]> git.proxmox.com Git - qemu.git/blob - hw/lsi53c895a.c
lsi: Purge message queue on reset
[qemu.git] / hw / lsi53c895a.c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the LGPL.
8 */
9
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
12
13 #include <assert.h>
14
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
19
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
22
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33
34 #define LSI_MAX_DEVS 7
35
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
41
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
50
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
59
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
68
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
72
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
81
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
90
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
95
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
104
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
112
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
121
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
128
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
137
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
144
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
150
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
156
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
159
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
169
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
172
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
175
176 typedef struct lsi_request {
177 uint32_t tag;
178 SCSIDevice *dev;
179 uint32_t dma_len;
180 uint8_t *dma_buf;
181 uint32_t pending;
182 int out;
183 QTAILQ_ENTRY(lsi_request) next;
184 } lsi_request;
185
186 typedef struct {
187 PCIDevice dev;
188 int mmio_io_addr;
189 int ram_io_addr;
190 uint32_t script_ram_base;
191
192 int carry; /* ??? Should this be an a visible register somewhere? */
193 int sense;
194 /* Action to take at the end of a MSG IN phase.
195 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
196 int msg_action;
197 int msg_len;
198 uint8_t msg[LSI_MAX_MSGIN_LEN];
199 /* 0 if SCRIPTS are running or stopped.
200 * 1 if a Wait Reselect instruction has been issued.
201 * 2 if processing DMA from lsi_execute_script.
202 * 3 if a DMA operation is in progress. */
203 int waiting;
204 SCSIBus bus;
205 SCSIDevice *select_dev;
206 int current_lun;
207 /* The tag is a combination of the device ID and the SCSI tag. */
208 uint32_t select_tag;
209 int command_complete;
210 QTAILQ_HEAD(, lsi_request) queue;
211 lsi_request *current;
212
213 uint32_t dsa;
214 uint32_t temp;
215 uint32_t dnad;
216 uint32_t dbc;
217 uint8_t istat0;
218 uint8_t istat1;
219 uint8_t dcmd;
220 uint8_t dstat;
221 uint8_t dien;
222 uint8_t sist0;
223 uint8_t sist1;
224 uint8_t sien0;
225 uint8_t sien1;
226 uint8_t mbox0;
227 uint8_t mbox1;
228 uint8_t dfifo;
229 uint8_t ctest2;
230 uint8_t ctest3;
231 uint8_t ctest4;
232 uint8_t ctest5;
233 uint8_t ccntl0;
234 uint8_t ccntl1;
235 uint32_t dsp;
236 uint32_t dsps;
237 uint8_t dmode;
238 uint8_t dcntl;
239 uint8_t scntl0;
240 uint8_t scntl1;
241 uint8_t scntl2;
242 uint8_t scntl3;
243 uint8_t sstat0;
244 uint8_t sstat1;
245 uint8_t scid;
246 uint8_t sxfer;
247 uint8_t socl;
248 uint8_t sdid;
249 uint8_t ssid;
250 uint8_t sfbr;
251 uint8_t stest1;
252 uint8_t stest2;
253 uint8_t stest3;
254 uint8_t sidl;
255 uint8_t stime0;
256 uint8_t respid0;
257 uint8_t respid1;
258 uint32_t mmrs;
259 uint32_t mmws;
260 uint32_t sfs;
261 uint32_t drs;
262 uint32_t sbms;
263 uint32_t dbms;
264 uint32_t dnad64;
265 uint32_t pmjad1;
266 uint32_t pmjad2;
267 uint32_t rbc;
268 uint32_t ua;
269 uint32_t ia;
270 uint32_t sbc;
271 uint32_t csbc;
272 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
273 uint8_t sbr;
274
275 /* Script ram is stored as 32-bit words in host byteorder. */
276 uint32_t script_ram[2048];
277 } LSIState;
278
279 static inline int lsi_irq_on_rsl(LSIState *s)
280 {
281 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
282 }
283
284 static void lsi_soft_reset(LSIState *s)
285 {
286 lsi_request *p;
287
288 DPRINTF("Reset\n");
289 s->carry = 0;
290
291 s->msg_action = 0;
292 s->msg_len = 0;
293 s->waiting = 0;
294 s->dsa = 0;
295 s->dnad = 0;
296 s->dbc = 0;
297 s->temp = 0;
298 memset(s->scratch, 0, sizeof(s->scratch));
299 s->istat0 = 0;
300 s->istat1 = 0;
301 s->dcmd = 0;
302 s->dstat = 0;
303 s->dien = 0;
304 s->sist0 = 0;
305 s->sist1 = 0;
306 s->sien0 = 0;
307 s->sien1 = 0;
308 s->mbox0 = 0;
309 s->mbox1 = 0;
310 s->dfifo = 0;
311 s->ctest2 = 0;
312 s->ctest3 = 0;
313 s->ctest4 = 0;
314 s->ctest5 = 0;
315 s->ccntl0 = 0;
316 s->ccntl1 = 0;
317 s->dsp = 0;
318 s->dsps = 0;
319 s->dmode = 0;
320 s->dcntl = 0;
321 s->scntl0 = 0xc0;
322 s->scntl1 = 0;
323 s->scntl2 = 0;
324 s->scntl3 = 0;
325 s->sstat0 = 0;
326 s->sstat1 = 0;
327 s->scid = 7;
328 s->sxfer = 0;
329 s->socl = 0;
