]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
scsi: introduce scsi_req_continue
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 SCSIRequest *req;
178 uint32_t tag;
179 uint32_t dma_len;
180 uint8_t *dma_buf;
181 uint32_t pending;
182 int out;
183 QTAILQ_ENTRY(lsi_request) next;
184 } lsi_request;
185
186 typedef struct {
187 PCIDevice dev;
188 int mmio_io_addr;
189 int ram_io_addr;
190 uint32_t script_ram_base;
191
192 int carry; /* ??? Should this be an a visible register somewhere? */
193 int status;
194 /* Action to take at the end of a MSG IN phase.
195 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
196 int msg_action;
197 int msg_len;
198 uint8_t msg[LSI_MAX_MSGIN_LEN];
199 /* 0 if SCRIPTS are running or stopped.
200 * 1 if a Wait Reselect instruction has been issued.
201 * 2 if processing DMA from lsi_execute_script.
202 * 3 if a DMA operation is in progress. */
203 int waiting;
204 SCSIBus bus;
205 int current_lun;
206 /* The tag is a combination of the device ID and the SCSI tag. */
207 uint32_t select_tag;
208 int command_complete;
209 QTAILQ_HEAD(, lsi_request) queue;
210 lsi_request *current;
211
212 uint32_t dsa;
213 uint32_t temp;
214 uint32_t dnad;
215 uint32_t dbc;
216 uint8_t istat0;
217 uint8_t istat1;
218 uint8_t dcmd;
219 uint8_t dstat;
220 uint8_t dien;
221 uint8_t sist0;
222 uint8_t sist1;
223 uint8_t sien0;
224 uint8_t sien1;
225 uint8_t mbox0;
226 uint8_t mbox1;
227 uint8_t dfifo;
228 uint8_t ctest2;
229 uint8_t ctest3;
230 uint8_t ctest4;
231 uint8_t ctest5;
232 uint8_t ccntl0;
233 uint8_t ccntl1;
234 uint32_t dsp;
235 uint32_t dsps;
236 uint8_t dmode;
237 uint8_t dcntl;
238 uint8_t scntl0;
239 uint8_t scntl1;
240 uint8_t scntl2;
241 uint8_t scntl3;
242 uint8_t sstat0;
243 uint8_t sstat1;
244 uint8_t scid;
245 uint8_t sxfer;
246 uint8_t socl;
247 uint8_t sdid;
248 uint8_t ssid;
249 uint8_t sfbr;
250 uint8_t stest1;
251 uint8_t stest2;
252 uint8_t stest3;
253 uint8_t sidl;
254 uint8_t stime0;
255 uint8_t respid0;
256 uint8_t respid1;
257 uint32_t mmrs;
258 uint32_t mmws;
259 uint32_t sfs;
260 uint32_t drs;
261 uint32_t sbms;
262 uint32_t dbms;
263 uint32_t dnad64;
264 uint32_t pmjad1;
265 uint32_t pmjad2;
266 uint32_t rbc;
267 uint32_t ua;
268 uint32_t ia;
269 uint32_t sbc;
270 uint32_t csbc;
271 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
272 uint8_t sbr;
273
274 /* Script ram is stored as 32-bit words in host byteorder. */
275 uint32_t script_ram[2048];
276 } LSIState;
277
278 static inline int lsi_irq_on_rsl(LSIState *s)
279 {
280 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
281 }
282
283 static void lsi_soft_reset(LSIState *s)
284 {
285 lsi_request *p;
286
287 DPRINTF("Reset\n");
288 s->carry = 0;
289
290 s->msg_action = 0;
291 s->msg_len = 0;
292 s->waiting = 0;
293 s->dsa = 0;
294 s->dnad = 0;
295 s->dbc = 0;
296 s->temp = 0;
297 memset(s->scratch, 0, sizeof(s->scratch));
298 s->istat0 = 0;
299 s->istat1 = 0;
300 s->dcmd = 0x40;
301 s->dstat = LSI_DSTAT_DFE;
302 s->dien = 0;
303 s->sist0 = 0;
304 s->sist1 = 0;
305 s->sien0 = 0;
306 s->sien1 = 0;
307 s->mbox0 = 0;
308 s->mbox1 = 0;
309 s->dfifo = 0;
310 s->ctest2 = LSI_CTEST2_DACK;
311 s->ctest3 = 0;
312 s->ctest4 = 0;
313 s->ctest5 = 0;
314 s->ccntl0 = 0;
315 s->ccntl1 = 0;
316 s->dsp = 0;
317 s->dsps = 0;
318 s->dmode = 0;
319 s->dcntl = 0;
320 s->scntl0 = 0xc0;
321 s->scntl1 = 0;
322 s->scntl2 = 0;
323 s->scntl3 = 0;
324 s->sstat0 = 0;
325 s->sstat1 = 0;
326 s->scid = 7;
327 s->sxfer = 0;
328 s->socl = 0;
329 s->sdid = 0;
330 s->ssid = 0;
331 s->stest1 = 0;
332 s->stest2 = 0;
333 s->stest3 = 0;
334 s->sidl = 0;
335 s->stime0 = 0;
336 s->respid0 = 0x80;
337 s->respid1 = 0;
338 s->mmrs = 0;
339 s->mmws = 0;
340 s->sfs = 0;
341 s->drs = 0;
342 s->sbms = 0;
343 s->dbms = 0;
344 s->dnad64 = 0;
345 s->pmjad1 = 0;
346 s->pmjad2 = 0;
347 s->rbc = 0;
348 s->ua = 0;
349 s->ia = 0;
350 s->sbc = 0;
351 s->csbc = 0;
352 s->sbr = 0;
353 while (!QTAILQ_EMPTY(&s->queue)) {
354 p = QTAILQ_FIRST(&s->queue);
355 QTAILQ_REMOVE(&s->queue, p, next);
356 qemu_free(p);
357 }
358 if (s->current) {
359 qemu_free(s->current);
360 s->current = NULL;
361 }
362 }
363
364 static int lsi_dma_40bit(LSIState *s)
365 {
366 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
367 return 1;
368 return 0;
369 }
370
371 static int lsi_dma_ti64bit(LSIState *s)
372 {
373 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
374 return 1;
375 return 0;
376 }
377
378 static int lsi_dma_64bit(LSIState *s)
379 {
380 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
381 return 1;
382 return 0;
383 }
384
385 static uint8_t lsi_reg_readb(LSIState *s, int offset);
386 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
387 static void lsi_execute_script(LSIState *s);
388 static void lsi_reselect(LSIState *s, lsi_request *p);
389
390 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
391 {
392 uint32_t buf;
393
394 /* Optimize reading from SCRIPTS RAM. */
395 if ((addr & 0xffffe000) == s->script_ram_base) {
396 return s->script_ram[(addr & 0x1fff) >> 2];
397 }
398 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
399 return cpu_to_le32(buf);
400 }
401
402 static void lsi_stop_script(LSIState *s)
403 {
404 s->istat1 &= ~LSI_ISTAT1_SRUN;
405 }
406
407 static void lsi_update_irq(LSIState *s)
408 {
409 int level;
410 static int last_level;
411 lsi_request *p;
