
203 int waiting;
204 SCSIBus bus;
205 SCSIDevice *select_dev;
206 int current_lun;
207 /* The tag is a combination of the device ID and the SCSI tag. */
208 uint32_t select_tag;
209 int command_complete;
210 QTAILQ_HEAD(, lsi_request) queue;
211 lsi_request *current;
212
213 uint32_t dsa;
214 uint32_t temp;
215 uint32_t dnad;
216 uint32_t dbc;
217 uint8_t istat0;
218 uint8_t istat1;
219 uint8_t dcmd;
220 uint8_t dstat;
221 uint8_t dien;
222 uint8_t sist0;
223 uint8_t sist1;
224 uint8_t sien0;
225 uint8_t sien1;
226 uint8_t mbox0;
227 uint8_t mbox1;
228 uint8_t dfifo;
229 uint8_t ctest2;
230 uint8_t ctest3;
231 uint8_t ctest4;
232 uint8_t ctest5;
233 uint8_t ccntl0;
234 uint8_t ccntl1;
235 uint32_t dsp;
236 uint32_t dsps;
237 uint8_t dmode;
238 uint8_t dcntl;
239 uint8_t scntl0;
240 uint8_t scntl1;
241 uint8_t scntl2;
242 uint8_t scntl3;
243 uint8_t sstat0;
244 uint8_t sstat1;
245 uint8_t scid;
246 uint8_t sxfer;
247 uint8_t socl;
248 uint8_t sdid;
249 uint8_t ssid;
250 uint8_t sfbr;
251 uint8_t stest1;
252 uint8_t stest2;
253 uint8_t stest3;
254 uint8_t sidl;
255 uint8_t stime0;
256 uint8_t respid0;
257 uint8_t respid1;
258 uint32_t mmrs;
259 uint32_t mmws;
260 uint32_t sfs;
261 uint32_t drs;
262 uint32_t sbms;
263 uint32_t dbms;
264 uint32_t dnad64;
265 uint32_t pmjad1;
266 uint32_t pmjad2;
267 uint32_t rbc;
268 uint32_t ua;
269 uint32_t ia;
270 uint32_t sbc;
271 uint32_t csbc;
272 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
273 uint8_t sbr;
274
275 /* Script ram is stored as 32-bit words in host byteorder. */
276 uint32_t script_ram[2048];
277 } LSIState;
278
279 static inline int lsi_irq_on_rsl(LSIState *s)
280 {
281 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
282 }
283
284 static void lsi_soft_reset(LSIState *s)
285 {
286 lsi_request *p;
287
288 DPRINTF("Reset\n");
289 s->carry = 0;
290
291 s->waiting = 0;
292 s->dsa = 0;
293 s->dnad = 0;
294 s->dbc = 0;
295 s->temp = 0;
296 memset(s->scratch, 0, sizeof(s->scratch));
297 s->istat0 = 0;
298 s->istat1 = 0;
299 s->dcmd = 0;
300 s->dstat = 0;
301 s->dien = 0;
302 s->sist0 = 0;
303 s->sist1 = 0;
304 s->sien0 = 0;
305 s->sien1 = 0;
306 s->mbox0 = 0;
307 s->mbox1 = 0;
308 s->dfifo = 0;
309 s->ctest2 = 0;
310 s->ctest3 = 0;
311 s->ctest4 = 0;
312 s->ctest5 = 0;
313 s->ccntl0 = 0;
314 s->ccntl1 = 0;
315 s->dsp = 0;
316 s->dsps = 0;
317 s->dmode = 0;
318 s->dcntl = 0;
319 s->scntl0 = 0xc0;
320 s->scntl1 = 0;
321 s->scntl2 = 0;
322 s->scntl3 = 0;
323 s->sstat0 = 0;
324 s->sstat1 = 0;
325 s->scid = 7;
326 s->sxfer = 0;
327 s->socl = 0;
328 s->stest1 = 0;
329 s->stest2 = 0;
330 s->stest3 = 0;
331 s->sidl = 0;
332 s->stime0 = 0;
333 s->respid0 = 0x80;
334 s->respid1 = 0;
335 s->mmrs = 0;
336 s->mmws = 0;
337 s->sfs = 0;
338 s->drs = 0;
339 s->sbms = 0;
340 s->dbms = 0;
341 s->dnad64 = 0;
342 s->pmjad1 = 0;
343 s->pmjad2 = 0;
344 s->rbc = 0;
345 s->ua = 0;
346 s->ia = 0;
347 s->sbc = 0;
348 s->csbc = 0;
349 s->sbr = 0;
350 while (!QTAILQ_EMPTY(&s->queue)) {
351 p = QTAILQ_FIRST(&s->queue);
352 QTAILQ_REMOVE(&s->queue, p, next);
353 qemu_free(p);
354 }
355 if (s->current) {
356 qemu_free(s->current);
357 s->current = NULL;
358 }
359 }
360
361 static int lsi_dma_40bit(LSIState *s)
362 {
363 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
364 return 1;
365 return 0;
366 }
367
368 static int lsi_dma_ti64bit(LSIState *s)
369 {
370 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
371 return 1;
372 return 0;
373 }
374
375 static int lsi_dma_64bit(LSIState *s)
376 {
377 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
378 return 1;
379 return 0;
380 }
381
382 static uint8_t lsi_reg_readb(LSIState *s, int offset);
383 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
384 static void lsi_execute_script(LSIState *s);
385 static void lsi_reselect(LSIState *s, lsi_request *p);
386
387 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
388 {
389 uint32_t buf;
390
391 /* Optimize reading from SCRIPTS RAM. */
392 if ((addr & 0xffffe000) == s->script_ram_base) {
393 return s->script_ram[(addr & 0x1fff) >> 2];
394 }
395 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
396 return cpu_to_le32(buf);
397 }
398
399 static void lsi_stop_script(LSIState *s)
400 {
401 s->istat1 &= ~LSI_ISTAT1_SRUN;
402 }
403
404 static void lsi_update_irq(LSIState *s)
405 {
406 int level;
407 static int last_level;
408 lsi_request *p;