330 s->stest1 = 0;
331 s->stest2 = 0;
332 s->stest3 = 0;
333 s->sidl = 0;
334 s->stime0 = 0;
335 s->respid0 = 0x80;
336 s->respid1 = 0;
337 s->mmrs = 0;
338 s->mmws = 0;
339 s->sfs = 0;
340 s->drs = 0;
341 s->sbms = 0;
342 s->dbms = 0;
343 s->dnad64 = 0;
344 s->pmjad1 = 0;
345 s->pmjad2 = 0;
346 s->rbc = 0;
347 s->ua = 0;
348 s->ia = 0;
349 s->sbc = 0;
350 s->csbc = 0;
351 s->sbr = 0;
352 while (!QTAILQ_EMPTY(&s->queue)) {
353 p = QTAILQ_FIRST(&s->queue);
354 QTAILQ_REMOVE(&s->queue, p, next);
355 qemu_free(p);
356 }
357 if (s->current) {
358 qemu_free(s->current);
359 s->current = NULL;
360 }
361 }
362
363 static int lsi_dma_40bit(LSIState *s)
364 {
365 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366 return 1;
367 return 0;
368 }
369
370 static int lsi_dma_ti64bit(LSIState *s)
371 {
372 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373 return 1;
374 return 0;
375 }
376
377 static int lsi_dma_64bit(LSIState *s)
378 {
379 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380 return 1;
381 return 0;
382 }
383
384 static uint8_t lsi_reg_readb(LSIState *s, int offset);
385 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386 static void lsi_execute_script(LSIState *s);
387 static void lsi_reselect(LSIState *s, lsi_request *p);
388
389 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390 {
391 uint32_t buf;
392
393 /* Optimize reading from SCRIPTS RAM. */
394 if ((addr & 0xffffe000) == s->script_ram_base) {
395 return s->script_ram[(addr & 0x1fff) >> 2];
396 }
397 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398 return cpu_to_le32(buf);
399 }
400
401 static void lsi_stop_script(LSIState *s)
402 {
403 s->istat1 &= ~LSI_ISTAT1_SRUN;
404 }
405
406 static void lsi_update_irq(LSIState *s)
407 {
408 int level;
409 static int last_level;
410 lsi_request *p;
411
412 /* It's unclear whether the DIP/SIP bits should be cleared when the
413 Interrupt Status Registers are cleared or when istat0 is read.
414 We currently do the formwer, which seems to work. */
415 level = 0;
416 if (s->dstat) {
417 if (s->dstat & s->dien)
418 level = 1;
419 s->istat0 |= LSI_ISTAT0_DIP;
420 } else {
421 s->istat0 &= ~LSI_ISTAT0_DIP;
422 }
423
424 if (s->sist0 || s->sist1) {
425 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426 level = 1;
427 s->istat0 |= LSI_ISTAT0_SIP;
428 } else {
429 s->istat0 &= ~LSI_ISTAT0_SIP;
430 }
431 if (s->istat0 & LSI_ISTAT0_INTF)
432 level = 1;
433
434 if (level != last_level) {
435 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436 level, s->dstat, s->sist1, s->sist0);
437 last_level = level;
438 }
439 qemu_set_irq(s->dev.irq[0], level);
440
441 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442 DPRINTF("Handled IRQs & disconnected, looking for pending "
443 "processes\n");
444 QTAILQ_FOREACH(p, &s->queue, next) {
445 if (p->pending) {
446 lsi_reselect(s, p);
447 break;
448 }
449 }
450 }
451 }
452
453 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
454 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455 {
456 uint32_t mask0;
457 uint32_t mask1;
458
459 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460 stat1, stat0, s->sist1, s->sist0);
461 s->sist0 |= stat0;
462 s->sist1 |= stat1;
463 /* Stop processor on fatal or unmasked interrupt. As a special hack
464 we don't stop processing when raising STO. Instead continue
465 execution and stop at the next insn that accesses the SCSI bus. */
466 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468 mask1 &= ~LSI_SIST1_STO;
469 if (s->sist0 & mask0 || s->sist1 & mask1) {
470 lsi_stop_script(s);
471 }
472 lsi_update_irq(s);
473 }
474
475 /* Stop SCRIPTS execution and raise a DMA interrupt. */
476 static void lsi_script_dma_interrupt(LSIState *s, int stat)
477 {
478 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479 s->dstat |= stat;
480 lsi_update_irq(s);
481 lsi_stop_script(s);
482 }
483
484 static inline void lsi_set_phase(LSIState *s, int phase)
485 {
486 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487 }
488
489 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490 {
491 /* Trigger a phase mismatch. */
492 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
494 s->dsp = s->pmjad1;
495 } else {
496 s->dsp = s->pmjad2;
497 }
498 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499 } else {
500 DPRINTF("Phase mismatch interrupt\n");
501 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502 lsi_stop_script(s);
503 }
504 lsi_set_phase(s, new_phase);
505 }
506
507
508 /* Resume SCRIPTS execution after a DMA operation. */
509 static void lsi_resume_script(LSIState *s)
510 {
511 if (s->waiting != 2) {
512 s->waiting = 0;
513 lsi_execute_script(s);
514 } else {
515 s->waiting = 0;
516 }
517 }
518
519 /* Initiate a SCSI layer data transfer. */
520 static void lsi_do_dma(LSIState *s, int out)
521 {
522 uint32_t count;
523 target_phys_addr_t addr;
524
525 assert(s->current);
526 if (!s->current->dma_len) {
527 /* Wait until data is available. */
528 DPRINTF("DMA no data available\n");
529 return;
530 }