412
413 /* It's unclear whether the DIP/SIP bits should be cleared when the
414 Interrupt Status Registers are cleared or when istat0 is read.
415 We currently do the formwer, which seems to work. */
416 level = 0;
417 if (s->dstat) {
418 if (s->dstat & s->dien)
419 level = 1;
420 s->istat0 |= LSI_ISTAT0_DIP;
421 } else {
422 s->istat0 &= ~LSI_ISTAT0_DIP;
423 }
424
425 if (s->sist0 || s->sist1) {
426 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
427 level = 1;
428 s->istat0 |= LSI_ISTAT0_SIP;
429 } else {
430 s->istat0 &= ~LSI_ISTAT0_SIP;
431 }
432 if (s->istat0 & LSI_ISTAT0_INTF)
433 level = 1;
434
435 if (level != last_level) {
436 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
437 level, s->dstat, s->sist1, s->sist0);
438 last_level = level;
439 }
440 qemu_set_irq(s->dev.irq[0], level);
441
442 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
443 DPRINTF("Handled IRQs & disconnected, looking for pending "
444 "processes\n");
445 QTAILQ_FOREACH(p, &s->queue, next) {
446 if (p->pending) {
447 lsi_reselect(s, p);
448 break;
449 }
450 }
451 }
452 }
453
454 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
455 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
456 {
457 uint32_t mask0;
458 uint32_t mask1;
459
460 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
461 stat1, stat0, s->sist1, s->sist0);
462 s->sist0 |= stat0;
463 s->sist1 |= stat1;
464 /* Stop processor on fatal or unmasked interrupt. As a special hack
465 we don't stop processing when raising STO. Instead continue
466 execution and stop at the next insn that accesses the SCSI bus. */
467 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
468 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
469 mask1 &= ~LSI_SIST1_STO;
470 if (s->sist0 & mask0 || s->sist1 & mask1) {
471 lsi_stop_script(s);
472 }
473 lsi_update_irq(s);
474 }
475
476 /* Stop SCRIPTS execution and raise a DMA interrupt. */
477 static void lsi_script_dma_interrupt(LSIState *s, int stat)
478 {
479 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
480 s->dstat |= stat;
481 lsi_update_irq(s);
482 lsi_stop_script(s);
483 }
484
485 static inline void lsi_set_phase(LSIState *s, int phase)
486 {
487 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
488 }
489
490 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
491 {
492 /* Trigger a phase mismatch. */
493 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
494 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
495 s->dsp = out ? s->pmjad1 : s->pmjad2;
496 } else {
497 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
498 }
499 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
500 } else {
501 DPRINTF("Phase mismatch interrupt\n");
502 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
503 lsi_stop_script(s);
504 }
505 lsi_set_phase(s, new_phase);
506 }
507
508
509 /* Resume SCRIPTS execution after a DMA operation. */
510 static void lsi_resume_script(LSIState *s)
511 {
512 if (s->waiting != 2) {
513 s->waiting = 0;
514 lsi_execute_script(s);
515 } else {
516 s->waiting = 0;
517 }
518 }
519
520 static void lsi_disconnect(LSIState *s)
521 {
522 s->scntl1 &= ~LSI_SCNTL1_CON;
523 s->sstat1 &= ~PHASE_MASK;
524 }
525
526 static void lsi_bad_selection(LSIState *s, uint32_t id)
527 {
528 DPRINTF("Selected absent target %d\n", id);
529 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
530 lsi_disconnect(s);
531 }
532
533 /* Initiate a SCSI layer data transfer. */
534 static void lsi_do_dma(LSIState *s, int out)
535 {
536 uint32_t count, id;
537 target_phys_addr_t addr;
538 SCSIDevice *dev;
539
540 assert(s->current);
541 if (!s->current->dma_len) {
542 /* Wait until data is available. */
543 DPRINTF("DMA no data available\n");
544 return;
545 }
546
547 id = (s->current->tag >> 8) & 0xf;
548 dev = s->bus.devs[id];
549 if (!dev) {
550 lsi_bad_selection(s, id);
551 return;
552 }
553
554 count = s->dbc;
555 if (count > s->current->dma_len)
556 count = s->current->dma_len;
557
558 addr = s->dnad;
559 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
560 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
561 addr |= ((uint64_t)s->dnad64 << 32);
562 else if (s->dbms)
563 addr |= ((uint64_t)s->dbms << 32);
564 else if (s->sbms)
565 addr |= ((uint64_t)s->sbms << 32);
566
567 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
568 s->csbc += count;
569 s->dnad += count;
570 s->dbc -= count;
571 if (s->current->dma_buf == NULL) {
572 s->current->dma_buf = dev->info->get_buf(s->current->req);
573 }
574 /* ??? Set SFBR to first data byte. */
575 if (out) {
576 cpu_physical_memory_read(addr, s->current->dma_buf, count);
577 } else {
578 cpu_physical_memory_write(addr, s->current->dma_buf, count);
579 }
580 s->current->dma_len -= count;
581 if (s->current->dma_len == 0) {
582 s->current->dma_buf = NULL;
583 scsi_req_continue(s->current->req);
584 } else {
585 s->current->dma_buf += count;
586 lsi_resume_script(s);
587 }
588 }
589
590
591 /* Add a command to the queue. */
592 static void lsi_queue_command(LSIState *s)
593 {
594 lsi_request *p = s->current;
595
596 DPRINTF("Queueing tag=0x%x\n", p->tag);
597 assert(s->current != NULL);
598 assert(s->current->dma_len == 0);
599 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
600 s->current = NULL;
601
602 p->pending = 0;
603 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
604 }
605
606 /* Queue a byte for a MSG IN phase. */
607 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
608 {
609 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
610 BADF("MSG IN data too long\n");
611 } else {
612 DPRINTF("MSG IN 0x%02x\n", data);
613 s->msg[s->msg_len++] = data;
614 }
615 }
616
617 /* Perform reselection to continue a command. */
618 static void lsi_reselect(LSIState *s, lsi_request *p)
619 {
620 int id;
621
622 assert(s->current == NULL);
623 QTAILQ_REMOVE(&s->queue, p, next);
624 s->current = p;
625
626 id = (p->tag >> 8) & 0xf;
627 s->ssid = id | 0x80;
628 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
629 if (!(s->dcntl & LSI_DCNTL_COM)) {
630 s->sfbr = 1 << (id & 0x7);
631 }
632 DPRINTF("Reselected target %d\n", id);
633 s->scntl1 |= LSI_SCNTL1_CON;
634 lsi_set_phase(s, PHASE_MI);
635 s->msg_action = p->out ? 2 : 3;
636 s->current->dma_len = p->pending;
637 lsi_add_msg_byte(s, 0x80);
638 if (s->current->tag & LSI_TAG_VALID) {
639 lsi_add_msg_byte(s, 0x20);
640 lsi_add_msg_byte(s, p->tag & 0xff);
641 }
642
643 if (lsi_irq_on_rsl(s)) {
644 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
645 }
646 }
647
648 static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
649 {
650 lsi_request *p;
651
652 QTAILQ_FOREACH(p, &s->queue, next) {
653 if (p->tag == tag) {
654 return p;
655 }
656 }
657
658 return NULL;
659 }
660
661 static void lsi_request_cancelled(SCSIRequest *req)
662 {
663 LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
664 lsi_request *p;
665
666 if (s->current && req == s->current->req) {
667 scsi_req_unref(req);
668 qemu_free(s->current);
669 s->current = NULL;
670 return;
671 }
672
673 p = lsi_find_by_tag(s, req->tag);
674 if (p) {
675 QTAILQ_REMOVE(&s->queue, p, next);
676 scsi_req_unref(req);
677 qemu_free(p);
678 }
679 }
680
681 /* Record that data is available for a queued command. Returns zero if
682 the device was reselected, nonzero if the IO is deferred. */
683 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
684 {
685 lsi_request *p;
686
687 p = lsi_find_by_tag(s, tag);
688 if (!p) {
689 BADF("IO with unknown tag %d\n", tag);
690 return 1;
691 }
692
693 if (p->pending) {
694 BADF("Multiple IO pending for tag %d\n", tag);
695 }
696 p->pending = arg;
697 /* Reselect if waiting for it, or if reselection triggers an IRQ
698 and the bus is free.