409
410 /* It's unclear whether the DIP/SIP bits should be cleared when the
411 Interrupt Status Registers are cleared or when istat0 is read.
412 We currently do the formwer, which seems to work. */
413 level = 0;
414 if (s->dstat) {
415 if (s->dstat & s->dien)
416 level = 1;
417 s->istat0 |= LSI_ISTAT0_DIP;
418 } else {
419 s->istat0 &= ~LSI_ISTAT0_DIP;
420 }
421
422 if (s->sist0 || s->sist1) {
423 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
424 level = 1;
425 s->istat0 |= LSI_ISTAT0_SIP;
426 } else {
427 s->istat0 &= ~LSI_ISTAT0_SIP;
428 }
429 if (s->istat0 & LSI_ISTAT0_INTF)
430 level = 1;
431
432 if (level != last_level) {
433 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
434 level, s->dstat, s->sist1, s->sist0);
435 last_level = level;
436 }
437 qemu_set_irq(s->dev.irq[0], level);
438
439 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
440 DPRINTF("Handled IRQs & disconnected, looking for pending "
441 "processes\n");
442 QTAILQ_FOREACH(p, &s->queue, next) {
443 if (p->pending) {
444 lsi_reselect(s, p);
445 break;
446 }
447 }
448 }
449 }
450
451 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
452 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
453 {
454 uint32_t mask0;
455 uint32_t mask1;
456
457 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
458 stat1, stat0, s->sist1, s->sist0);
459 s->sist0 |= stat0;
460 s->sist1 |= stat1;
461 /* Stop processor on fatal or unmasked interrupt. As a special hack
462 we don't stop processing when raising STO. Instead continue
463 execution and stop at the next insn that accesses the SCSI bus. */
464 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
465 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
466 mask1 &= ~LSI_SIST1_STO;
467 if (s->sist0 & mask0 || s->sist1 & mask1) {
468 lsi_stop_script(s);
469 }
470 lsi_update_irq(s);
471 }
472
473 /* Stop SCRIPTS execution and raise a DMA interrupt. */
474 static void lsi_script_dma_interrupt(LSIState *s, int stat)
475 {
476 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
477 s->dstat |= stat;
478 lsi_update_irq(s);
479 lsi_stop_script(s);
480 }
481
482 static inline void lsi_set_phase(LSIState *s, int phase)
483 {
484 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
485 }
486
487 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
488 {
489 /* Trigger a phase mismatch. */
490 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
491 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
492 s->dsp = s->pmjad1;
493 } else {
494 s->dsp = s->pmjad2;
495 }
496 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
497 } else {
498 DPRINTF("Phase mismatch interrupt\n");
499 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
500 lsi_stop_script(s);
501 }
502 lsi_set_phase(s, new_phase);
503 }
504
505
506 /* Resume SCRIPTS execution after a DMA operation. */
507 static void lsi_resume_script(LSIState *s)
508 {
509 if (s->waiting != 2) {
510 s->waiting = 0;
511 lsi_execute_script(s);
512 } else {
513 s->waiting = 0;
514 }
515 }
516
517 /* Initiate a SCSI layer data transfer. */
518 static void lsi_do_dma(LSIState *s, int out)
519 {
520 uint32_t count;
521 target_phys_addr_t addr;
522
523 assert(s->current);
524 if (!s->current->dma_len) {
525 /* Wait until data is available. */
526 DPRINTF("DMA no data available\n");
527 return;
528 }
529
530 count = s->dbc;
531 if (count > s->current->dma_len)
532 count = s->current->dma_len;
533
534 addr = s->dnad;
535 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
536 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
537 addr |= ((uint64_t)s->dnad64 << 32);
538 else if (s->dbms)
539 addr |= ((uint64_t)s->dbms << 32);
540 else if (s->sbms)
541 addr |= ((uint64_t)s->sbms << 32);
542
543 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
544 s->csbc += count;
545 s->dnad += count;
546 s->dbc -= count;
547
548 if (s->current->dma_buf == NULL) {
549 s->current->dma_buf = s->current->dev->info->get_buf(s->current->dev,
550 s->current->tag);
551 }
552
553 /* ??? Set SFBR to first data byte. */
554 if (out) {
555 cpu_physical_memory_read(addr, s->current->dma_buf, count);
556 } else {
557 cpu_physical_memory_write(addr, s->current->dma_buf, count);
558 }
559 s->current->dma_len -= count;
560 if (s->current->dma_len == 0) {
561 s->current->dma_buf = NULL;
562 if (out) {
563 /* Write the data. */
564 s->current->dev->info->write_data(s->current->dev, s->current->tag);
565 } else {
566 /* Request any remaining data. */
567 s->current->dev->info->read_data(s->current->dev, s->current->tag);
568 }
569 } else {
570 s->current->dma_buf += count;
571 lsi_resume_script(s);
572 }
573 }
574
575
576 /* Add a command to the queue. */
577 static void lsi_queue_command(LSIState *s)
578 {
579 lsi_request *p = s->current;
580
581 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
582 assert(s->current != NULL);
583 assert(s->current->dma_len == 0);
584 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
585 s->current = NULL;
586
587 p->pending = 0;
588 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
589 }
590
591 /* Queue a byte for a MSG IN phase. */
592 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
593 {
594 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
595 BADF("MSG IN data too long\n");
596 } else {
597 DPRINTF("MSG IN 0x%02x\n", data);
598 s->msg[s->msg_len++] = data;
599 }
600 }
601
602 /* Perform reselection to continue a command. */
603 static void lsi_reselect(LSIState *s, lsi_request *p)
604 {
605 int id;
606
607 assert(s->current == NULL);
608 QTAILQ_REMOVE(&s->queue, p, next);
609 s->current = p;
610
611 id = (p->tag >> 8) & 0xf;
612 s->ssid = id | 0x80;
613 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
614 if (!(s->dcntl & LSI_DCNTL_COM)) {
615 s->sfbr = 1 << (id & 0x7);
616 }
617 DPRINTF("Reselected target %d\n", id);
618 s->scntl1 |= LSI_SCNTL1_CON;
619 lsi_set_phase(s, PHASE_MI);
620 s->msg_action = p->out ? 2 : 3;
621 s->current->dma_len = p->pending;
622 lsi_add_msg_byte(s, 0x80);
623 if (s->current->tag & LSI_TAG_VALID) {
624 lsi_add_msg_byte(s, 0x20);
625 lsi_add_msg_byte(s, p->tag & 0xff);
626 }
627
628 if (lsi_irq_on_rsl(s)) {
629 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
630 }
631 }
632
633 /* Record that data is available for a queued command. Returns zero if
634 the device was reselected, nonzero if the IO is deferred. */
635 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
636 {
637 lsi_request *p;
638
639 QTAILQ_FOREACH(p, &s->queue, next) {
640 if (p->tag == tag) {
641 if (p->pending) {
642 BADF("Multiple IO pending for tag %d\n", tag);
643 }
644 p->pending = arg;
645 /* Reselect if waiting for it, or if reselection triggers an IRQ
646 and the bus is free.
647 Since no interrupt stacking is implemented in the emulation, it
648 is also required that there are no pending interrupts waiting
649 for service from the device driver. */
650 if (s->waiting == 1 ||