531
532 count = s->dbc;
533 if (count > s->current->dma_len)
534 count = s->current->dma_len;
535
536 addr = s->dnad;
537 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
538 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
539 addr |= ((uint64_t)s->dnad64 << 32);
540 else if (s->dbms)
541 addr |= ((uint64_t)s->dbms << 32);
542 else if (s->sbms)
543 addr |= ((uint64_t)s->sbms << 32);
544
545 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
546 s->csbc += count;
547 s->dnad += count;
548 s->dbc -= count;
549
550 if (s->current->dma_buf == NULL) {
551 s->current->dma_buf = s->current->dev->info->get_buf(s->current->dev,
552 s->current->tag);
553 }
554
555 /* ??? Set SFBR to first data byte. */
556 if (out) {
557 cpu_physical_memory_read(addr, s->current->dma_buf, count);
558 } else {
559 cpu_physical_memory_write(addr, s->current->dma_buf, count);
560 }
561 s->current->dma_len -= count;
562 if (s->current->dma_len == 0) {
563 s->current->dma_buf = NULL;
564 if (out) {
565 /* Write the data. */
566 s->current->dev->info->write_data(s->current->dev, s->current->tag);
567 } else {
568 /* Request any remaining data. */
569 s->current->dev->info->read_data(s->current->dev, s->current->tag);
570 }
571 } else {
572 s->current->dma_buf += count;
573 lsi_resume_script(s);
574 }
575 }
576
577
578 /* Add a command to the queue. */
579 static void lsi_queue_command(LSIState *s)
580 {
581 lsi_request *p = s->current;
582
583 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
584 assert(s->current != NULL);
585 assert(s->current->dma_len == 0);
586 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
587 s->current = NULL;
588
589 p->pending = 0;
590 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
591 }
592
593 /* Queue a byte for a MSG IN phase. */
594 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
595 {
596 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
597 BADF("MSG IN data too long\n");
598 } else {
599 DPRINTF("MSG IN 0x%02x\n", data);
600 s->msg[s->msg_len++] = data;
601 }
602 }
603
604 /* Perform reselection to continue a command. */
605 static void lsi_reselect(LSIState *s, lsi_request *p)
606 {
607 int id;
608
609 assert(s->current == NULL);
610 QTAILQ_REMOVE(&s->queue, p, next);
611 s->current = p;
612
613 id = (p->tag >> 8) & 0xf;
614 s->ssid = id | 0x80;
615 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
616 if (!(s->dcntl & LSI_DCNTL_COM)) {
617 s->sfbr = 1 << (id & 0x7);
618 }
619 DPRINTF("Reselected target %d\n", id);
620 s->scntl1 |= LSI_SCNTL1_CON;
621 lsi_set_phase(s, PHASE_MI);
622 s->msg_action = p->out ? 2 : 3;
623 s->current->dma_len = p->pending;
624 lsi_add_msg_byte(s, 0x80);
625 if (s->current->tag & LSI_TAG_VALID) {
626 lsi_add_msg_byte(s, 0x20);
627 lsi_add_msg_byte(s, p->tag & 0xff);
628 }
629
630 if (lsi_irq_on_rsl(s)) {
631 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
632 }
633 }
634
635 /* Record that data is available for a queued command. Returns zero if
636 the device was reselected, nonzero if the IO is deferred. */
637 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
638 {
639 lsi_request *p;
640
641 QTAILQ_FOREACH(p, &s->queue, next) {
642 if (p->tag == tag) {
643 if (p->pending) {
644 BADF("Multiple IO pending for tag %d\n", tag);
645 }
646 p->pending = arg;
647 /* Reselect if waiting for it, or if reselection triggers an IRQ
648 and the bus is free.
649 Since no interrupt stacking is implemented in the emulation, it
650 is also required that there are no pending interrupts waiting
651 for service from the device driver. */
652 if (s->waiting == 1 ||
653 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
654 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
655 /* Reselect device. */
656 lsi_reselect(s, p);
657 return 0;
658 } else {
659 DPRINTF("Queueing IO tag=0x%x\n", tag);
660 p->pending = arg;
661 return 1;
662 }
663 }
664 }
665 BADF("IO with unknown tag %d\n", tag);
666 return 1;
667 }
668
669 /* Callback to indicate that the SCSI layer has completed a transfer. */
670 static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
671 uint32_t arg)
672 {
673 LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
674 int out;
675
676 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
677 if (reason == SCSI_REASON_DONE) {
678 DPRINTF("Command complete sense=%d\n", (int)arg);
679 s->sense = arg;
680 s->command_complete = 2;
681 if (s->waiting && s->dbc != 0) {
682 /* Raise phase mismatch for short transfers. */
683 lsi_bad_phase(s, out, PHASE_ST);
684 } else {
685 lsi_set_phase(s, PHASE_ST);
686 }
687
688 qemu_free(s->current);
689 s->current = NULL;
690
691 lsi_resume_script(s);
692 return;
693 }
694
695 if (s->waiting == 1 || !s->current || tag != s->current->tag ||
696 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
697 if (lsi_queue_tag(s, tag, arg))
698 return;
699 }
700
701 /* host adapter (re)connected */
702 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
703 s->current->dma_len = arg;
704 s->command_complete = 1;