699 Since no interrupt stacking is implemented in the emulation, it
700 is also required that there are no pending interrupts waiting
701 for service from the device driver. */
702 if (s->waiting == 1 ||
703 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
704 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
705 /* Reselect device. */
706 lsi_reselect(s, p);
707 return 0;
708 } else {
709 DPRINTF("Queueing IO tag=0x%x\n", tag);
710 p->pending = arg;
711 return 1;
712 }
713 }
714 /* Callback to indicate that the SCSI layer has completed a transfer. */
715 static void lsi_command_complete(SCSIRequest *req, int reason, uint32_t arg)
716 {
717 LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
718 int out;
719
720 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
721 if (reason == SCSI_REASON_DONE) {
722 DPRINTF("Command complete status=%d\n", (int)arg);
723 s->status = arg;
724 s->command_complete = 2;
725 if (s->waiting && s->dbc != 0) {
726 /* Raise phase mismatch for short transfers. */
727 lsi_bad_phase(s, out, PHASE_ST);
728 } else {
729 lsi_set_phase(s, PHASE_ST);
730 }
731
732 if (s->current && req == s->current->req) {
733 scsi_req_unref(s->current->req);
734 qemu_free(s->current);
735 s->current = NULL;
736 }
737 lsi_resume_script(s);
738 return;
739 }
740
741 if (s->waiting == 1 || !s->current || req->tag != s->current->tag ||
742 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
743 if (lsi_queue_tag(s, req->tag, arg)) {
744 return;
745 }
746 }
747
748 /* host adapter (re)connected */
749 DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, arg);
750 s->current->dma_len = arg;
751 s->command_complete = 1;
752 if (!s->waiting)
753 return;
754 if (s->waiting == 1 || s->dbc == 0) {
755 lsi_resume_script(s);
756 } else {
757 lsi_do_dma(s, out);
758 }
759 }
760
761 static void lsi_do_command(LSIState *s)
762 {
763 SCSIDevice *dev;
764 uint8_t buf[16];
765 uint32_t id;
766 int n;
767
768 DPRINTF("Send command len=%d\n", s->dbc);
769 if (s->dbc > 16)
770 s->dbc = 16;
771 cpu_physical_memory_read(s->dnad, buf, s->dbc);
772 s->sfbr = buf[0];
773 s->command_complete = 0;
774
775 id = (s->select_tag >> 8) & 0xf;
776 dev = s->bus.devs[id];
777 if (!dev) {
778 lsi_bad_selection(s, id);
779 return;
780 }
781
782 assert(s->current == NULL);
783 s->current = qemu_mallocz(sizeof(lsi_request));
784 s->current->tag = s->select_tag;
785 s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun);
786
787 n = scsi_req_enqueue(s->current->req, buf);
788 if (n) {
789 if (n > 0) {
790 lsi_set_phase(s, PHASE_DI);
791 } else if (n < 0) {
792 lsi_set_phase(s, PHASE_DO);
793 }
794 scsi_req_continue(s->current->req);
795 }
796 if (!s->command_complete) {
797 if (n) {
798 /* Command did not complete immediately so disconnect. */
799 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
800 lsi_add_msg_byte(s, 4); /* DISCONNECT */
801 /* wait data */
802 lsi_set_phase(s, PHASE_MI);
803 s->msg_action = 1;
804 lsi_queue_command(s);
805 } else {
806 /* wait command complete */
807 lsi_set_phase(s, PHASE_DI);
808 }
809 }
810 }
811
812 static void lsi_do_status(LSIState *s)
813 {
814 uint8_t status;
815 DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
816 if (s->dbc != 1)
817 BADF("Bad Status move\n");
818 s->dbc = 1;
819 status = s->status;
820 s->sfbr = status;
821 cpu_physical_memory_write(s->dnad, &status, 1);
822 lsi_set_phase(s, PHASE_MI);
823 s->msg_action = 1;
824 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
825 }
826
827 static void lsi_do_msgin(LSIState *s)
828 {
829 int len;
830 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
831 s->sfbr = s->msg[0];
832 len = s->msg_len;
833 if (len > s->dbc)
834 len = s->dbc;
835 cpu_physical_memory_write(s->dnad, s->msg, len);
836 /* Linux drivers rely on the last byte being in the SIDL. */
837 s->sidl = s->msg[len - 1];
838 s->msg_len -= len;
839 if (s->msg_len) {
840 memmove(s->msg, s->msg + len, s->msg_len);
841 } else {
842 /* ??? Check if ATN (not yet implemented) is asserted and maybe
843 switch to PHASE_MO. */
844 switch (s->msg_action) {
845 case 0:
846 lsi_set_phase(s, PHASE_CMD);
847 break;
848 case 1:
849 lsi_disconnect(s);
850 break;
851 case 2:
852 lsi_set_phase(s, PHASE_DO);
853 break;
854 case 3:
855 lsi_set_phase(s, PHASE_DI);
856 break;
857 default:
858 abort();
859 }
860 }
861 }
862
863 /* Read the next byte during a MSGOUT phase. */
864 static uint8_t lsi_get_msgbyte(LSIState *s)
865 {
866 uint8_t data;
867 cpu_physical_memory_read(s->dnad, &data, 1);
868 s->dnad++;
869 s->dbc--;
870 return data;
871 }
872
873 /* Skip the next n bytes during a MSGOUT phase. */
874 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
875 {
876 s->dnad += n;
877 s->dbc -= n;
878 }
879
880 static void lsi_do_msgout(LSIState *s)
881 {
882 uint8_t msg;
883 int len;
884 uint32_t current_tag;
885 SCSIDevice *current_dev;
886 lsi_request *current_req, *p, *p_next;
887 int id;
888
889 if (s->current) {
890 current_tag = s->current->tag;
891 current_req = s->current;
892 } else {
893 current_tag = s->select_tag;
894 current_req = lsi_find_by_tag(s, current_tag);
895 }
896 id = (current_tag >> 8) & 0xf;
897 current_dev = s->bus.devs[id];
898
899 DPRINTF("MSG out len=%d\n", s->dbc);
900 while (s->dbc) {
901 msg = lsi_get_msgbyte(s);
902 s->sfbr = msg;
903
904 switch (msg) {
905 case 0x04:
906 DPRINTF("MSG: Disconnect\n");
907 lsi_disconnect(s);
908 break;
909 case 0x08:
910 DPRINTF("MSG: No Operation\n");
911 lsi_set_phase(s, PHASE_CMD);
912 break;
913 case 0x01:
914 len = lsi_get_msgbyte(s);
915 msg = lsi_get_msgbyte(s);
916 (void)len; /* avoid a warning about unused variable*/
917 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
918 switch (msg) {
919 case 1:
920 DPRINTF("SDTR (ignored)\n");
921 lsi_skip_msgbytes(s, 2);
922 break;
923 case 3:
924 DPRINTF("WDTR (ignored)\n");
925 lsi_skip_msgbytes(s, 1);
926 break;
927 default:
928 goto bad;
929 }
930 break;
931 case 0x20: /* SIMPLE queue */
932 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
933 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
934 break;
935 case 0x21: /* HEAD of queue */
936 BADF("HEAD queue not implemented\n");
937 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
938 break;
939 case 0x22: /* ORDERED queue */
940 BADF("ORDERED queue not implemented\n");
941 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
942 break;
943 case 0x0d:
944 /* The ABORT TAG message clears the current I/O process only. */
945 DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
946 if (current_req) {
947 scsi_req_cancel(current_req->req);
948 }
949 lsi_disconnect(s);
950 break;
951 case 0x06:
952 case 0x0e:
953 case 0x0c:
954 /* The ABORT message clears all I/O processes for the selecting
955 initiator on the specified logical unit of the target. */
956 if (msg == 0x06) {
957 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
958 }
959 /* The CLEAR QUEUE message clears all I/O processes for all
960 initiators on the specified logical unit of the target. */
961 if (msg == 0x0e) {
962 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
963 }
964 /* The BUS DEVICE RESET message clears all I/O processes for all
965 initiators on all logical units of the target. */
966 if (msg == 0x0c) {
967 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
968 }
969
970 /* clear the current I/O process */
971 if (s->current) {
972 scsi_req_cancel(s->current->req);
973 }
974
975 /* As the current implemented devices scsi_disk and scsi_generic
976 only support one LUN, we don't need to keep track of LUNs.