651 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
652 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
653 /* Reselect device. */
654 lsi_reselect(s, p);
655 return 0;
656 } else {
657 DPRINTF("Queueing IO tag=0x%x\n", tag);
658 p->pending = arg;
659 return 1;
660 }
661 }
662 }
663 BADF("IO with unknown tag %d\n", tag);
664 return 1;
665 }
666
667 /* Callback to indicate that the SCSI layer has completed a transfer. */
668 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
669 uint32_t arg)
670 {
671 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
672 int out;
673
674 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
675 if (reason == SCSI_REASON_DONE) {
676 DPRINTF("Command complete sense=%d\n", (int)arg);
677 s->sense = arg;
678 s->command_complete = 2;
679 if (s->waiting && s->dbc != 0) {
680 /* Raise phase mismatch for short transfers. */
681 lsi_bad_phase(s, out, PHASE_ST);
682 } else {
683 lsi_set_phase(s, PHASE_ST);
684 }
685
686 qemu_free(s->current);
687 s->current = NULL;
688
689 lsi_resume_script(s);
690 return;
691 }
692
693 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
694 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
695 if (lsi_queue_tag(s, tag, arg))
696 return;
697 }
698
699 /* host adapter (re)connected */
700 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
701 s->current->dma_len = arg;
702 s->command_complete = 1;
703 if (!s->waiting)
704 return;
705 if (s->waiting == 1 || s->dbc == 0) {
706 lsi_resume_script(s);
707 } else {
708 lsi_do_dma(s, out);
709 }
710 }
711
712 static void lsi_do_command(LSIState *s)
713 {
714 uint8_t buf[16];
715 int n;
716
717 DPRINTF("Send command len=%d\n", s->dbc);
718 if (s->dbc > 16)
719 s->dbc = 16;
720 cpu_physical_memory_read(s->dnad, buf, s->dbc);
721 s->sfbr = buf[0];
722 s->command_complete = 0;
723
724 assert(s->current == NULL);
725 s->current = qemu_mallocz(sizeof(lsi_request));
726 s->current->tag = s->select_tag;
727 s->current->dev = s->select_dev;
728
729 n = s->current->dev->info->send_command(s->current->dev, s->current->tag, buf,
730 s->current_lun);
731 if (n > 0) {
732 lsi_set_phase(s, PHASE_DI);
733 s->current->dev->info->read_data(s->current->dev, s->current->tag);
734 } else if (n < 0) {
735 lsi_set_phase(s, PHASE_DO);
736 s->current->dev->info->write_data(s->current->dev, s->current->tag);
737 }
738
739 if (!s->command_complete) {
740 if (n) {
741 /* Command did not complete immediately so disconnect. */
742 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
743 lsi_add_msg_byte(s, 4); /* DISCONNECT */
744 /* wait data */
745 lsi_set_phase(s, PHASE_MI);
746 s->msg_action = 1;
747 lsi_queue_command(s);
748 } else {
749 /* wait command complete */
750 lsi_set_phase(s, PHASE_DI);
751 }
752 }
753 }
754
755 static void lsi_do_status(LSIState *s)
756 {
757 uint8_t sense;
758 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
759 if (s->dbc != 1)
760 BADF("Bad Status move\n");
761 s->dbc = 1;
762 sense = s->sense;
763 s->sfbr = sense;
764 cpu_physical_memory_write(s->dnad, &sense, 1);
765 lsi_set_phase(s, PHASE_MI);
766 s->msg_action = 1;
767 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
768 }
769
770 static void lsi_disconnect(LSIState *s)
771 {
772 s->scntl1 &= ~LSI_SCNTL1_CON;
773 s->sstat1 &= ~PHASE_MASK;
774 }
775
776 static void lsi_do_msgin(LSIState *s)
777 {
778 int len;
779 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
780 s->sfbr = s->msg[0];
781 len = s->msg_len;
782 if (len > s->dbc)
783 len = s->dbc;
784 cpu_physical_memory_write(s->dnad, s->msg, len);
785 /* Linux drivers rely on the last byte being in the SIDL. */
786 s->sidl = s->msg[len - 1];
787 s->msg_len -= len;
788 if (s->msg_len) {
789 memmove(s->msg, s->msg + len, s->msg_len);
790 } else {
791 /* ??? Check if ATN (not yet implemented) is asserted and maybe
792 switch to PHASE_MO. */
793 switch (s->msg_action) {
794 case 0:
795 lsi_set_phase(s, PHASE_CMD);
796 break;
797 case 1:
798 lsi_disconnect(s);
799 break;
800 case 2:
801 lsi_set_phase(s, PHASE_DO);
802 break;
803 case 3:
804 lsi_set_phase(s, PHASE_DI);
805 break;
806 default:
807 abort();
808 }
809 }
810 }
811
812 /* Read the next byte during a MSGOUT phase. */
813 static uint8_t lsi_get_msgbyte(LSIState *s)
814 {
815 uint8_t data;
816 cpu_physical_memory_read(s->dnad, &data, 1);
817 s->dnad++;
818 s->dbc--;
819 return data;
820 }
821
822 static void lsi_do_msgout(LSIState *s)
823 {
824 uint8_t msg;
825 int len;
826
827 DPRINTF("MSG out len=%d\n", s->dbc);
828 while (s->dbc) {
829 msg = lsi_get_msgbyte(s);
830 s->sfbr = msg;
831
832 switch (msg) {
833 case 0x04:
834 DPRINTF("MSG: Disconnect\n");
835 lsi_disconnect(s);
836 break;
837 case 0x08:
838 DPRINTF("MSG: No Operation\n");
839 lsi_set_phase(s, PHASE_CMD);
840 break;
841 case 0x01:
842 len = lsi_get_msgbyte(s);
843 msg = lsi_get_msgbyte(s);
844 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
845 switch (msg) {
846 case 1:
847 DPRINTF("SDTR (ignored)\n");
848 s->dbc -= 2;
849 break;
850 case 3:
851 DPRINTF("WDTR (ignored)\n");
852 s->dbc -= 1;
853 break;
854 default:
855 goto bad;
856 }
857 break;
858 case 0x20: /* SIMPLE queue */
859 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
860 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
861 break;
862 case 0x21: /* HEAD of queue */
863 BADF("HEAD queue not implemented\n");
864 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
865 break;
866 case 0x22: /* ORDERED queue */
867 BADF("ORDERED queue not implemented\n");
868 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
869 break;
870 default:
871 if ((msg & 0x80) == 0) {
872 goto bad;
873 }
874 s->current_lun = msg & 7;
875 DPRINTF("Select LUN %d\n", s->current_lun);
876 lsi_set_phase(s, PHASE_CMD);
877 break;
878 }
879 }
880 return;
881 bad:
882 BADF("Unimplemented message 0x%02x\n", msg);
883 lsi_set_phase(s, PHASE_MI);
884 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
885 s->msg_action = 0;
886 }
887
888 /* Sign extend a 24-bit value. */
889 static inline int32_t sxt24(int32_t n)
890 {
891 return (n << 8) >> 8;
892 }
893
894 #define LSI_BUF_SIZE 4096
895 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
896 {
897 int n;
898 uint8_t buf[LSI_BUF_SIZE];
899
900 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
901 while (count) {
902 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
903 cpu_physical_memory_read(src, buf, n);
904 cpu_physical_memory_write(dest, buf, n);
905 src += n;
906 dest += n;
907 count -= n;
908 }
909 }
910
911 static void lsi_wait_reselect(LSIState *s)
912 {
913 lsi_request *p;
914
915 DPRINTF("Wait Reselect\n");
916
917 QTAILQ_FOREACH(p, &s->queue, next) {
918 if (p->pending) {
919 lsi_reselect(s, p);
920 break;
921 }
922 }
923 if (s->current == NULL) {
924 s->waiting = 1;
925 }
926 }
927
928 static void lsi_execute_script(LSIState *s)
929 {
930 uint32_t insn;
931 uint32_t addr, addr_high;
932 int opcode;