705 if (!s->waiting)
706 return;
707 if (s->waiting == 1 || s->dbc == 0) {
708 lsi_resume_script(s);
709 } else {
710 lsi_do_dma(s, out);
711 }
712 }
713
714 static void lsi_do_command(LSIState *s)
715 {
716 uint8_t buf[16];
717 int n;
718
719 DPRINTF("Send command len=%d\n", s->dbc);
720 if (s->dbc > 16)
721 s->dbc = 16;
722 cpu_physical_memory_read(s->dnad, buf, s->dbc);
723 s->sfbr = buf[0];
724 s->command_complete = 0;
725
726 assert(s->current == NULL);
727 s->current = qemu_mallocz(sizeof(lsi_request));
728 s->current->tag = s->select_tag;
729 s->current->dev = s->select_dev;
730
731 n = s->current->dev->info->send_command(s->current->dev, s->current->tag, buf,
732 s->current_lun);
733 if (n > 0) {
734 lsi_set_phase(s, PHASE_DI);
735 s->current->dev->info->read_data(s->current->dev, s->current->tag);
736 } else if (n < 0) {
737 lsi_set_phase(s, PHASE_DO);
738 s->current->dev->info->write_data(s->current->dev, s->current->tag);
739 }
740
741 if (!s->command_complete) {
742 if (n) {
743 /* Command did not complete immediately so disconnect. */
744 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
745 lsi_add_msg_byte(s, 4); /* DISCONNECT */
746 /* wait data */
747 lsi_set_phase(s, PHASE_MI);
748 s->msg_action = 1;
749 lsi_queue_command(s);
750 } else {
751 /* wait command complete */
752 lsi_set_phase(s, PHASE_DI);
753 }
754 }
755 }
756
757 static void lsi_do_status(LSIState *s)
758 {
759 uint8_t sense;
760 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
761 if (s->dbc != 1)
762 BADF("Bad Status move\n");
763 s->dbc = 1;
764 sense = s->sense;
765 s->sfbr = sense;
766 cpu_physical_memory_write(s->dnad, &sense, 1);
767 lsi_set_phase(s, PHASE_MI);
768 s->msg_action = 1;
769 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
770 }
771
772 static void lsi_disconnect(LSIState *s)
773 {
774 s->scntl1 &= ~LSI_SCNTL1_CON;
775 s->sstat1 &= ~PHASE_MASK;
776 }
777
778 static void lsi_do_msgin(LSIState *s)
779 {
780 int len;
781 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
782 s->sfbr = s->msg[0];
783 len = s->msg_len;
784 if (len > s->dbc)
785 len = s->dbc;
786 cpu_physical_memory_write(s->dnad, s->msg, len);
787 /* Linux drivers rely on the last byte being in the SIDL. */
788 s->sidl = s->msg[len - 1];
789 s->msg_len -= len;
790 if (s->msg_len) {
791 memmove(s->msg, s->msg + len, s->msg_len);
792 } else {
793 /* ??? Check if ATN (not yet implemented) is asserted and maybe
794 switch to PHASE_MO. */
795 switch (s->msg_action) {
796 case 0:
797 lsi_set_phase(s, PHASE_CMD);
798 break;
799 case 1:
800 lsi_disconnect(s);
801 break;
802 case 2:
803 lsi_set_phase(s, PHASE_DO);
804 break;
805 case 3:
806 lsi_set_phase(s, PHASE_DI);
807 break;
808 default:
809 abort();
810 }
811 }
812 }
813
814 /* Read the next byte during a MSGOUT phase. */
815 static uint8_t lsi_get_msgbyte(LSIState *s)
816 {
817 uint8_t data;
818 cpu_physical_memory_read(s->dnad, &data, 1);
819 s->dnad++;
820 s->dbc--;
821 return data;
822 }
823
824 static void lsi_do_msgout(LSIState *s)
825 {
826 uint8_t msg;
827 int len;
828
829 DPRINTF("MSG out len=%d\n", s->dbc);
830 while (s->dbc) {
831 msg = lsi_get_msgbyte(s);
832 s->sfbr = msg;
833
834 switch (msg) {
835 case 0x04:
836 DPRINTF("MSG: Disconnect\n");
837 lsi_disconnect(s);
838 break;
839 case 0x08:
840 DPRINTF("MSG: No Operation\n");
841 lsi_set_phase(s, PHASE_CMD);
842 break;
843 case 0x01:
844 len = lsi_get_msgbyte(s);
845 msg = lsi_get_msgbyte(s);
846 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
847 switch (msg) {
848 case 1:
849 DPRINTF("SDTR (ignored)\n");
850 s->dbc -= 2;
851 break;
852 case 3:
853 DPRINTF("WDTR (ignored)\n");
854 s->dbc -= 1;
855 break;
856 default:
857 goto bad;
858 }
859 break;
860 case 0x20: /* SIMPLE queue */
861 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
862 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
863 break;
864 case 0x21: /* HEAD of queue */
865 BADF("HEAD queue not implemented\n");
866 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
867 break;
868 case 0x22: /* ORDERED queue */
869 BADF("ORDERED queue not implemented\n");
870 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
871 break;
872 default:
873 if ((msg & 0x80) == 0) {
874 goto bad;
875 }
876 s->current_lun = msg & 7;
877 DPRINTF("Select LUN %d\n", s->current_lun);
878 lsi_set_phase(s, PHASE_CMD);
879 break;
880 }
881 }
882 return;
883 bad:
884 BADF("Unimplemented message 0x%02x\n", msg);
885 lsi_set_phase(s, PHASE_MI);
886 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
887 s->msg_action = 0;
888 }
889
890 /* Sign extend a 24-bit value. */
891 static inline int32_t sxt24(int32_t n)
892 {
893 return (n << 8) >> 8;
894 }
895
896 #define LSI_BUF_SIZE 4096
897 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
898 {
899 int n;
900 uint8_t buf[LSI_BUF_SIZE];
901
902 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
903 while (count) {
904 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
905 cpu_physical_memory_read(src, buf, n);