977 Clearing I/O processes for other initiators could be possible
978 for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
979 device, but this is currently not implemented (and seems not
980 to be really necessary). So let's simply clear all queued
981 commands for the current device: */
982 id = current_tag & 0x0000ff00;
983 QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
984 if ((p->tag & 0x0000ff00) == id) {
985 scsi_req_cancel(p->req);
986 }
987 }
988
989 lsi_disconnect(s);
990 break;
991 default:
992 if ((msg & 0x80) == 0) {
993 goto bad;
994 }
995 s->current_lun = msg & 7;
996 DPRINTF("Select LUN %d\n", s->current_lun);
997 lsi_set_phase(s, PHASE_CMD);
998 break;
999 }
1000 }
1001 return;
1002 bad:
1003 BADF("Unimplemented message 0x%02x\n", msg);
1004 lsi_set_phase(s, PHASE_MI);
1005 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
1006 s->msg_action = 0;
1007 }
1008
1009 /* Sign extend a 24-bit value. */
1010 static inline int32_t sxt24(int32_t n)
1011 {
1012 return (n << 8) >> 8;
1013 }
1014
1015 #define LSI_BUF_SIZE 4096
1016 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
1017 {
1018 int n;
1019 uint8_t buf[LSI_BUF_SIZE];
1020
1021 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
1022 while (count) {
1023 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
1024 cpu_physical_memory_read(src, buf, n);
1025 cpu_physical_memory_write(dest, buf, n);
1026 src += n;
1027 dest += n;
1028 count -= n;
1029 }
1030 }
1031
1032 static void lsi_wait_reselect(LSIState *s)
1033 {
1034 lsi_request *p;
1035
1036 DPRINTF("Wait Reselect\n");
1037
1038 QTAILQ_FOREACH(p, &s->queue, next) {
1039 if (p->pending) {
1040 lsi_reselect(s, p);
1041 break;
1042 }
1043 }
1044 if (s->current == NULL) {
1045 s->waiting = 1;
1046 }
1047 }
1048
1049 static void lsi_execute_script(LSIState *s)
1050 {
1051 uint32_t insn;
1052 uint32_t addr, addr_high;
1053 int opcode;
1054 int insn_processed = 0;
1055
1056 s->istat1 |= LSI_ISTAT1_SRUN;
1057 again:
1058 insn_processed++;
1059 insn = read_dword(s, s->dsp);
1060 if (!insn) {
1061 /* If we receive an empty opcode increment the DSP by 4 bytes
1062 instead of 8 and execute the next opcode at that location */
1063 s->dsp += 4;
1064 goto again;
1065 }
1066 addr = read_dword(s, s->dsp + 4);
1067 addr_high = 0;
1068 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1069 s->dsps = addr;
1070 s->dcmd = insn >> 24;
1071 s->dsp += 8;
1072 switch (insn >> 30) {
1073 case 0: /* Block move. */
1074 if (s->sist1 & LSI_SIST1_STO) {
1075 DPRINTF("Delayed select timeout\n");
1076 lsi_stop_script(s);
1077 break;
1078 }
1079 s->dbc = insn & 0xffffff;
1080 s->rbc = s->dbc;
1081 /* ??? Set ESA. */
1082 s->ia = s->dsp - 8;
1083 if (insn & (1 << 29)) {
1084 /* Indirect addressing. */
1085 addr = read_dword(s, addr);
1086 } else if (insn & (1 << 28)) {
1087 uint32_t buf[2];
1088 int32_t offset;
1089 /* Table indirect addressing. */
1090
1091 /* 32-bit Table indirect */
1092 offset = sxt24(addr);
1093 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1094 /* byte count is stored in bits 0:23 only */
1095 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1096 s->rbc = s->dbc;
1097 addr = cpu_to_le32(buf[1]);
1098
1099 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1100 * table, bits [31:24] */
1101 if (lsi_dma_40bit(s))
1102 addr_high = cpu_to_le32(buf[0]) >> 24;
1103 else if (lsi_dma_ti64bit(s)) {
1104 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1105 switch (selector) {
1106 case 0 ... 0x0f:
1107 /* offset index into scratch registers since
1108 * TI64 mode can use registers C to R */
1109 addr_high = s->scratch[2 + selector];
1110 break;
1111 case 0x10:
1112 addr_high = s->mmrs;
1113 break;
1114 case 0x11:
1115 addr_high = s->mmws;
1116 break;
1117 case 0x12:
1118 addr_high = s->sfs;
1119 break;
1120 case 0x13:
1121 addr_high = s->drs;
1122 break;
1123 case 0x14:
1124 addr_high = s->sbms;
1125 break;
1126 case 0x15:
1127 addr_high = s->dbms;
1128 break;
1129 default:
1130 BADF("Illegal selector specified (0x%x > 0x15)"
1131 " for 64-bit DMA block move", selector);
1132 break;
1133 }
1134 }
1135 } else if (lsi_dma_64bit(s)) {
1136 /* fetch a 3rd dword if 64-bit direct move is enabled and
1137 only if we're not doing table indirect or indirect addressing */
1138 s->dbms = read_dword(s, s->dsp);
1139 s->dsp += 4;
1140 s->ia = s->dsp - 12;
1141 }
1142 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1143 DPRINTF("Wrong phase got %d expected %d\n",
1144 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1145 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1146 break;
1147 }
1148 s->dnad = addr;
1149 s->dnad64 = addr_high;
1150 switch (s->sstat1 & 0x7) {
1151 case PHASE_DO:
1152 s->waiting = 2;
1153 lsi_do_dma(s, 1);
1154 if (s->waiting)
1155 s->waiting = 3;
1156 break;
1157 case PHASE_DI:
1158 s->waiting = 2;
1159 lsi_do_dma(s, 0);
1160 if (s->waiting)
1161 s->waiting = 3;
1162 break;
1163 case PHASE_CMD:
1164 lsi_do_command(s);
1165 break;
1166 case PHASE_ST:
1167 lsi_do_status(s);
1168 break;
1169 case PHASE_MO:
1170 lsi_do_msgout(s);
1171 break;
1172 case PHASE_MI:
1173 lsi_do_msgin(s);
1174 break;
1175 default:
1176 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1177 exit(1);
1178 }
1179 s->dfifo = s->dbc & 0xff;
1180 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1181 s->sbc = s->dbc;
1182 s->rbc -= s->dbc;
1183 s->ua = addr + s->dbc;
1184 break;
1185
1186 case 1: /* IO or Read/Write instruction. */
1187 opcode = (insn >> 27) & 7;
1188 if (opcode < 5) {
1189 uint32_t id;
1190
1191 if (insn & (1 << 25)) {
1192 id = read_dword(s, s->dsa + sxt24(insn));
1193 } else {
1194 id = insn;
1195 }
1196 id = (id >> 16) & 0xf;
1197 if (insn & (1 << 26)) {
1198 addr = s->dsp + sxt24(addr);
1199 }
1200 s->dnad = addr;
1201 switch (opcode) {
1202 case 0: /* Select */
1203 s->sdid = id;
1204 if (s->scntl1 & LSI_SCNTL1_CON) {
1205 DPRINTF("Already reselected, jumping to alternative address\n");
1206 s->dsp = s->dnad;
1207 break;
1208 }
1209 s->sstat0 |= LSI_SSTAT0_WOA;
1210 s->scntl1 &= ~LSI_SCNTL1_IARB;
1211 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1212 lsi_bad_selection(s, id);
1213 break;
1214 }
1215 DPRINTF("Selected target %d%s\n",
1216 id, insn & (1 << 3) ? " ATN" : "");
1217 /* ??? Linux drivers compain when this is set. Maybe
1218 it only applies in low-level mode (unimplemented).
1219 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1220 s->select_tag = id << 8;
1221 s->scntl1 |= LSI_SCNTL1_CON;
1222 if (insn & (1 << 3)) {
1223 s->socl |= LSI_SOCL_ATN;
1224 }
1225 lsi_set_phase(s, PHASE_MO);
1226 break;
1227 case 1: /* Disconnect */
1228 DPRINTF("Wait Disconnect\n");
1229 s->scntl1 &= ~LSI_SCNTL1_CON;
1230 break;
1231 case 2: /* Wait Reselect */
1232 if (!lsi_irq_on_rsl(s)) {
1233 lsi_wait_reselect(s);
1234 }
1235 break;
1236 case 3: /* Set */
1237 DPRINTF("Set%s%s%s%s\n",
1238 insn & (1 << 3) ? " ATN" : "",
1239 insn & (1 << 6) ? " ACK" : "",
1240 insn & (1 << 9) ? " TM" : "",
1241 insn & (1 << 10) ? " CC" : "");
1242 if (insn & (1 << 3)) {
1243 s->socl |= LSI_SOCL_ATN;
1244 lsi_set_phase(s, PHASE_MO);
1245 }
1246 if (insn & (1 << 9)) {
1247 BADF("Target mode not implemented\n");
1248 exit(1);
1249 }
1250 if (insn & (1 << 10))
1251 s->carry = 1;
1252 break;
1253 case 4: /* Clear */