933 int insn_processed = 0;
934
935 s->istat1 |= LSI_ISTAT1_SRUN;
936 again:
937 insn_processed++;
938 insn = read_dword(s, s->dsp);
939 if (!insn) {
940 /* If we receive an empty opcode increment the DSP by 4 bytes
941 instead of 8 and execute the next opcode at that location */
942 s->dsp += 4;
943 goto again;
944 }
945 addr = read_dword(s, s->dsp + 4);
946 addr_high = 0;
947 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
948 s->dsps = addr;
949 s->dcmd = insn >> 24;
950 s->dsp += 8;
951 switch (insn >> 30) {
952 case 0: /* Block move. */
953 if (s->sist1 & LSI_SIST1_STO) {
954 DPRINTF("Delayed select timeout\n");
955 lsi_stop_script(s);
956 break;
957 }
958 s->dbc = insn & 0xffffff;
959 s->rbc = s->dbc;
960 /* ??? Set ESA. */
961 s->ia = s->dsp - 8;
962 if (insn & (1 << 29)) {
963 /* Indirect addressing. */
964 addr = read_dword(s, addr);
965 } else if (insn & (1 << 28)) {
966 uint32_t buf[2];
967 int32_t offset;
968 /* Table indirect addressing. */
969
970 /* 32-bit Table indirect */
971 offset = sxt24(addr);
972 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
973 /* byte count is stored in bits 0:23 only */
974 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
975 s->rbc = s->dbc;
976 addr = cpu_to_le32(buf[1]);
977
978 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
979 * table, bits [31:24] */
980 if (lsi_dma_40bit(s))
981 addr_high = cpu_to_le32(buf[0]) >> 24;
982 else if (lsi_dma_ti64bit(s)) {
983 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
984 switch (selector) {
985 case 0 ... 0x0f:
986 /* offset index into scratch registers since
987 * TI64 mode can use registers C to R */
988 addr_high = s->scratch[2 + selector];
989 break;
990 case 0x10:
991 addr_high = s->mmrs;
992 break;
993 case 0x11:
994 addr_high = s->mmws;
995 break;
996 case 0x12:
997 addr_high = s->sfs;
998 break;
999 case 0x13:
1000 addr_high = s->drs;
1001 break;
1002 case 0x14:
1003 addr_high = s->sbms;
1004 break;
1005 case 0x15:
1006 addr_high = s->dbms;
1007 break;
1008 default:
1009 BADF("Illegal selector specified (0x%x > 0x15)"
1010 " for 64-bit DMA block move", selector);
1011 break;
1012 }
1013 }
1014 } else if (lsi_dma_64bit(s)) {
1015 /* fetch a 3rd dword if 64-bit direct move is enabled and
1016 only if we're not doing table indirect or indirect addressing */
1017 s->dbms = read_dword(s, s->dsp);
1018 s->dsp += 4;
1019 s->ia = s->dsp - 12;
1020 }
1021 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1022 DPRINTF("Wrong phase got %d expected %d\n",
1023 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1024 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1025 break;
1026 }
1027 s->dnad = addr;
1028 s->dnad64 = addr_high;
1029 switch (s->sstat1 & 0x7) {
1030 case PHASE_DO:
1031 s->waiting = 2;
1032 lsi_do_dma(s, 1);
1033 if (s->waiting)
1034 s->waiting = 3;
1035 break;
1036 case PHASE_DI:
1037 s->waiting = 2;
1038 lsi_do_dma(s, 0);
1039 if (s->waiting)
1040 s->waiting = 3;
1041 break;
1042 case PHASE_CMD:
1043 lsi_do_command(s);
1044 break;
1045 case PHASE_ST:
1046 lsi_do_status(s);
1047 break;
1048 case PHASE_MO:
1049 lsi_do_msgout(s);
1050 break;
1051 case PHASE_MI:
1052 lsi_do_msgin(s);
1053 break;
1054 default:
1055 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1056 exit(1);
1057 }
1058 s->dfifo = s->dbc & 0xff;
1059 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1060 s->sbc = s->dbc;
1061 s->rbc -= s->dbc;
1062 s->ua = addr + s->dbc;
1063 break;
1064
1065 case 1: /* IO or Read/Write instruction. */
1066 opcode = (insn >> 27) & 7;
1067 if (opcode < 5) {
1068 uint32_t id;
1069
1070 if (insn & (1 << 25)) {
1071 id = read_dword(s, s->dsa + sxt24(insn));
1072 } else {
1073 id = insn;
1074 }
1075 id = (id >> 16) & 0xf;
1076 if (insn & (1 << 26)) {
1077 addr = s->dsp + sxt24(addr);
1078 }
1079 s->dnad = addr;
1080 switch (opcode) {
1081 case 0: /* Select */
1082 s->sdid = id;
1083 if (s->scntl1 & LSI_SCNTL1_CON) {
1084 DPRINTF("Already reselected, jumping to alternative address\n");
1085 s->dsp = s->dnad;
1086 break;
1087 }
1088 s->sstat0 |= LSI_SSTAT0_WOA;
1089 s->scntl1 &= ~LSI_SCNTL1_IARB;
1090 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1091 DPRINTF("Selected absent target %d\n", id);
1092 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1093 lsi_disconnect(s);
1094 break;
1095 }
1096 DPRINTF("Selected target %d%s\n",
1097 id, insn & (1 << 3) ? " ATN" : "");
1098 /* ??? Linux drivers compain when this is set. Maybe
1099 it only applies in low-level mode (unimplemented).
1100 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1101 s->select_dev = s->bus.devs[id];
1102 s->select_tag = id << 8;
1103 s->scntl1 |= LSI_SCNTL1_CON;
1104 if (insn & (1 << 3)) {
1105 s->socl |= LSI_SOCL_ATN;
1106 }
1107 lsi_set_phase(s, PHASE_MO);
1108 break;
1109 case 1: /* Disconnect */
1110 DPRINTF("Wait Disconnect\n");
1111 s->scntl1 &= ~LSI_SCNTL1_CON;
1112 break;
1113 case 2: /* Wait Reselect */
1114 if (!lsi_irq_on_rsl(s)) {
1115 lsi_wait_reselect(s);
1116 }
1117 break;
1118 case 3: /* Set */
1119 DPRINTF("Set%s%s%s%s\n",
1120 insn & (1 << 3) ? " ATN" : "",
1121 insn & (1 << 6) ? " ACK" : "",
1122 insn & (1 << 9) ? " TM" : "",
1123 insn & (1 << 10) ? " CC" : "");
1124 if (insn & (1 << 3)) {
1125 s->socl |= LSI_SOCL_ATN;
1126 lsi_set_phase(s, PHASE_MO);
1127 }
1128 if (insn & (1 << 9)) {
1129 BADF("Target mode not implemented\n");
1130 exit(1);
1131 }
1132 if (insn & (1 << 10))
1133 s->carry = 1;
1134 break;
1135 case 4: /* Clear */
1136 DPRINTF("Clear%s%s%s%s\n",
1137 insn & (1 << 3) ? " ATN" : "",
1138 insn & (1 << 6) ? " ACK" : "",
1139 insn & (1 << 9) ? " TM" : "",
1140 insn & (1 << 10) ? " CC" : "");
1141 if (insn & (1 << 3)) {
1142 s->socl &= ~LSI_SOCL_ATN;
1143 }
1144 if (insn & (1 << 10))
1145 s->carry = 0;
1146 break;
1147 }
1148 } else {
1149 uint8_t op0;
1150 uint8_t op1;
1151 uint8_t data8;
1152 int reg;
1153 int operator;
1154 #ifdef DEBUG_LSI
1155 static const char *opcode_names[3] =
1156 {"Write", "Read", "Read-Modify-Write"};
1157 static const char *operator_names[8] =
1158 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1159 #endif
1160
1161 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1162 data8 = (insn >> 8) & 0xff;
1163 opcode = (insn >> 27) & 7;
1164 operator = (insn >> 24) & 7;
1165 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1166 opcode_names[opcode - 5], reg,
1167 operator_names[operator], data8, s->sfbr,
1168 (insn & (1 << 23)) ? " SFBR" : "");
1169 op0 = op1 = 0;
1170 switch (opcode) {
1171 case 5: /* From SFBR */
1172 op0 = s->sfbr;
1173 op1 = data8;
1174 break;
1175 case 6: /* To SFBR */
1176 if (operator)
1177 op0 = lsi_reg_readb(s, reg);
1178 op1 = data8;
1179 break;
1180 case 7: /* Read-modify-write */
1181 if (operator)
1182 op0 = lsi_reg_readb(s, reg);
1183 if (insn & (1 << 23)) {
1184 op1 = s->sfbr;
1185 } else {
1186 op1 = data8;
1187 }
1188 break;
1189 }
1190
1191 switch (operator) {
1192 case 0: /* move */