906 cpu_physical_memory_write(dest, buf, n);
907 src += n;
908 dest += n;
909 count -= n;
910 }
911 }
912
913 static void lsi_wait_reselect(LSIState *s)
914 {
915 lsi_request *p;
916
917 DPRINTF("Wait Reselect\n");
918
919 QTAILQ_FOREACH(p, &s->queue, next) {
920 if (p->pending) {
921 lsi_reselect(s, p);
922 break;
923 }
924 }
925 if (s->current == NULL) {
926 s->waiting = 1;
927 }
928 }
929
930 static void lsi_execute_script(LSIState *s)
931 {
932 uint32_t insn;
933 uint32_t addr, addr_high;
934 int opcode;
935 int insn_processed = 0;
936
937 s->istat1 |= LSI_ISTAT1_SRUN;
938 again:
939 insn_processed++;
940 insn = read_dword(s, s->dsp);
941 if (!insn) {
942 /* If we receive an empty opcode increment the DSP by 4 bytes
943 instead of 8 and execute the next opcode at that location */
944 s->dsp += 4;
945 goto again;
946 }
947 addr = read_dword(s, s->dsp + 4);
948 addr_high = 0;
949 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
950 s->dsps = addr;
951 s->dcmd = insn >> 24;
952 s->dsp += 8;
953 switch (insn >> 30) {
954 case 0: /* Block move. */
955 if (s->sist1 & LSI_SIST1_STO) {
956 DPRINTF("Delayed select timeout\n");
957 lsi_stop_script(s);
958 break;
959 }
960 s->dbc = insn & 0xffffff;
961 s->rbc = s->dbc;
962 /* ??? Set ESA. */
963 s->ia = s->dsp - 8;
964 if (insn & (1 << 29)) {
965 /* Indirect addressing. */
966 addr = read_dword(s, addr);
967 } else if (insn & (1 << 28)) {
968 uint32_t buf[2];
969 int32_t offset;
970 /* Table indirect addressing. */
971
972 /* 32-bit Table indirect */
973 offset = sxt24(addr);
974 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
975 /* byte count is stored in bits 0:23 only */
976 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
977 s->rbc = s->dbc;
978 addr = cpu_to_le32(buf[1]);
979
980 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
981 * table, bits [31:24] */
982 if (lsi_dma_40bit(s))
983 addr_high = cpu_to_le32(buf[0]) >> 24;
984 else if (lsi_dma_ti64bit(s)) {
985 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
986 switch (selector) {
987 case 0 ... 0x0f:
988 /* offset index into scratch registers since
989 * TI64 mode can use registers C to R */
990 addr_high = s->scratch[2 + selector];
991 break;
992 case 0x10:
993 addr_high = s->mmrs;
994 break;
995 case 0x11:
996 addr_high = s->mmws;
997 break;
998 case 0x12:
999 addr_high = s->sfs;
1000 break;
1001 case 0x13:
1002 addr_high = s->drs;
1003 break;
1004 case 0x14:
1005 addr_high = s->sbms;
1006 break;
1007 case 0x15:
1008 addr_high = s->dbms;
1009 break;
1010 default:
1011 BADF("Illegal selector specified (0x%x > 0x15)"
1012 " for 64-bit DMA block move", selector);
1013 break;
1014 }
1015 }
1016 } else if (lsi_dma_64bit(s)) {
1017 /* fetch a 3rd dword if 64-bit direct move is enabled and
1018 only if we're not doing table indirect or indirect addressing */
1019 s->dbms = read_dword(s, s->dsp);
1020 s->dsp += 4;
1021 s->ia = s->dsp - 12;
1022 }
1023 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1024 DPRINTF("Wrong phase got %d expected %d\n",
1025 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1026 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1027 break;
1028 }
1029 s->dnad = addr;
1030 s->dnad64 = addr_high;
1031 switch (s->sstat1 & 0x7) {
1032 case PHASE_DO:
1033 s->waiting = 2;
1034 lsi_do_dma(s, 1);
1035 if (s->waiting)
1036 s->waiting = 3;
1037 break;
1038 case PHASE_DI:
1039 s->waiting = 2;
1040 lsi_do_dma(s, 0);
1041 if (s->waiting)
1042 s->waiting = 3;
1043 break;
1044 case PHASE_CMD:
1045 lsi_do_command(s);
1046 break;
1047 case PHASE_ST:
1048 lsi_do_status(s);
1049 break;
1050 case PHASE_MO:
1051 lsi_do_msgout(s);
1052 break;
1053 case PHASE_MI:
1054 lsi_do_msgin(s);
1055 break;
1056 default:
1057 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1058 exit(1);
1059 }
1060 s->dfifo = s->dbc & 0xff;
1061 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1062 s->sbc = s->dbc;
1063 s->rbc -= s->dbc;
1064 s->ua = addr + s->dbc;
1065 break;
1066
1067 case 1: /* IO or Read/Write instruction. */
1068 opcode = (insn >> 27) & 7;
1069 if (opcode < 5) {
1070 uint32_t id;
1071
1072 if (insn & (1 << 25)) {
1073 id = read_dword(s, s->dsa + sxt24(insn));
1074 } else {
1075 id = insn;
1076 }
1077 id = (id >> 16) & 0xf;
1078 if (insn & (1 << 26)) {
1079 addr = s->dsp + sxt24(addr);
1080 }
1081 s->dnad = addr;
1082 switch (opcode) {
1083 case 0: /* Select */
1084 s->sdid = id;
1085 if (s->scntl1 & LSI_SCNTL1_CON) {
1086 DPRINTF("Already reselected, jumping to alternative address\n");
1087 s->dsp = s->dnad;
1088 break;
1089 }
1090 s->sstat0 |= LSI_SSTAT0_WOA;
1091 s->scntl1 &= ~LSI_SCNTL1_IARB;
1092 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1093 DPRINTF("Selected absent target %d\n", id);
1094 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1095 lsi_disconnect(s);
1096 break;
1097 }
1098 DPRINTF("Selected target %d%s\n",
1099 id, insn & (1 << 3) ? " ATN" : "");
1100 /* ??? Linux drivers compain when this is set. Maybe
1101 it only applies in low-level mode (unimplemented).