1254 DPRINTF("Clear%s%s%s%s\n",
1255 insn & (1 << 3) ? " ATN" : "",
1256 insn & (1 << 6) ? " ACK" : "",
1257 insn & (1 << 9) ? " TM" : "",
1258 insn & (1 << 10) ? " CC" : "");
1259 if (insn & (1 << 3)) {
1260 s->socl &= ~LSI_SOCL_ATN;
1261 }
1262 if (insn & (1 << 10))
1263 s->carry = 0;
1264 break;
1265 }
1266 } else {
1267 uint8_t op0;
1268 uint8_t op1;
1269 uint8_t data8;
1270 int reg;
1271 int operator;
1272 #ifdef DEBUG_LSI
1273 static const char *opcode_names[3] =
1274 {"Write", "Read", "Read-Modify-Write"};
1275 static const char *operator_names[8] =
1276 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1277 #endif
1278
1279 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1280 data8 = (insn >> 8) & 0xff;
1281 opcode = (insn >> 27) & 7;
1282 operator = (insn >> 24) & 7;
1283 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1284 opcode_names[opcode - 5], reg,
1285 operator_names[operator], data8, s->sfbr,
1286 (insn & (1 << 23)) ? " SFBR" : "");
1287 op0 = op1 = 0;
1288 switch (opcode) {
1289 case 5: /* From SFBR */
1290 op0 = s->sfbr;
1291 op1 = data8;
1292 break;
1293 case 6: /* To SFBR */
1294 if (operator)
1295 op0 = lsi_reg_readb(s, reg);
1296 op1 = data8;
1297 break;
1298 case 7: /* Read-modify-write */
1299 if (operator)
1300 op0 = lsi_reg_readb(s, reg);
1301 if (insn & (1 << 23)) {
1302 op1 = s->sfbr;
1303 } else {
1304 op1 = data8;
1305 }
1306 break;
1307 }
1308
1309 switch (operator) {
1310 case 0: /* move */
1311 op0 = op1;
1312 break;
1313 case 1: /* Shift left */
1314 op1 = op0 >> 7;
1315 op0 = (op0 << 1) | s->carry;
1316 s->carry = op1;
1317 break;
1318 case 2: /* OR */
1319 op0 |= op1;
1320 break;
1321 case 3: /* XOR */
1322 op0 ^= op1;
1323 break;
1324 case 4: /* AND */
1325 op0 &= op1;
1326 break;
1327 case 5: /* SHR */
1328 op1 = op0 & 1;
1329 op0 = (op0 >> 1) | (s->carry << 7);
1330 s->carry = op1;
1331 break;
1332 case 6: /* ADD */
1333 op0 += op1;
1334 s->carry = op0 < op1;
1335 break;
1336 case 7: /* ADC */
1337 op0 += op1 + s->carry;
1338 if (s->carry)
1339 s->carry = op0 <= op1;
1340 else
1341 s->carry = op0 < op1;
1342 break;
1343 }
1344
1345 switch (opcode) {
1346 case 5: /* From SFBR */
1347 case 7: /* Read-modify-write */
1348 lsi_reg_writeb(s, reg, op0);
1349 break;
1350 case 6: /* To SFBR */
1351 s->sfbr = op0;
1352 break;
1353 }
1354 }
1355 break;
1356
1357 case 2: /* Transfer Control. */
1358 {
1359 int cond;
1360 int jmp;
1361
1362 if ((insn & 0x002e0000) == 0) {
1363 DPRINTF("NOP\n");
1364 break;
1365 }
1366 if (s->sist1 & LSI_SIST1_STO) {
1367 DPRINTF("Delayed select timeout\n");
1368 lsi_stop_script(s);
1369 break;
1370 }
1371 cond = jmp = (insn & (1 << 19)) != 0;
1372 if (cond == jmp && (insn & (1 << 21))) {
1373 DPRINTF("Compare carry %d\n", s->carry == jmp);
1374 cond = s->carry != 0;
1375 }
1376 if (cond == jmp && (insn & (1 << 17))) {
1377 DPRINTF("Compare phase %d %c= %d\n",
1378 (s->sstat1 & PHASE_MASK),
1379 jmp ? '=' : '!',
1380 ((insn >> 24) & 7));
1381 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1382 }
1383 if (cond == jmp && (insn & (1 << 18))) {
1384 uint8_t mask;
1385
1386 mask = (~insn >> 8) & 0xff;
1387 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1388 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1389 cond = (s->sfbr & mask) == (insn & mask);
1390 }
1391 if (cond == jmp) {
1392 if (insn & (1 << 23)) {
1393 /* Relative address. */
1394 addr = s->dsp + sxt24(addr);
1395 }
1396 switch ((insn >> 27) & 7) {
1397 case 0: /* Jump */
1398 DPRINTF("Jump to 0x%08x\n", addr);
1399 s->dsp = addr;
1400 break;
1401 case 1: /* Call */
1402 DPRINTF("Call 0x%08x\n", addr);
1403 s->temp = s->dsp;
1404 s->dsp = addr;
1405 break;
1406 case 2: /* Return */
1407 DPRINTF("Return to 0x%08x\n", s->temp);
1408 s->dsp = s->temp;
1409 break;
1410 case 3: /* Interrupt */
1411 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1412 if ((insn & (1 << 20)) != 0) {
1413 s->istat0 |= LSI_ISTAT0_INTF;
1414 lsi_update_irq(s);
1415 } else {
1416 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1417 }
1418 break;
1419 default:
1420 DPRINTF("Illegal transfer control\n");
1421 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1422 break;
1423 }
1424 } else {
1425 DPRINTF("Control condition failed\n");
1426 }
1427 }
1428 break;
1429
1430 case 3:
1431 if ((insn & (1 << 29)) == 0) {
1432 /* Memory move. */
1433 uint32_t dest;
1434 /* ??? The docs imply the destination address is loaded into
1435 the TEMP register. However the Linux drivers rely on
1436 the value being presrved. */
1437 dest = read_dword(s, s->dsp);
1438 s->dsp += 4;
1439 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1440 } else {
1441 uint8_t data[7];
1442 int reg;
1443 int n;
1444 int i;
1445
1446 if (insn & (1 << 28)) {
1447 addr = s->dsa + sxt24(addr);
1448 }
1449 n = (insn & 7);
1450 reg = (insn >> 16) & 0xff;
1451 if (insn & (1 << 24)) {
1452 cpu_physical_memory_read(addr, data, n);
1453 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1454 addr, *(int *)data);
1455 for (i = 0; i < n; i++) {
1456 lsi_reg_writeb(s, reg + i, data[i]);
1457 }
1458 } else {
1459 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1460 for (i = 0; i < n; i++) {
1461 data[i] = lsi_reg_readb(s, reg + i);
1462 }
1463 cpu_physical_memory_write(addr, data, n);
1464 }
1465 }
1466 }
1467 if (insn_processed > 10000 && !s->waiting) {
1468 /* Some windows drivers make the device spin waiting for a memory
1469 location to change. If we have been executed a lot of code then
1470 assume this is the case and force an unexpected device disconnect.
1471 This is apparently sufficient to beat the drivers into submission.
1472 */
1473 if (!(s->sien0 & LSI_SIST0_UDC))
1474 fprintf(stderr, "inf. loop with UDC masked\n");
1475 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1476 lsi_disconnect(s);
1477 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1478 if (s->dcntl & LSI_DCNTL_SSM) {
1479 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1480 } else {
1481 goto again;
1482 }
1483 }
1484 DPRINTF("SCRIPTS execution stopped\n");
1485 }
1486
1487 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1488 {
1489 uint8_t tmp;
1490 #define CASE_GET_REG24(name, addr) \
1491 case addr: return s->name & 0xff; \
1492 case addr + 1: return (s->name >> 8) & 0xff; \
1493 case addr + 2: return (s->name >> 16) & 0xff;
1494
1495 #define CASE_GET_REG32(name, addr) \
1496 case addr: return s->name & 0xff; \
1497 case addr + 1: return (s->name >> 8) & 0xff; \
1498 case addr + 2: return (s->name >> 16) & 0xff; \
1499 case addr + 3: return (s->name >> 24) & 0xff;
1500
1501 #ifdef DEBUG_LSI_REG
1502 DPRINTF("Read reg %x\n", offset);
1503 #endif
1504 switch (offset) {
1505 case 0x00: /* SCNTL0 */
1506 return s->scntl0;
1507 case 0x01: /* SCNTL1 */
1508 return s->scntl1;
1509 case 0x02: /* SCNTL2 */
1510 return s->scntl2;
1511 case 0x03: /* SCNTL3 */
1512 return s->scntl3;
1513 case 0x04: /* SCID */
1514 return s->scid;
1515 case 0x05: /* SXFER */
1516 return s->sxfer;
1517 case 0x06: /* SDID */
1518 return s->sdid;
1519 case 0x07: /* GPREG0 */
1520 return 0x7f;
1521 case 0x08: /* Revision ID */
1522 return 0x00;
1523 case 0xa: /* SSID */
1524 return s->ssid;
1525 case 0xb: /* SBCL */
1526 /* ??? This is not correct. However it's (hopefully) only