1193 op0 = op1;
1194 break;
1195 case 1: /* Shift left */
1196 op1 = op0 >> 7;
1197 op0 = (op0 << 1) | s->carry;
1198 s->carry = op1;
1199 break;
1200 case 2: /* OR */
1201 op0 |= op1;
1202 break;
1203 case 3: /* XOR */
1204 op0 ^= op1;
1205 break;
1206 case 4: /* AND */
1207 op0 &= op1;
1208 break;
1209 case 5: /* SHR */
1210 op1 = op0 & 1;
1211 op0 = (op0 >> 1) | (s->carry << 7);
1212 s->carry = op1;
1213 break;
1214 case 6: /* ADD */
1215 op0 += op1;
1216 s->carry = op0 < op1;
1217 break;
1218 case 7: /* ADC */
1219 op0 += op1 + s->carry;
1220 if (s->carry)
1221 s->carry = op0 <= op1;
1222 else
1223 s->carry = op0 < op1;
1224 break;
1225 }
1226
1227 switch (opcode) {
1228 case 5: /* From SFBR */
1229 case 7: /* Read-modify-write */
1230 lsi_reg_writeb(s, reg, op0);
1231 break;
1232 case 6: /* To SFBR */
1233 s->sfbr = op0;
1234 break;
1235 }
1236 }
1237 break;
1238
1239 case 2: /* Transfer Control. */
1240 {
1241 int cond;
1242 int jmp;
1243
1244 if ((insn & 0x002e0000) == 0) {
1245 DPRINTF("NOP\n");
1246 break;
1247 }
1248 if (s->sist1 & LSI_SIST1_STO) {
1249 DPRINTF("Delayed select timeout\n");
1250 lsi_stop_script(s);
1251 break;
1252 }
1253 cond = jmp = (insn & (1 << 19)) != 0;
1254 if (cond == jmp && (insn & (1 << 21))) {
1255 DPRINTF("Compare carry %d\n", s->carry == jmp);
1256 cond = s->carry != 0;
1257 }
1258 if (cond == jmp && (insn & (1 << 17))) {
1259 DPRINTF("Compare phase %d %c= %d\n",
1260 (s->sstat1 & PHASE_MASK),
1261 jmp ? '=' : '!',
1262 ((insn >> 24) & 7));
1263 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1264 }
1265 if (cond == jmp && (insn & (1 << 18))) {
1266 uint8_t mask;
1267
1268 mask = (~insn >> 8) & 0xff;
1269 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1270 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1271 cond = (s->sfbr & mask) == (insn & mask);
1272 }
1273 if (cond == jmp) {
1274 if (insn & (1 << 23)) {
1275 /* Relative address. */
1276 addr = s->dsp + sxt24(addr);
1277 }
1278 switch ((insn >> 27) & 7) {
1279 case 0: /* Jump */
1280 DPRINTF("Jump to 0x%08x\n", addr);
1281 s->dsp = addr;
1282 break;
1283 case 1: /* Call */
1284 DPRINTF("Call 0x%08x\n", addr);
1285 s->temp = s->dsp;
1286 s->dsp = addr;
1287 break;
1288 case 2: /* Return */
1289 DPRINTF("Return to 0x%08x\n", s->temp);
1290 s->dsp = s->temp;
1291 break;
1292 case 3: /* Interrupt */
1293 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1294 if ((insn & (1 << 20)) != 0) {
1295 s->istat0 |= LSI_ISTAT0_INTF;
1296 lsi_update_irq(s);
1297 } else {
1298 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1299 }
1300 break;
1301 default:
1302 DPRINTF("Illegal transfer control\n");
1303 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1304 break;
1305 }
1306 } else {
1307 DPRINTF("Control condition failed\n");
1308 }
1309 }
1310 break;
1311
1312 case 3:
1313 if ((insn & (1 << 29)) == 0) {
1314 /* Memory move. */
1315 uint32_t dest;
1316 /* ??? The docs imply the destination address is loaded into
1317 the TEMP register. However the Linux drivers rely on
1318 the value being presrved. */
1319 dest = read_dword(s, s->dsp);
1320 s->dsp += 4;
1321 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1322 } else {
1323 uint8_t data[7];
1324 int reg;
1325 int n;
1326 int i;
1327
1328 if (insn & (1 << 28)) {
1329 addr = s->dsa + sxt24(addr);
1330 }
1331 n = (insn & 7);
1332 reg = (insn >> 16) & 0xff;
1333 if (insn & (1 << 24)) {
1334 cpu_physical_memory_read(addr, data, n);
1335 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1336 addr, *(int *)data);
1337 for (i = 0; i < n; i++) {
1338 lsi_reg_writeb(s, reg + i, data[i]);
1339 }
1340 } else {
1341 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1342 for (i = 0; i < n; i++) {
1343 data[i] = lsi_reg_readb(s, reg + i);
1344 }
1345 cpu_physical_memory_write(addr, data, n);
1346 }
1347 }
1348 }
1349 if (insn_processed > 10000 && !s->waiting) {
1350 /* Some windows drivers make the device spin waiting for a memory
1351 location to change. If we have been executed a lot of code then
1352 assume this is the case and force an unexpected device disconnect.
1353 This is apparently sufficient to beat the drivers into submission.
1354 */
1355 if (!(s->sien0 & LSI_SIST0_UDC))
1356 fprintf(stderr, "inf. loop with UDC masked\n");
1357 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1358 lsi_disconnect(s);
1359 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1360 if (s->dcntl & LSI_DCNTL_SSM) {
1361 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1362 } else {
1363 goto again;
1364 }
1365 }
1366 DPRINTF("SCRIPTS execution stopped\n");
1367 }
1368
1369 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1370 {
1371 uint8_t tmp;
1372 #define CASE_GET_REG24(name, addr) \
1373 case addr: return s->name & 0xff; \
1374 case addr + 1: return (s->name >> 8) & 0xff; \
1375 case addr + 2: return (s->name >> 16) & 0xff;
1376
1377 #define CASE_GET_REG32(name, addr) \
1378 case addr: return s->name & 0xff; \
1379 case addr + 1: return (s->name >> 8) & 0xff; \
1380 case addr + 2: return (s->name >> 16) & 0xff; \
1381 case addr + 3: return (s->name >> 24) & 0xff;
1382
1383 #ifdef DEBUG_LSI_REG
1384 DPRINTF("Read reg %x\n", offset);
1385 #endif
1386 switch (offset) {
1387 case 0x00: /* SCNTL0 */
1388 return s->scntl0;
1389 case 0x01: /* SCNTL1 */
1390 return s->scntl1;
1391 case 0x02: /* SCNTL2 */
1392 return s->scntl2;
1393 case 0x03: /* SCNTL3 */
1394 return s->scntl3;
1395 case 0x04: /* SCID */
1396 return s->scid;
1397 case 0x05: /* SXFER */
1398 return s->sxfer;
1399 case 0x06: /* SDID */
1400 return s->sdid;
1401 case 0x07: /* GPREG0 */
1402 return 0x7f;
1403 case 0x08: /* Revision ID */
1404 return 0x00;
1405 case 0xa: /* SSID */
1406 return s->ssid;
1407 case 0xb: /* SBCL */
1408 /* ??? This is not correct. However it's (hopefully) only
1409 used for diagnostics, so should be ok. */
1410 return 0;
1411 case 0xc: /* DSTAT */
1412 tmp = s->dstat | 0x80;
1413 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1414 s->dstat = 0;
1415 lsi_update_irq(s);
1416 return tmp;
1417 case 0x0d: /* SSTAT0 */
1418 return s->sstat0;
1419 case 0x0e: /* SSTAT1 */
1420 return s->sstat1;
1421 case 0x0f: /* SSTAT2 */
1422 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1423 CASE_GET_REG32(dsa, 0x10)
1424 case 0x14: /* ISTAT0 */
1425 return s->istat0;
1426 case 0x15: /* ISTAT1 */
1427 return s->istat1;
1428 case 0x16: /* MBOX0 */
1429 return s->mbox0;
1430 case 0x17: /* MBOX1 */
1431 return s->mbox1;
1432 case 0x18: /* CTEST0 */
1433 return 0xff;
1434 case 0x19: /* CTEST1 */
1435 return 0;
1436 case 0x1a: /* CTEST2 */
1437 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1438 if (s->istat0 & LSI_ISTAT0_SIGP) {
1439 s->istat0 &= ~LSI_ISTAT0_SIGP;
1440 tmp |= LSI_CTEST2_SIGP;
1441 }
1442 return tmp;
1443 case 0x1b: /* CTEST3 */
1444 return s->ctest3;
1445 CASE_GET_REG32(temp, 0x1c)
1446 case 0x20: /* DFIFO */
1447 return 0;