1102 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1103 s->select_dev = s->bus.devs[id];
1104 s->select_tag = id << 8;
1105 s->scntl1 |= LSI_SCNTL1_CON;
1106 if (insn & (1 << 3)) {
1107 s->socl |= LSI_SOCL_ATN;
1108 }
1109 lsi_set_phase(s, PHASE_MO);
1110 break;
1111 case 1: /* Disconnect */
1112 DPRINTF("Wait Disconnect\n");
1113 s->scntl1 &= ~LSI_SCNTL1_CON;
1114 break;
1115 case 2: /* Wait Reselect */
1116 if (!lsi_irq_on_rsl(s)) {
1117 lsi_wait_reselect(s);
1118 }
1119 break;
1120 case 3: /* Set */
1121 DPRINTF("Set%s%s%s%s\n",
1122 insn & (1 << 3) ? " ATN" : "",
1123 insn & (1 << 6) ? " ACK" : "",
1124 insn & (1 << 9) ? " TM" : "",
1125 insn & (1 << 10) ? " CC" : "");
1126 if (insn & (1 << 3)) {
1127 s->socl |= LSI_SOCL_ATN;
1128 lsi_set_phase(s, PHASE_MO);
1129 }
1130 if (insn & (1 << 9)) {
1131 BADF("Target mode not implemented\n");
1132 exit(1);
1133 }
1134 if (insn & (1 << 10))
1135 s->carry = 1;
1136 break;
1137 case 4: /* Clear */
1138 DPRINTF("Clear%s%s%s%s\n",
1139 insn & (1 << 3) ? " ATN" : "",
1140 insn & (1 << 6) ? " ACK" : "",
1141 insn & (1 << 9) ? " TM" : "",
1142 insn & (1 << 10) ? " CC" : "");
1143 if (insn & (1 << 3)) {
1144 s->socl &= ~LSI_SOCL_ATN;
1145 }
1146 if (insn & (1 << 10))
1147 s->carry = 0;
1148 break;
1149 }
1150 } else {
1151 uint8_t op0;
1152 uint8_t op1;
1153 uint8_t data8;
1154 int reg;
1155 int operator;
1156 #ifdef DEBUG_LSI
1157 static const char *opcode_names[3] =
1158 {"Write", "Read", "Read-Modify-Write"};
1159 static const char *operator_names[8] =
1160 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1161 #endif
1162
1163 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1164 data8 = (insn >> 8) & 0xff;
1165 opcode = (insn >> 27) & 7;
1166 operator = (insn >> 24) & 7;
1167 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1168 opcode_names[opcode - 5], reg,
1169 operator_names[operator], data8, s->sfbr,
1170 (insn & (1 << 23)) ? " SFBR" : "");
1171 op0 = op1 = 0;
1172 switch (opcode) {
1173 case 5: /* From SFBR */
1174 op0 = s->sfbr;
1175 op1 = data8;
1176 break;
1177 case 6: /* To SFBR */
1178 if (operator)
1179 op0 = lsi_reg_readb(s, reg);
1180 op1 = data8;
1181 break;
1182 case 7: /* Read-modify-write */
1183 if (operator)
1184 op0 = lsi_reg_readb(s, reg);
1185 if (insn & (1 << 23)) {
1186 op1 = s->sfbr;
1187 } else {
1188 op1 = data8;
1189 }
1190 break;
1191 }
1192
1193 switch (operator) {
1194 case 0: /* move */
1195 op0 = op1;
1196 break;
1197 case 1: /* Shift left */
1198 op1 = op0 >> 7;
1199 op0 = (op0 << 1) | s->carry;
1200 s->carry = op1;
1201 break;
1202 case 2: /* OR */
1203 op0 |= op1;
1204 break;
1205 case 3: /* XOR */
1206 op0 ^= op1;
1207 break;
1208 case 4: /* AND */
1209 op0 &= op1;
1210 break;
1211 case 5: /* SHR */
1212 op1 = op0 & 1;
1213 op0 = (op0 >> 1) | (s->carry << 7);
1214 s->carry = op1;
1215 break;
1216 case 6: /* ADD */
1217 op0 += op1;
1218 s->carry = op0 < op1;
1219 break;
1220 case 7: /* ADC */
1221 op0 += op1 + s->carry;
1222 if (s->carry)
1223 s->carry = op0 <= op1;
1224 else
1225 s->carry = op0 < op1;
1226 break;
1227 }
1228
1229 switch (opcode) {
1230 case 5: /* From SFBR */
1231 case 7: /* Read-modify-write */
1232 lsi_reg_writeb(s, reg, op0);
1233 break;
1234 case 6: /* To SFBR */
1235 s->sfbr = op0;
1236 break;
1237 }
1238 }
1239 break;
1240
1241 case 2: /* Transfer Control. */
1242 {
1243 int cond;
1244 int jmp;
1245
1246 if ((insn & 0x002e0000) == 0) {
1247 DPRINTF("NOP\n");
1248 break;
1249 }
1250 if (s->sist1 & LSI_SIST1_STO) {
1251 DPRINTF("Delayed select timeout\n");
1252 lsi_stop_script(s);
1253 break;
1254 }
1255 cond = jmp = (insn & (1 << 19)) != 0;
1256 if (cond == jmp && (insn & (1 << 21))) {
1257 DPRINTF("Compare carry %d\n", s->carry == jmp);
1258 cond = s->carry != 0;
1259 }
1260 if (cond == jmp && (insn & (1 << 17))) {
1261 DPRINTF("Compare phase %d %c= %d\n",
1262 (s->sstat1 & PHASE_MASK),
1263 jmp ? '=' : '!',
1264 ((insn >> 24) & 7));
1265 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1266 }
1267 if (cond == jmp && (insn & (1 << 18))) {
1268 uint8_t mask;
1269
1270 mask = (~insn >> 8) & 0xff;
1271 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1272 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1273 cond = (s->sfbr & mask) == (insn & mask);
1274 }
1275 if (cond == jmp) {
1276 if (insn & (1 << 23)) {
1277 /* Relative address. */
1278 addr = s->dsp + sxt24(addr);
1279 }
1280 switch ((insn >> 27) & 7) {
1281 case 0: /* Jump */
1282 DPRINTF("Jump to 0x%08x\n", addr);
1283 s->dsp = addr;
1284 break;
1285 case 1: /* Call */
1286 DPRINTF("Call 0x%08x\n", addr);
1287 s->temp = s->dsp;
1288 s->dsp = addr;
1289 break;
1290 case 2: /* Return */
1291 DPRINTF("Return to 0x%08x\n", s->temp);
1292 s->dsp = s->temp;
1293 break;
1294 case 3: /* Interrupt */
1295 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1296 if ((insn & (1 << 20)) != 0) {
1297 s->istat0 |= LSI_ISTAT0_INTF;
1298 lsi_update_irq(s);
1299 } else {
1300 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1301 }
1302 break;
1303 default:
1304 DPRINTF("Illegal transfer control\n");
1305 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1306 break;
1307 }
1308 } else {
1309 DPRINTF("Control condition failed\n");
1310 }
1311 }
1312 break;
1313
1314 case 3:
1315 if ((insn & (1 << 29)) == 0) {
1316 /* Memory move. */
1317 uint32_t dest;
1318 /* ??? The docs imply the destination address is loaded into
1319 the TEMP register. However the Linux drivers rely on
1320 the value being presrved. */
1321 dest = read_dword(s, s->dsp);
1322 s->dsp += 4;
1323 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1324 } else {
1325 uint8_t data[7];
1326 int reg;
1327 int n;
1328 int i;
1329
1330 if (insn & (1 << 28)) {
1331 addr = s->dsa + sxt24(addr);
1332 }
1333 n = (insn & 7);
1334 reg = (insn >> 16) & 0xff;
1335 if (insn & (1 << 24)) {
1336 cpu_physical_memory_read(addr, data, n);
1337 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1338 addr, *(int *)data);
1339 for (i = 0; i < n; i++) {
1340 lsi_reg_writeb(s, reg + i, data[i]);
1341 }
1342 } else {
1343 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1344 for (i = 0; i < n; i++) {
1345 data[i] = lsi_reg_readb(s, reg + i);
1346 }
1347 cpu_physical_memory_write(addr, data, n);
1348 }
1349 }
1350 }
1351 if (insn_processed > 10000 && !s->waiting) {
1352 /* Some windows drivers make the device spin waiting for a memory
1353 location to change. If we have been executed a lot of code then
1354 assume this is the case and force an unexpected device disconnect.