1527 used for diagnostics, so should be ok. */
1528 return 0;
1529 case 0xc: /* DSTAT */
1530 tmp = s->dstat | 0x80;
1531 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1532 s->dstat = 0;
1533 lsi_update_irq(s);
1534 return tmp;
1535 case 0x0d: /* SSTAT0 */
1536 return s->sstat0;
1537 case 0x0e: /* SSTAT1 */
1538 return s->sstat1;
1539 case 0x0f: /* SSTAT2 */
1540 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1541 CASE_GET_REG32(dsa, 0x10)
1542 case 0x14: /* ISTAT0 */
1543 return s->istat0;
1544 case 0x15: /* ISTAT1 */
1545 return s->istat1;
1546 case 0x16: /* MBOX0 */
1547 return s->mbox0;
1548 case 0x17: /* MBOX1 */
1549 return s->mbox1;
1550 case 0x18: /* CTEST0 */
1551 return 0xff;
1552 case 0x19: /* CTEST1 */
1553 return 0;
1554 case 0x1a: /* CTEST2 */
1555 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1556 if (s->istat0 & LSI_ISTAT0_SIGP) {
1557 s->istat0 &= ~LSI_ISTAT0_SIGP;
1558 tmp |= LSI_CTEST2_SIGP;
1559 }
1560 return tmp;
1561 case 0x1b: /* CTEST3 */
1562 return s->ctest3;
1563 CASE_GET_REG32(temp, 0x1c)
1564 case 0x20: /* DFIFO */
1565 return 0;
1566 case 0x21: /* CTEST4 */
1567 return s->ctest4;
1568 case 0x22: /* CTEST5 */
1569 return s->ctest5;
1570 case 0x23: /* CTEST6 */
1571 return 0;
1572 CASE_GET_REG24(dbc, 0x24)
1573 case 0x27: /* DCMD */
1574 return s->dcmd;
1575 CASE_GET_REG32(dnad, 0x28)
1576 CASE_GET_REG32(dsp, 0x2c)
1577 CASE_GET_REG32(dsps, 0x30)
1578 CASE_GET_REG32(scratch[0], 0x34)
1579 case 0x38: /* DMODE */
1580 return s->dmode;
1581 case 0x39: /* DIEN */
1582 return s->dien;
1583 case 0x3a: /* SBR */
1584 return s->sbr;
1585 case 0x3b: /* DCNTL */
1586 return s->dcntl;
1587 case 0x40: /* SIEN0 */
1588 return s->sien0;
1589 case 0x41: /* SIEN1 */
1590 return s->sien1;
1591 case 0x42: /* SIST0 */
1592 tmp = s->sist0;
1593 s->sist0 = 0;
1594 lsi_update_irq(s);
1595 return tmp;
1596 case 0x43: /* SIST1 */
1597 tmp = s->sist1;
1598 s->sist1 = 0;
1599 lsi_update_irq(s);
1600 return tmp;
1601 case 0x46: /* MACNTL */
1602 return 0x0f;
1603 case 0x47: /* GPCNTL0 */
1604 return 0x0f;
1605 case 0x48: /* STIME0 */
1606 return s->stime0;
1607 case 0x4a: /* RESPID0 */
1608 return s->respid0;
1609 case 0x4b: /* RESPID1 */
1610 return s->respid1;
1611 case 0x4d: /* STEST1 */
1612 return s->stest1;
1613 case 0x4e: /* STEST2 */
1614 return s->stest2;
1615 case 0x4f: /* STEST3 */
1616 return s->stest3;
1617 case 0x50: /* SIDL */
1618 /* This is needed by the linux drivers. We currently only update it
1619 during the MSG IN phase. */
1620 return s->sidl;
1621 case 0x52: /* STEST4 */
1622 return 0xe0;
1623 case 0x56: /* CCNTL0 */
1624 return s->ccntl0;
1625 case 0x57: /* CCNTL1 */
1626 return s->ccntl1;
1627 case 0x58: /* SBDL */
1628 /* Some drivers peek at the data bus during the MSG IN phase. */
1629 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1630 return s->msg[0];
1631 return 0;
1632 case 0x59: /* SBDL high */
1633 return 0;
1634 CASE_GET_REG32(mmrs, 0xa0)
1635 CASE_GET_REG32(mmws, 0xa4)
1636 CASE_GET_REG32(sfs, 0xa8)
1637 CASE_GET_REG32(drs, 0xac)
1638 CASE_GET_REG32(sbms, 0xb0)
1639 CASE_GET_REG32(dbms, 0xb4)
1640 CASE_GET_REG32(dnad64, 0xb8)
1641 CASE_GET_REG32(pmjad1, 0xc0)
1642 CASE_GET_REG32(pmjad2, 0xc4)
1643 CASE_GET_REG32(rbc, 0xc8)
1644 CASE_GET_REG32(ua, 0xcc)
1645 CASE_GET_REG32(ia, 0xd4)
1646 CASE_GET_REG32(sbc, 0xd8)
1647 CASE_GET_REG32(csbc, 0xdc)
1648 }
1649 if (offset >= 0x5c && offset < 0xa0) {
1650 int n;
1651 int shift;
1652 n = (offset - 0x58) >> 2;
1653 shift = (offset & 3) * 8;
1654 return (s->scratch[n] >> shift) & 0xff;
1655 }
1656 BADF("readb 0x%x\n", offset);
1657 exit(1);
1658 #undef CASE_GET_REG24
1659 #undef CASE_GET_REG32
1660 }
1661
1662 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1663 {
1664 #define CASE_SET_REG24(name, addr) \
1665 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1666 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1667 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1668
1669 #define CASE_SET_REG32(name, addr) \
1670 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1671 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1672 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1673 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1674
1675 #ifdef DEBUG_LSI_REG
1676 DPRINTF("Write reg %x = %02x\n", offset, val);
1677 #endif
1678 switch (offset) {
1679 case 0x00: /* SCNTL0 */
1680 s->scntl0 = val;
1681 if (val & LSI_SCNTL0_START) {
1682 BADF("Start sequence not implemented\n");
1683 }
1684 break;
1685 case 0x01: /* SCNTL1 */
1686 s->scntl1 = val & ~LSI_SCNTL1_SST;
1687 if (val & LSI_SCNTL1_IARB) {
1688 BADF("Immediate Arbritration not implemented\n");
1689 }
1690 if (val & LSI_SCNTL1_RST) {
1691 if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1692 DeviceState *dev;
1693 int id;
1694
1695 for (id = 0; id < s->bus.ndev; id++) {
1696 if (s->bus.devs[id]) {
1697 dev = &s->bus.devs[id]->qdev;
1698 dev->info->reset(dev);
1699 }
1700 }
1701 s->sstat0 |= LSI_SSTAT0_RST;
1702 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1703 }
1704 } else {
1705 s->sstat0 &= ~LSI_SSTAT0_RST;
1706 }
1707 break;
1708 case 0x02: /* SCNTL2 */
1709 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1710 s->scntl2 = val;
1711 break;
1712 case 0x03: /* SCNTL3 */
1713 s->scntl3 = val;
1714 break;
1715 case 0x04: /* SCID */
1716 s->scid = val;
1717 break;
1718 case 0x05: /* SXFER */
1719 s->sxfer = val;
1720 break;
1721 case 0x06: /* SDID */
1722 if ((val & 0xf) != (s->ssid & 0xf))
1723 BADF("Destination ID does not match SSID\n");
1724 s->sdid = val & 0xf;
1725 break;
1726 case 0x07: /* GPREG0 */
1727 break;
1728 case 0x08: /* SFBR */
1729 /* The CPU is not allowed to write to this register. However the
1730 SCRIPTS register move instructions are. */
1731 s->sfbr = val;
1732 break;
1733 case 0x0a: case 0x0b:
1734 /* Openserver writes to these readonly registers on startup */
1735 return;
1736 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1737 /* Linux writes to these readonly registers on startup. */
1738 return;
1739 CASE_SET_REG32(dsa, 0x10)
1740 case 0x14: /* ISTAT0 */
1741 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1742 if (val & LSI_ISTAT0_ABRT) {
1743 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1744 }
1745 if (val & LSI_ISTAT0_INTF) {
1746 s->istat0 &= ~LSI_ISTAT0_INTF;
1747 lsi_update_irq(s);
1748 }
1749 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1750 DPRINTF("Woken by SIGP\n");
1751 s->waiting = 0;
1752 s->dsp = s->dnad;
1753 lsi_execute_script(s);
1754 }
1755 if (val & LSI_ISTAT0_SRST) {
1756 lsi_soft_reset(s);
1757 }
1758 break;
1759 case 0x16: /* MBOX0 */
1760 s->mbox0 = val;
1761 break;
1762 case 0x17: /* MBOX1 */
1763 s->mbox1 = val;
1764 break;
1765 case 0x1a: /* CTEST2 */
1766 s->ctest2 = val & LSI_CTEST2_PCICIE;
1767 break;
1768 case 0x1b: /* CTEST3 */
1769 s->ctest3 = val & 0x0f;
1770 break;
1771 CASE_SET_REG32(temp, 0x1c)
1772 case 0x21: /* CTEST4 */
1773 if (val & 7) {
1774 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1775 }
1776 s->ctest4 = val;
1777 break;
1778 case 0x22: /* CTEST5 */
1779 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1780 BADF("CTEST5 DMA increment not implemented\n");
1781 }
1782 s->ctest5 = val;
1783 break;
1784 CASE_SET_REG24(dbc, 0x24)
1785 CASE_SET_REG32(dnad, 0x28)