1448 case 0x21: /* CTEST4 */
1449 return s->ctest4;
1450 case 0x22: /* CTEST5 */
1451 return s->ctest5;
1452 case 0x23: /* CTEST6 */
1453 return 0;
1454 CASE_GET_REG24(dbc, 0x24)
1455 case 0x27: /* DCMD */
1456 return s->dcmd;
1457 CASE_GET_REG32(dnad, 0x28)
1458 CASE_GET_REG32(dsp, 0x2c)
1459 CASE_GET_REG32(dsps, 0x30)
1460 CASE_GET_REG32(scratch[0], 0x34)
1461 case 0x38: /* DMODE */
1462 return s->dmode;
1463 case 0x39: /* DIEN */
1464 return s->dien;
1465 case 0x3a: /* SBR */
1466 return s->sbr;
1467 case 0x3b: /* DCNTL */
1468 return s->dcntl;
1469 case 0x40: /* SIEN0 */
1470 return s->sien0;
1471 case 0x41: /* SIEN1 */
1472 return s->sien1;
1473 case 0x42: /* SIST0 */
1474 tmp = s->sist0;
1475 s->sist0 = 0;
1476 lsi_update_irq(s);
1477 return tmp;
1478 case 0x43: /* SIST1 */
1479 tmp = s->sist1;
1480 s->sist1 = 0;
1481 lsi_update_irq(s);
1482 return tmp;
1483 case 0x46: /* MACNTL */
1484 return 0x0f;
1485 case 0x47: /* GPCNTL0 */
1486 return 0x0f;
1487 case 0x48: /* STIME0 */
1488 return s->stime0;
1489 case 0x4a: /* RESPID0 */
1490 return s->respid0;
1491 case 0x4b: /* RESPID1 */
1492 return s->respid1;
1493 case 0x4d: /* STEST1 */
1494 return s->stest1;
1495 case 0x4e: /* STEST2 */
1496 return s->stest2;
1497 case 0x4f: /* STEST3 */
1498 return s->stest3;
1499 case 0x50: /* SIDL */
1500 /* This is needed by the linux drivers. We currently only update it
1501 during the MSG IN phase. */
1502 return s->sidl;
1503 case 0x52: /* STEST4 */
1504 return 0xe0;
1505 case 0x56: /* CCNTL0 */
1506 return s->ccntl0;
1507 case 0x57: /* CCNTL1 */
1508 return s->ccntl1;
1509 case 0x58: /* SBDL */
1510 /* Some drivers peek at the data bus during the MSG IN phase. */
1511 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1512 return s->msg[0];
1513 return 0;
1514 case 0x59: /* SBDL high */
1515 return 0;
1516 CASE_GET_REG32(mmrs, 0xa0)
1517 CASE_GET_REG32(mmws, 0xa4)
1518 CASE_GET_REG32(sfs, 0xa8)
1519 CASE_GET_REG32(drs, 0xac)
1520 CASE_GET_REG32(sbms, 0xb0)
1521 CASE_GET_REG32(dbms, 0xb4)
1522 CASE_GET_REG32(dnad64, 0xb8)
1523 CASE_GET_REG32(pmjad1, 0xc0)
1524 CASE_GET_REG32(pmjad2, 0xc4)
1525 CASE_GET_REG32(rbc, 0xc8)
1526 CASE_GET_REG32(ua, 0xcc)
1527 CASE_GET_REG32(ia, 0xd4)
1528 CASE_GET_REG32(sbc, 0xd8)
1529 CASE_GET_REG32(csbc, 0xdc)
1530 }
1531 if (offset >= 0x5c && offset < 0xa0) {
1532 int n;
1533 int shift;
1534 n = (offset - 0x58) >> 2;
1535 shift = (offset & 3) * 8;
1536 return (s->scratch[n] >> shift) & 0xff;
1537 }
1538 BADF("readb 0x%x\n", offset);
1539 exit(1);
1540 #undef CASE_GET_REG24
1541 #undef CASE_GET_REG32
1542 }
1543
1544 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1545 {
1546 #define CASE_SET_REG24(name, addr) \
1547 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1548 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1549 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1550
1551 #define CASE_SET_REG32(name, addr) \
1552 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1553 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1554 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1555 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1556
1557 #ifdef DEBUG_LSI_REG
1558 DPRINTF("Write reg %x = %02x\n", offset, val);
1559 #endif
1560 switch (offset) {
1561 case 0x00: /* SCNTL0 */
1562 s->scntl0 = val;
1563 if (val & LSI_SCNTL0_START) {
1564 BADF("Start sequence not implemented\n");
1565 }
1566 break;
1567 case 0x01: /* SCNTL1 */
1568 s->scntl1 = val & ~LSI_SCNTL1_SST;
1569 if (val & LSI_SCNTL1_IARB) {
1570 BADF("Immediate Arbritration not implemented\n");
1571 }
1572 if (val & LSI_SCNTL1_RST) {
1573 s->sstat0 |= LSI_SSTAT0_RST;
1574 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1575 } else {
1576 s->sstat0 &= ~LSI_SSTAT0_RST;
1577 }
1578 break;
1579 case 0x02: /* SCNTL2 */
1580 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1581 s->scntl2 = val;
1582 break;
1583 case 0x03: /* SCNTL3 */
1584 s->scntl3 = val;
1585 break;
1586 case 0x04: /* SCID */
1587 s->scid = val;
1588 break;
1589 case 0x05: /* SXFER */
1590 s->sxfer = val;
1591 break;
1592 case 0x06: /* SDID */
1593 if ((val & 0xf) != (s->ssid & 0xf))
1594 BADF("Destination ID does not match SSID\n");
1595 s->sdid = val & 0xf;
1596 break;
1597 case 0x07: /* GPREG0 */
1598 break;
1599 case 0x08: /* SFBR */
1600 /* The CPU is not allowed to write to this register. However the
1601 SCRIPTS register move instructions are. */
1602 s->sfbr = val;
1603 break;
1604 case 0x0a: case 0x0b:
1605 /* Openserver writes to these readonly registers on startup */
1606 return;
1607 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1608 /* Linux writes to these readonly registers on startup. */
1609 return;
1610 CASE_SET_REG32(dsa, 0x10)
1611 case 0x14: /* ISTAT0 */
1612 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1613 if (val & LSI_ISTAT0_ABRT) {
1614 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1615 }
1616 if (val & LSI_ISTAT0_INTF) {
1617 s->istat0 &= ~LSI_ISTAT0_INTF;
1618 lsi_update_irq(s);
1619 }
1620 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1621 DPRINTF("Woken by SIGP\n");
1622 s->waiting = 0;
1623 s->dsp = s->dnad;
1624 lsi_execute_script(s);
1625 }
1626 if (val & LSI_ISTAT0_SRST) {
1627 lsi_soft_reset(s);
1628 }
1629 break;
1630 case 0x16: /* MBOX0 */
1631 s->mbox0 = val;
1632 break;
1633 case 0x17: /* MBOX1 */
1634 s->mbox1 = val;
1635 break;
1636 case 0x1a: /* CTEST2 */
1637 s->ctest2 = val & LSI_CTEST2_PCICIE;
1638 break;
1639 case 0x1b: /* CTEST3 */
1640 s->ctest3 = val & 0x0f;
1641 break;
1642 CASE_SET_REG32(temp, 0x1c)
1643 case 0x21: /* CTEST4 */
1644 if (val & 7) {
1645 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1646 }
1647 s->ctest4 = val;
1648 break;
1649 case 0x22: /* CTEST5 */
1650 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1651 BADF("CTEST5 DMA increment not implemented\n");
1652 }
1653 s->ctest5 = val;
1654 break;
1655 CASE_SET_REG24(dbc, 0x24)
1656 CASE_SET_REG32(dnad, 0x28)
1657 case 0x2c: /* DSP[0:7] */
1658 s->dsp &= 0xffffff00;
1659 s->dsp |= val;
1660 break;
1661 case 0x2d: /* DSP[8:15] */
1662 s->dsp &= 0xffff00ff;
1663 s->dsp |= val << 8;
1664 break;
1665 case 0x2e: /* DSP[16:23] */
1666 s->dsp &= 0xff00ffff;
1667 s->dsp |= val << 16;
1668 break;
1669 case 0x2f: /* DSP[24:31] */
1670 s->dsp &= 0x00ffffff;
1671 s->dsp |= val << 24;
1672 if ((s->dmode & LSI_DMODE_MAN) == 0
1673 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1674 lsi_execute_script(s);
1675 break;
1676 CASE_SET_REG32(dsps, 0x30)
1677 CASE_SET_REG32(scratch[0], 0x34)
1678 case 0x38: /* DMODE */
1679 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1680 BADF("IO mappings not implemented\n");
1681 }
1682 s->dmode = val;
1683 break;
1684 case 0x39: /* DIEN */
1685 s->dien = val;
1686 lsi_update_irq(s);
1687 break;
1688 case 0x3a: /* SBR */
1689 s->sbr = val;
1690 break;
1691 case 0x3b: /* DCNTL */