1355 This is apparently sufficient to beat the drivers into submission.
1356 */
1357 if (!(s->sien0 & LSI_SIST0_UDC))
1358 fprintf(stderr, "inf. loop with UDC masked\n");
1359 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1360 lsi_disconnect(s);
1361 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1362 if (s->dcntl & LSI_DCNTL_SSM) {
1363 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1364 } else {
1365 goto again;
1366 }
1367 }
1368 DPRINTF("SCRIPTS execution stopped\n");
1369 }
1370
1371 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1372 {
1373 uint8_t tmp;
1374 #define CASE_GET_REG24(name, addr) \
1375 case addr: return s->name & 0xff; \
1376 case addr + 1: return (s->name >> 8) & 0xff; \
1377 case addr + 2: return (s->name >> 16) & 0xff;
1378
1379 #define CASE_GET_REG32(name, addr) \
1380 case addr: return s->name & 0xff; \
1381 case addr + 1: return (s->name >> 8) & 0xff; \
1382 case addr + 2: return (s->name >> 16) & 0xff; \
1383 case addr + 3: return (s->name >> 24) & 0xff;
1384
1385 #ifdef DEBUG_LSI_REG
1386 DPRINTF("Read reg %x\n", offset);
1387 #endif
1388 switch (offset) {
1389 case 0x00: /* SCNTL0 */
1390 return s->scntl0;
1391 case 0x01: /* SCNTL1 */
1392 return s->scntl1;
1393 case 0x02: /* SCNTL2 */
1394 return s->scntl2;
1395 case 0x03: /* SCNTL3 */
1396 return s->scntl3;
1397 case 0x04: /* SCID */
1398 return s->scid;
1399 case 0x05: /* SXFER */
1400 return s->sxfer;
1401 case 0x06: /* SDID */
1402 return s->sdid;
1403 case 0x07: /* GPREG0 */
1404 return 0x7f;
1405 case 0x08: /* Revision ID */
1406 return 0x00;
1407 case 0xa: /* SSID */
1408 return s->ssid;
1409 case 0xb: /* SBCL */
1410 /* ??? This is not correct. However it's (hopefully) only
1411 used for diagnostics, so should be ok. */
1412 return 0;
1413 case 0xc: /* DSTAT */
1414 tmp = s->dstat | 0x80;
1415 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1416 s->dstat = 0;
1417 lsi_update_irq(s);
1418 return tmp;
1419 case 0x0d: /* SSTAT0 */
1420 return s->sstat0;
1421 case 0x0e: /* SSTAT1 */
1422 return s->sstat1;
1423 case 0x0f: /* SSTAT2 */
1424 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1425 CASE_GET_REG32(dsa, 0x10)
1426 case 0x14: /* ISTAT0 */
1427 return s->istat0;
1428 case 0x15: /* ISTAT1 */
1429 return s->istat1;
1430 case 0x16: /* MBOX0 */
1431 return s->mbox0;
1432 case 0x17: /* MBOX1 */
1433 return s->mbox1;
1434 case 0x18: /* CTEST0 */
1435 return 0xff;
1436 case 0x19: /* CTEST1 */
1437 return 0;
1438 case 0x1a: /* CTEST2 */
1439 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1440 if (s->istat0 & LSI_ISTAT0_SIGP) {
1441 s->istat0 &= ~LSI_ISTAT0_SIGP;
1442 tmp |= LSI_CTEST2_SIGP;
1443 }
1444 return tmp;
1445 case 0x1b: /* CTEST3 */
1446 return s->ctest3;
1447 CASE_GET_REG32(temp, 0x1c)
1448 case 0x20: /* DFIFO */
1449 return 0;
1450 case 0x21: /* CTEST4 */
1451 return s->ctest4;
1452 case 0x22: /* CTEST5 */
1453 return s->ctest5;
1454 case 0x23: /* CTEST6 */
1455 return 0;
1456 CASE_GET_REG24(dbc, 0x24)
1457 case 0x27: /* DCMD */
1458 return s->dcmd;
1459 CASE_GET_REG32(dnad, 0x28)
1460 CASE_GET_REG32(dsp, 0x2c)
1461 CASE_GET_REG32(dsps, 0x30)
1462 CASE_GET_REG32(scratch[0], 0x34)
1463 case 0x38: /* DMODE */
1464 return s->dmode;
1465 case 0x39: /* DIEN */
1466 return s->dien;
1467 case 0x3a: /* SBR */
1468 return s->sbr;
1469 case 0x3b: /* DCNTL */
1470 return s->dcntl;
1471 case 0x40: /* SIEN0 */
1472 return s->sien0;
1473 case 0x41: /* SIEN1 */
1474 return s->sien1;
1475 case 0x42: /* SIST0 */
1476 tmp = s->sist0;
1477 s->sist0 = 0;
1478 lsi_update_irq(s);
1479 return tmp;
1480 case 0x43: /* SIST1 */
1481 tmp = s->sist1;
1482 s->sist1 = 0;
1483 lsi_update_irq(s);
1484 return tmp;
1485 case 0x46: /* MACNTL */
1486 return 0x0f;
1487 case 0x47: /* GPCNTL0 */
1488 return 0x0f;
1489 case 0x48: /* STIME0 */
1490 return s->stime0;
1491 case 0x4a: /* RESPID0 */
1492 return s->respid0;