1786 case 0x2c: /* DSP[0:7] */
1787 s->dsp &= 0xffffff00;
1788 s->dsp |= val;
1789 break;
1790 case 0x2d: /* DSP[8:15] */
1791 s->dsp &= 0xffff00ff;
1792 s->dsp |= val << 8;
1793 break;
1794 case 0x2e: /* DSP[16:23] */
1795 s->dsp &= 0xff00ffff;
1796 s->dsp |= val << 16;
1797 break;
1798 case 0x2f: /* DSP[24:31] */
1799 s->dsp &= 0x00ffffff;
1800 s->dsp |= val << 24;
1801 if ((s->dmode & LSI_DMODE_MAN) == 0
1802 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1803 lsi_execute_script(s);
1804 break;
1805 CASE_SET_REG32(dsps, 0x30)
1806 CASE_SET_REG32(scratch[0], 0x34)
1807 case 0x38: /* DMODE */
1808 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1809 BADF("IO mappings not implemented\n");
1810 }
1811 s->dmode = val;
1812 break;
1813 case 0x39: /* DIEN */
1814 s->dien = val;
1815 lsi_update_irq(s);
1816 break;
1817 case 0x3a: /* SBR */
1818 s->sbr = val;
1819 break;
1820 case 0x3b: /* DCNTL */
1821 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1822 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1823 lsi_execute_script(s);
1824 break;
1825 case 0x40: /* SIEN0 */
1826 s->sien0 = val;
1827 lsi_update_irq(s);
1828 break;
1829 case 0x41: /* SIEN1 */
1830 s->sien1 = val;
1831 lsi_update_irq(s);
1832 break;
1833 case 0x47: /* GPCNTL0 */
1834 break;
1835 case 0x48: /* STIME0 */
1836 s->stime0 = val;
1837 break;
1838 case 0x49: /* STIME1 */
1839 if (val & 0xf) {
1840 DPRINTF("General purpose timer not implemented\n");
1841 /* ??? Raising the interrupt immediately seems to be sufficient
1842 to keep the FreeBSD driver happy. */
1843 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1844 }
1845 break;
1846 case 0x4a: /* RESPID0 */
1847 s->respid0 = val;
1848 break;
1849 case 0x4b: /* RESPID1 */
1850 s->respid1 = val;
1851 break;
1852 case 0x4d: /* STEST1 */
1853 s->stest1 = val;
1854 break;
1855 case 0x4e: /* STEST2 */
1856 if (val & 1) {
1857 BADF("Low level mode not implemented\n");
1858 }
1859 s->stest2 = val;
1860 break;
1861 case 0x4f: /* STEST3 */
1862 if (val & 0x41) {
1863 BADF("SCSI FIFO test mode not implemented\n");
1864 }
1865 s->stest3 = val;
1866 break;
1867 case 0x56: /* CCNTL0 */
1868 s->ccntl0 = val;
1869 break;
1870 case 0x57: /* CCNTL1 */
1871 s->ccntl1 = val;
1872 break;
1873 CASE_SET_REG32(mmrs, 0xa0)
1874 CASE_SET_REG32(mmws, 0xa4)
1875 CASE_SET_REG32(sfs, 0xa8)
1876 CASE_SET_REG32(drs, 0xac)
1877 CASE_SET_REG32(sbms, 0xb0)
1878 CASE_SET_REG32(dbms, 0xb4)
1879 CASE_SET_REG32(dnad64, 0xb8)
1880 CASE_SET_REG32(pmjad1, 0xc0)
1881 CASE_SET_REG32(pmjad2, 0xc4)
1882 CASE_SET_REG32(rbc, 0xc8)
1883 CASE_SET_REG32(ua, 0xcc)
1884 CASE_SET_REG32(ia, 0xd4)
1885 CASE_SET_REG32(sbc, 0xd8)
1886 CASE_SET_REG32(csbc, 0xdc)
1887 default:
1888 if (offset >= 0x5c && offset < 0xa0) {
1889 int n;
1890 int shift;
1891 n = (offset - 0x58) >> 2;
1892 shift = (offset & 3) * 8;
1893 s->scratch[n] &= ~(0xff << shift);
1894 s->scratch[n] |= (val & 0xff) << shift;
1895 } else {
1896 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1897 }
1898 }
1899 #undef CASE_SET_REG24
1900 #undef CASE_SET_REG32
1901 }
1902
1903 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1904 {
1905 LSIState *s = opaque;
1906
1907 lsi_reg_writeb(s, addr & 0xff, val);
1908 }
1909
1910 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1911 {
1912 LSIState *s = opaque;
1913
1914 addr &= 0xff;
1915 lsi_reg_writeb(s, addr, val & 0xff);
1916 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1917 }
1918
1919 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1920 {
1921 LSIState *s = opaque;
1922
1923 addr &= 0xff;
1924 lsi_reg_writeb(s, addr, val & 0xff);
1925 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1926 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1927 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1928 }
1929
1930 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1931 {
1932 LSIState *s = opaque;
1933
1934 return lsi_reg_readb(s, addr & 0xff);
1935 }
1936
1937 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1938 {
1939 LSIState *s = opaque;
1940 uint32_t val;
1941
1942 addr &= 0xff;
1943 val = lsi_reg_readb(s, addr);
1944 val |= lsi_reg_readb(s, addr + 1) << 8;
1945 return val;
1946 }
1947
1948 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1949 {
1950 LSIState *s = opaque;
1951 uint32_t val;
1952 addr &= 0xff;
1953 val = lsi_reg_readb(s, addr);
1954 val |= lsi_reg_readb(s, addr + 1) << 8;
1955 val |= lsi_reg_readb(s, addr + 2) << 16;
1956 val |= lsi_reg_readb(s, addr + 3) << 24;
1957 return val;
1958 }
1959
1960 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1961 lsi_mmio_readb,
1962 lsi_mmio_readw,
1963 lsi_mmio_readl,
1964 };
1965
1966 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1967 lsi_mmio_writeb,
1968 lsi_mmio_writew,
1969 lsi_mmio_writel,
1970 };
1971
1972 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1973 {
1974 LSIState *s = opaque;
1975 uint32_t newval;
1976 int shift;
1977
1978 addr &= 0x1fff;
1979 newval = s->script_ram[addr >> 2];
1980 shift = (addr & 3) * 8;
1981 newval &= ~(0xff << shift);
1982 newval |= val << shift;
1983 s->script_ram[addr >> 2] = newval;
1984 }
1985
1986 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1987 {
1988 LSIState *s = opaque;
1989 uint32_t newval;
1990
1991 addr &= 0x1fff;
1992 newval = s->script_ram[addr >> 2];
1993 if (addr & 2) {
1994 newval = (newval & 0xffff) | (val << 16);
1995 } else {
1996 newval = (newval & 0xffff0000) | val;
1997 }
1998 s->script_ram[addr >> 2] = newval;
1999 }
2000
2001
2002 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2003 {
2004 LSIState *s = opaque;
2005
2006 addr &= 0x1fff;
2007 s->script_ram[addr >> 2] = val;
2008 }
2009
2010 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
2011 {
2012 LSIState *s = opaque;
2013 uint32_t val;
2014
2015 addr &= 0x1fff;
2016 val = s->script_ram[addr >> 2];
2017 val >>= (addr & 3) * 8;
2018 return val & 0xff;
2019 }
2020
2021 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
2022 {
2023 LSIState *s = opaque;
2024 uint32_t val;
2025
2026 addr &= 0x1fff;
2027 val = s->script_ram[addr >> 2];
2028 if (addr & 2)
2029 val >>= 16;
2030 return val;
2031 }
2032
2033 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
2034 {
2035 LSIState *s = opaque;
2036
2037 addr &= 0x1fff;
2038 return s->script_ram[addr >> 2];
2039 }
2040
2041 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
2042 lsi_ram_readb,
2043 lsi_ram_readw,
2044 lsi_ram_readl,
2045 };
2046
2047 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
2048 lsi_ram_writeb,
2049 lsi_ram_writew,
2050 lsi_ram_writel,
2051 };
2052
2053 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
2054 {
2055 LSIState *s = opaque;
2056 return lsi_reg_readb(s, addr & 0xff);
2057 }
2058
2059 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
2060 {
2061 LSIState *s = opaque;
2062 uint32_t val;
2063 addr &= 0xff;
2064 val = lsi_reg_readb(s, addr);
2065 val |= lsi_reg_readb(s, addr + 1) << 8;
2066 return val;
2067 }
2068
2069 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
2070 {
2071 LSIState *s = opaque;
2072 uint32_t val;
2073 addr &= 0xff;
2074 val = lsi_reg_readb(s, addr);
2075 val |= lsi_reg_readb(s, addr + 1) << 8;
2076 val |= lsi_reg_readb(s, addr + 2) << 16;
2077 val |= lsi_reg_readb(s, addr + 3) << 24;
2078 return val;
2079 }