1692 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1693 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1694 lsi_execute_script(s);
1695 break;
1696 case 0x40: /* SIEN0 */
1697 s->sien0 = val;
1698 lsi_update_irq(s);
1699 break;
1700 case 0x41: /* SIEN1 */
1701 s->sien1 = val;
1702 lsi_update_irq(s);
1703 break;
1704 case 0x47: /* GPCNTL0 */
1705 break;
1706 case 0x48: /* STIME0 */
1707 s->stime0 = val;
1708 break;
1709 case 0x49: /* STIME1 */
1710 if (val & 0xf) {
1711 DPRINTF("General purpose timer not implemented\n");
1712 /* ??? Raising the interrupt immediately seems to be sufficient
1713 to keep the FreeBSD driver happy. */
1714 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1715 }
1716 break;
1717 case 0x4a: /* RESPID0 */
1718 s->respid0 = val;
1719 break;
1720 case 0x4b: /* RESPID1 */
1721 s->respid1 = val;
1722 break;
1723 case 0x4d: /* STEST1 */
1724 s->stest1 = val;
1725 break;
1726 case 0x4e: /* STEST2 */
1727 if (val & 1) {
1728 BADF("Low level mode not implemented\n");
1729 }
1730 s->stest2 = val;
1731 break;
1732 case 0x4f: /* STEST3 */
1733 if (val & 0x41) {
1734 BADF("SCSI FIFO test mode not implemented\n");
1735 }
1736 s->stest3 = val;
1737 break;
1738 case 0x56: /* CCNTL0 */
1739 s->ccntl0 = val;
1740 break;
1741 case 0x57: /* CCNTL1 */
1742 s->ccntl1 = val;
1743 break;
1744 CASE_SET_REG32(mmrs, 0xa0)
1745 CASE_SET_REG32(mmws, 0xa4)
1746 CASE_SET_REG32(sfs, 0xa8)
1747 CASE_SET_REG32(drs, 0xac)
1748 CASE_SET_REG32(sbms, 0xb0)
1749 CASE_SET_REG32(dbms, 0xb4)
1750 CASE_SET_REG32(dnad64, 0xb8)
1751 CASE_SET_REG32(pmjad1, 0xc0)
1752 CASE_SET_REG32(pmjad2, 0xc4)
1753 CASE_SET_REG32(rbc, 0xc8)
1754 CASE_SET_REG32(ua, 0xcc)
1755 CASE_SET_REG32(ia, 0xd4)
1756 CASE_SET_REG32(sbc, 0xd8)
1757 CASE_SET_REG32(csbc, 0xdc)
1758 default:
1759 if (offset >= 0x5c && offset < 0xa0) {
1760 int n;
1761 int shift;
1762 n = (offset - 0x58) >> 2;
1763 shift = (offset & 3) * 8;
1764 s->scratch[n] &= ~(0xff << shift);
1765 s->scratch[n] |= (val & 0xff) << shift;
1766 } else {
1767 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1768 }
1769 }
1770 #undef CASE_SET_REG24
1771 #undef CASE_SET_REG32
1772 }
1773
1774 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1775 {
1776 LSIState *s = opaque;
1777
1778 lsi_reg_writeb(s, addr & 0xff, val);
1779 }
1780
1781 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1782 {
1783 LSIState *s = opaque;
1784
1785 addr &= 0xff;
1786 lsi_reg_writeb(s, addr, val & 0xff);
1787 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1788 }
1789
1790 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1791 {
1792 LSIState *s = opaque;
1793
1794 addr &= 0xff;
1795 lsi_reg_writeb(s, addr, val & 0xff);
1796 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1797 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1798 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1799 }
1800
1801 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1802 {
1803 LSIState *s = opaque;
1804
1805 return lsi_reg_readb(s, addr & 0xff);
1806 }
1807
1808 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1809 {
1810 LSIState *s = opaque;
1811 uint32_t val;
1812
1813 addr &= 0xff;
1814 val = lsi_reg_readb(s, addr);
1815 val |= lsi_reg_readb(s, addr + 1) << 8;
1816 return val;
1817 }
1818
1819 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1820 {
1821 LSIState *s = opaque;
1822 uint32_t val;
1823 addr &= 0xff;
1824 val = lsi_reg_readb(s, addr);
1825 val |= lsi_reg_readb(s, addr + 1) << 8;
1826 val |= lsi_reg_readb(s, addr + 2) << 16;
1827 val |= lsi_reg_readb(s, addr + 3) << 24;
1828 return val;
1829 }
1830
1831 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1832 lsi_mmio_readb,
1833 lsi_mmio_readw,
1834 lsi_mmio_readl,
1835 };
1836
1837 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1838 lsi_mmio_writeb,
1839 lsi_mmio_writew,
1840 lsi_mmio_writel,
1841 };
1842
1843 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1844 {
1845 LSIState *s = opaque;
1846 uint32_t newval;
1847 int shift;
1848
1849 addr &= 0x1fff;
1850 newval = s->script_ram[addr >> 2];
1851 shift = (addr & 3) * 8;
1852 newval &= ~(0xff << shift);
1853 newval |= val << shift;
1854 s->script_ram[addr >> 2] = newval;
1855 }
1856
1857 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1858 {
1859 LSIState *s = opaque;
1860 uint32_t newval;
1861
1862 addr &= 0x1fff;
1863 newval = s->script_ram[addr >> 2];
1864 if (addr & 2) {
1865 newval = (newval & 0xffff) | (val << 16);
1866 } else {
1867 newval = (newval & 0xffff0000) | val;
1868 }
1869 s->script_ram[addr >> 2] = newval;
1870 }
1871
1872
1873 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1874 {
1875 LSIState *s = opaque;
1876
1877 addr &= 0x1fff;
1878 s->script_ram[addr >> 2] = val;
1879 }
1880
1881 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1882 {
1883 LSIState *s = opaque;
1884 uint32_t val;
1885
1886 addr &= 0x1fff;
1887 val = s->script_ram[addr >> 2];
1888 val >>= (addr & 3) * 8;
1889 return val & 0xff;
1890 }
1891
1892 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1893 {
1894 LSIState *s = opaque;
1895 uint32_t val;
1896
1897 addr &= 0x1fff;
1898 val = s->script_ram[addr >> 2];
1899 if (addr & 2)
1900 val >>= 16;
1901 return le16_to_cpu(val);
1902 }
1903
1904 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1905 {
1906 LSIState *s = opaque;
1907
1908 addr &= 0x1fff;
1909 return le32_to_cpu(s->script_ram[addr >> 2]);
1910 }
1911
1912 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1913 lsi_ram_readb,
1914 lsi_ram_readw,
1915 lsi_ram_readl,
1916 };
1917
1918 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1919 lsi_ram_writeb,
1920 lsi_ram_writew,
1921 lsi_ram_writel,
1922 };
1923
1924 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1925 {
1926 LSIState *s = opaque;
1927 return lsi_reg_readb(s, addr & 0xff);
1928 }
1929
1930 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1931 {
1932 LSIState *s = opaque;
1933 uint32_t val;
1934 addr &= 0xff;
1935 val = lsi_reg_readb(s, addr);
1936 val |= lsi_reg_readb(s, addr + 1) << 8;
1937 return val;
1938 }
1939
1940 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1941 {
1942 LSIState *s = opaque;
1943 uint32_t val;
1944 addr &= 0xff;
1945 val = lsi_reg_readb(s, addr);
1946 val |= lsi_reg_readb(s, addr + 1) << 8;
1947 val |= lsi_reg_readb(s, addr + 2) << 16;
1948 val |= lsi_reg_readb(s, addr + 3) << 24;
1949 return val;
1950 }
1951
1952 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1953 {
1954 LSIState *s = opaque;
1955 lsi_reg_writeb(s, addr & 0xff, val);
1956 }
1957
1958 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1959 {
1960 LSIState *s = opaque;
1961 addr &= 0xff;
1962 lsi_reg_writeb(s, addr, val & 0xff);
1963 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1964 }
1965
1966 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1967 {
1968 LSIState *s = opaque;
1969 addr &= 0xff;
1970 lsi_reg_writeb(s, addr, val & 0xff);
1971 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1972 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1973 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1974 }
1975
1976 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1977 pcibus_t addr, pcibus_t size, int type)
1978 {
1979 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1980
1981 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
1982
1983 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1984 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1985 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1986 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1987 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1988 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1989 }
1990
1991 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1992 pcibus_t addr, pcibus_t size, int type)
1993 {
1994 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1995
1996 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
1997 s->script_ram_base = addr;
1998 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1999 }
2000
2001 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2002 pcibus_t addr, pcibus_t size, int type)
2003 {
2004 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2005
2006 DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2007 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2008 }
2009
2010 static void lsi_scsi_reset(DeviceState *dev)
2011 {
2012 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2013
2014 lsi_soft_reset(s);
2015 }
2016
2017 static void lsi_pre_save(void *opaque)
2018 {
2019 LSIState *s = opaque;
2020
2021 if (s->current) {
2022 assert(s->current->dma_buf == NULL);
2023 assert(s->current->dma_len == 0);
2024 }
2025 assert(QTAILQ_EMPTY(&s->queue));
2026 }
2027
2028 static const VMStateDescription vmstate_lsi_scsi = {
2029 .name = "lsiscsi",
2030 .version_id = 0,
2031 .minimum_version_id = 0,
2032 .minimum_version_id_old = 0,
2033 .pre_save = lsi_pre_save,
2034 .fields = (VMStateField []) {
2035 VMSTATE_PCI_DEVICE(dev, LSIState),
2036
2037 VMSTATE_INT32(carry, LSIState),
2038 VMSTATE_INT32(sense, LSIState),
2039 VMSTATE_INT32(msg_action, LSIState),
2040 VMSTATE_INT32(msg_len, LSIState),
2041 VMSTATE_BUFFER(msg, LSIState),
2042 VMSTATE_INT32(waiting, LSIState),
2043
2044 VMSTATE_UINT32(dsa, LSIState),
2045 VMSTATE_UINT32(temp, LSIState),
2046 VMSTATE_UINT32(dnad, LSIState),
2047 VMSTATE_UINT32(dbc, LSIState),
2048 VMSTATE_UINT8(istat0, LSIState),
2049 VMSTATE_UINT8(istat1, LSIState),
2050 VMSTATE_UINT8(dcmd, LSIState),
2051 VMSTATE_UINT8(dstat, LSIState),
2052 VMSTATE_UINT8(dien, LSIState),
2053 VMSTATE_UINT8(sist0, LSIState),
2054 VMSTATE_UINT8(sist1, LSIState),
2055 VMSTATE_UINT8(sien0, LSIState),
2056 VMSTATE_UINT8(sien1, LSIState),
2057 VMSTATE_UINT8(mbox0, LSIState),
2058 VMSTATE_UINT8(mbox1, LSIState),
2059 VMSTATE_UINT8(dfifo, LSIState),
2060 VMSTATE_UINT8(ctest2, LSIState),
2061 VMSTATE_UINT8(ctest3, LSIState),
2062 VMSTATE_UINT8(ctest4, LSIState),
2063 VMSTATE_UINT8(ctest5, LSIState),
2064 VMSTATE_UINT8(ccntl0, LSIState),
2065 VMSTATE_UINT8(ccntl1, LSIState),
2066 VMSTATE_UINT32(dsp, LSIState),
2067 VMSTATE_UINT32(dsps, LSIState),
2068 VMSTATE_UINT8(dmode, LSIState),
2069 VMSTATE_UINT8(dcntl, LSIState),
2070 VMSTATE_UINT8(scntl0, LSIState),
2071 VMSTATE_UINT8(scntl1, LSIState),
2072 VMSTATE_UINT8(scntl2, LSIState),
2073 VMSTATE_UINT8(scntl3, LSIState),
2074 VMSTATE_UINT8(sstat0, LSIState),
2075 VMSTATE_UINT8(sstat1, LSIState),
2076 VMSTATE_UINT8(scid, LSIState),
2077 VMSTATE_UINT8(sxfer, LSIState),
2078 VMSTATE_UINT8(socl, LSIState),
2079 VMSTATE_UINT8(sdid, LSIState),
2080 VMSTATE_UINT8(ssid, LSIState),
2081 VMSTATE_UINT8(sfbr, LSIState),
2082 VMSTATE_UINT8(stest1, LSIState),
2083 VMSTATE_UINT8(stest2, LSIState),
2084 VMSTATE_UINT8(stest3, LSIState),
2085 VMSTATE_UINT8(sidl, LSIState),
2086 VMSTATE_UINT8(stime0, LSIState),
2087 VMSTATE_UINT8(respid0, LSIState),
2088 VMSTATE_UINT8(respid1, LSIState),
2089 VMSTATE_UINT32(mmrs, LSIState),
2090 VMSTATE_UINT32(mmws, LSIState),
2091 VMSTATE_UINT32(sfs, LSIState),
2092 VMSTATE_UINT32(drs, LSIState),
2093 VMSTATE_UINT32(sbms, LSIState),
2094 VMSTATE_UINT32(dbms, LSIState),
2095 VMSTATE_UINT32(dnad64, LSIState),
2096 VMSTATE_UINT32(pmjad1, LSIState),
2097 VMSTATE_UINT32(pmjad2, LSIState),
2098 VMSTATE_UINT32(rbc, LSIState),
2099 VMSTATE_UINT32(ua, LSIState),
2100 VMSTATE_UINT32(ia, LSIState),
2101 VMSTATE_UINT32(sbc, LSIState),
2102 VMSTATE_UINT32(csbc, LSIState),
2103 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2104 VMSTATE_UINT8(sbr, LSIState),
2105
2106 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2107 VMSTATE_END_OF_LIST()
2108 }
2109 };
2110
2111 static int lsi_scsi_uninit(PCIDevice *d)
2112 {
2113 LSIState *s = DO_UPCAST(LSIState, dev, d);
2114
2115 cpu_unregister_io_memory(s->mmio_io_addr);
2116 cpu_unregister_io_memory(s->ram_io_addr);
2117
2118 return 0;
2119 }
2120
2121 static int lsi_scsi_init(PCIDevice *dev)
2122 {
2123 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2124 uint8_t *pci_conf;
2125
2126 pci_conf = s->dev.config;
2127
2128 /* PCI Vendor ID (word) */
2129 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2130 /* PCI device ID (word) */
2131 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2132 /* PCI base class code */
2133 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2134 /* PCI subsystem ID */
2135 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2136 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2137 /* PCI latency timer = 255 */
2138 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2139 /* TODO: RST# value should be 0 */
2140 /* Interrupt pin 1 */
2141 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2142
2143 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2144 lsi_mmio_writefn, s);
2145 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2146 lsi_ram_writefn, s);
2147
2148 /* TODO: use dev and get rid of cast below */
2149 pci_register_bar((struct PCIDevice *)s, 0, 256,
2150 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2151 pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2152 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2153 pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2154 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2155 QTAILQ_INIT(&s->queue);
2156
2157 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2158 if (!dev->qdev.hotplugged) {
2159 scsi_bus_legacy_handle_cmdline(&s->bus);
2160 }
2161 return 0;
2162 }
2163
2164 static PCIDeviceInfo lsi_info = {
2165 .qdev.name = "lsi53c895a",
2166 .qdev.alias = "lsi",
2167 .qdev.size = sizeof(LSIState),
2168 .qdev.reset = lsi_scsi_reset,
2169 .qdev.vmsd = &vmstate_lsi_scsi,
2170 .init = lsi_scsi_init,
2171 .exit = lsi_scsi_uninit,
2172 };
2173
2174 static void lsi53c895a_register_devices(void)
2175 {
2176 pci_qdev_register(&lsi_info);
2177 }
2178
2179 device_init(lsi53c895a_register_devices);