2080
2081 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
2082 {
2083 LSIState *s = opaque;
2084 lsi_reg_writeb(s, addr & 0xff, val);
2085 }
2086
2087 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
2088 {
2089 LSIState *s = opaque;
2090 addr &= 0xff;
2091 lsi_reg_writeb(s, addr, val & 0xff);
2092 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2093 }
2094
2095 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2096 {
2097 LSIState *s = opaque;
2098 addr &= 0xff;
2099 lsi_reg_writeb(s, addr, val & 0xff);
2100 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2101 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2102 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2103 }
2104
2105 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2106 pcibus_t addr, pcibus_t size, int type)
2107 {
2108 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2109
2110 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2111
2112 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2113 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2114 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2115 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2116 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2117 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2118 }
2119
2120 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2121 pcibus_t addr, pcibus_t size, int type)
2122 {
2123 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2124
2125 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2126 s->script_ram_base = addr;
2127 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2128 }
2129
2130 static void lsi_scsi_reset(DeviceState *dev)
2131 {
2132 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2133
2134 lsi_soft_reset(s);
2135 }
2136
2137 static void lsi_pre_save(void *opaque)
2138 {
2139 LSIState *s = opaque;
2140
2141 if (s->current) {
2142 assert(s->current->dma_buf == NULL);
2143 assert(s->current->dma_len == 0);
2144 }
2145 assert(QTAILQ_EMPTY(&s->queue));
2146 }
2147
2148 static const VMStateDescription vmstate_lsi_scsi = {
2149 .name = "lsiscsi",
2150 .version_id = 0,
2151 .minimum_version_id = 0,
2152 .minimum_version_id_old = 0,
2153 .pre_save = lsi_pre_save,
2154 .fields = (VMStateField []) {
2155 VMSTATE_PCI_DEVICE(dev, LSIState),
2156
2157 VMSTATE_INT32(carry, LSIState),
2158 VMSTATE_INT32(status, LSIState),
2159 VMSTATE_INT32(msg_action, LSIState),
2160 VMSTATE_INT32(msg_len, LSIState),
2161 VMSTATE_BUFFER(msg, LSIState),
2162 VMSTATE_INT32(waiting, LSIState),
2163
2164 VMSTATE_UINT32(dsa, LSIState),
2165 VMSTATE_UINT32(temp, LSIState),
2166 VMSTATE_UINT32(dnad, LSIState),
2167 VMSTATE_UINT32(dbc, LSIState),
2168 VMSTATE_UINT8(istat0, LSIState),
2169 VMSTATE_UINT8(istat1, LSIState),
2170 VMSTATE_UINT8(dcmd, LSIState),
2171 VMSTATE_UINT8(dstat, LSIState),
2172 VMSTATE_UINT8(dien, LSIState),
2173 VMSTATE_UINT8(sist0, LSIState),
2174 VMSTATE_UINT8(sist1, LSIState),
2175 VMSTATE_UINT8(sien0, LSIState),
2176 VMSTATE_UINT8(sien1, LSIState),
2177 VMSTATE_UINT8(mbox0, LSIState),
2178 VMSTATE_UINT8(mbox1, LSIState),
2179 VMSTATE_UINT8(dfifo, LSIState),
2180 VMSTATE_UINT8(ctest2, LSIState),
2181 VMSTATE_UINT8(ctest3, LSIState),
2182 VMSTATE_UINT8(ctest4, LSIState),
2183 VMSTATE_UINT8(ctest5, LSIState),
2184 VMSTATE_UINT8(ccntl0, LSIState),
2185 VMSTATE_UINT8(ccntl1, LSIState),
2186 VMSTATE_UINT32(dsp, LSIState),
2187 VMSTATE_UINT32(dsps, LSIState),
2188 VMSTATE_UINT8(dmode, LSIState),
2189 VMSTATE_UINT8(dcntl, LSIState),
2190 VMSTATE_UINT8(scntl0, LSIState),
2191 VMSTATE_UINT8(scntl1, LSIState),
2192 VMSTATE_UINT8(scntl2, LSIState),
2193 VMSTATE_UINT8(scntl3, LSIState),
2194 VMSTATE_UINT8(sstat0, LSIState),
2195 VMSTATE_UINT8(sstat1, LSIState),
2196 VMSTATE_UINT8(scid, LSIState),
2197 VMSTATE_UINT8(sxfer, LSIState),
2198 VMSTATE_UINT8(socl, LSIState),
2199 VMSTATE_UINT8(sdid, LSIState),
2200 VMSTATE_UINT8(ssid, LSIState),
2201 VMSTATE_UINT8(sfbr, LSIState),
2202 VMSTATE_UINT8(stest1, LSIState),
2203 VMSTATE_UINT8(stest2, LSIState),
2204 VMSTATE_UINT8(stest3, LSIState),
2205 VMSTATE_UINT8(sidl, LSIState),
2206 VMSTATE_UINT8(stime0, LSIState),
2207 VMSTATE_UINT8(respid0, LSIState),
2208 VMSTATE_UINT8(respid1, LSIState),
2209 VMSTATE_UINT32(mmrs, LSIState),
2210 VMSTATE_UINT32(mmws, LSIState),
2211 VMSTATE_UINT32(sfs, LSIState),
2212 VMSTATE_UINT32(drs, LSIState),
2213 VMSTATE_UINT32(sbms, LSIState),
2214 VMSTATE_UINT32(dbms, LSIState),
2215 VMSTATE_UINT32(dnad64, LSIState),
2216 VMSTATE_UINT32(pmjad1, LSIState),
2217 VMSTATE_UINT32(pmjad2, LSIState),
2218 VMSTATE_UINT32(rbc, LSIState),
2219 VMSTATE_UINT32(ua, LSIState),
2220 VMSTATE_UINT32(ia, LSIState),
2221 VMSTATE_UINT32(sbc, LSIState),
2222 VMSTATE_UINT32(csbc, LSIState),
2223 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2224 VMSTATE_UINT8(sbr, LSIState),
2225
2226 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2227 VMSTATE_END_OF_LIST()
2228 }
2229 };
2230
2231 static int lsi_scsi_uninit(PCIDevice *d)
2232 {
2233 LSIState *s = DO_UPCAST(LSIState, dev, d);
2234
2235 cpu_unregister_io_memory(s->mmio_io_addr);
2236 cpu_unregister_io_memory(s->ram_io_addr);
2237
2238 return 0;
2239 }
2240
2241 static const struct SCSIBusOps lsi_scsi_ops = {
2242 .complete = lsi_command_complete,
2243 .cancel = lsi_request_cancelled
2244 };
2245
2246 static int lsi_scsi_init(PCIDevice *dev)
2247 {
2248 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2249 uint8_t *pci_conf;
2250
2251 pci_conf = s->dev.config;
2252
2253 /* PCI Vendor ID (word) */
2254 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2255 /* PCI device ID (word) */
2256 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2257 /* PCI base class code */
2258 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2259 /* PCI subsystem ID */
2260 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2261 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2262 /* PCI latency timer = 255 */
2263 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2264 /* TODO: RST# value should be 0 */
2265 /* Interrupt pin 1 */
2266 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2267
2268 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2269 lsi_mmio_writefn, s,
2270 DEVICE_NATIVE_ENDIAN);
2271 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2272 lsi_ram_writefn, s,
2273 DEVICE_NATIVE_ENDIAN);
2274
2275 pci_register_bar(&s->dev, 0, 256,
2276 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2277 pci_register_bar_simple(&s->dev, 1, 0x400, 0, s->mmio_io_addr);
2278 pci_register_bar(&s->dev, 2, 0x2000,
2279 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2280 QTAILQ_INIT(&s->queue);
2281
2282 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, &lsi_scsi_ops);
2283 if (!dev->qdev.hotplugged) {
2284 return scsi_bus_legacy_handle_cmdline(&s->bus);
2285 }
2286 return 0;
2287 }
2288
2289 static PCIDeviceInfo lsi_info = {
2290 .qdev.name = "lsi53c895a",
2291 .qdev.alias = "lsi",
2292 .qdev.size = sizeof(LSIState),
2293 .qdev.reset = lsi_scsi_reset,
2294 .qdev.vmsd = &vmstate_lsi_scsi,
2295 .init = lsi_scsi_init,
2296 .exit = lsi_scsi_uninit,
2297 };
2298
2299 static void lsi53c895a_register_devices(void)
2300 {
2301 pci_qdev_register(&lsi_info);
2302 }
2303
2304 device_init(lsi53c895a_register_devices);