1493 case 0x4b: /* RESPID1 */
1494 return s->respid1;
1495 case 0x4d: /* STEST1 */
1496 return s->stest1;
1497 case 0x4e: /* STEST2 */
1498 return s->stest2;
1499 case 0x4f: /* STEST3 */
1500 return s->stest3;
1501 case 0x50: /* SIDL */
1502 /* This is needed by the linux drivers. We currently only update it
1503 during the MSG IN phase. */
1504 return s->sidl;
1505 case 0x52: /* STEST4 */
1506 return 0xe0;
1507 case 0x56: /* CCNTL0 */
1508 return s->ccntl0;
1509 case 0x57: /* CCNTL1 */
1510 return s->ccntl1;
1511 case 0x58: /* SBDL */
1512 /* Some drivers peek at the data bus during the MSG IN phase. */
1513 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1514 return s->msg[0];
1515 return 0;
1516 case 0x59: /* SBDL high */
1517 return 0;
1518 CASE_GET_REG32(mmrs, 0xa0)
1519 CASE_GET_REG32(mmws, 0xa4)
1520 CASE_GET_REG32(sfs, 0xa8)
1521 CASE_GET_REG32(drs, 0xac)
1522 CASE_GET_REG32(sbms, 0xb0)
1523 CASE_GET_REG32(dbms, 0xb4)
1524 CASE_GET_REG32(dnad64, 0xb8)
1525 CASE_GET_REG32(pmjad1, 0xc0)
1526 CASE_GET_REG32(pmjad2, 0xc4)
1527 CASE_GET_REG32(rbc, 0xc8)
1528 CASE_GET_REG32(ua, 0xcc)
1529 CASE_GET_REG32(ia, 0xd4)
1530 CASE_GET_REG32(sbc, 0xd8)
1531 CASE_GET_REG32(csbc, 0xdc)
1532 }
1533 if (offset >= 0x5c && offset < 0xa0) {
1534 int n;
1535 int shift;
1536 n = (offset - 0x58) >> 2;
1537 shift = (offset & 3) * 8;
1538 return (s->scratch[n] >> shift) & 0xff;
1539 }
1540 BADF("readb 0x%x\n", offset);
1541 exit(1);
1542 #undef CASE_GET_REG24
1543 #undef CASE_GET_REG32
1544 }
1545
1546 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1547 {
1548 #define CASE_SET_REG24(name, addr) \
1549 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1550 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1551 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1552
1553 #define CASE_SET_REG32(name, addr) \
1554 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1555 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1556 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1557 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1558
1559 #ifdef DEBUG_LSI_REG
1560 DPRINTF("Write reg %x = %02x\n", offset, val);
1561 #endif
1562 switch (offset) {
1563 case 0x00: /* SCNTL0 */
1564 s->scntl0 = val;
1565 if (val & LSI_SCNTL0_START) {
1566 BADF("Start sequence not implemented\n");
1567 }
1568 break;
1569 case 0x01: /* SCNTL1 */
1570 s->scntl1 = val & ~LSI_SCNTL1_SST;
1571 if (val & LSI_SCNTL1_IARB) {
1572 BADF("Immediate Arbritration not implemented\n");
1573 }
1574 if (val & LSI_SCNTL1_RST) {
1575 s->sstat0 |= LSI_SSTAT0_RST;
1576 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1577 } else {
1578 s->sstat0 &= ~LSI_SSTAT0_RST;
1579 }
1580 break;
1581 case 0x02: /* SCNTL2 */
1582 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1583 s->scntl2 = val;
1584 break;
1585 case 0x03: /* SCNTL3 */
1586 s->scntl3 = val;
1587 break;
1588 case 0x04: /* SCID */
1589 s->scid = val;
1590 break;
1591 case 0x05: /* SXFER */
1592 s->sxfer = val;
1593 break;
1594 case 0x06: /* SDID */
1595 if ((val & 0xf) != (s->ssid & 0xf))
1596 BADF("Destination ID does not match SSID\n");
1597 s->sdid = val & 0xf;
1598 break;
1599 case 0x07: /* GPREG0 */
1600 break;
1601 case 0x08: /* SFBR */
1602 /* The CPU is not allowed to write to this register. However the
1603 SCRIPTS register move instructions are. */
1604 s->sfbr = val;
1605 break;
1606 case 0x0a: case 0x0b:
1607 /* Openserver writes to these readonly registers on startup */
1608 return;
1609 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1610 /* Linux writes to these readonly registers on startup. */
1611 return;
1612 CASE_SET_REG32(dsa, 0x10)
1613 case 0x14: /* ISTAT0 */
1614 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1615 if (val & LSI_ISTAT0_ABRT) {
1616 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1617 }
1618 if (val & LSI_ISTAT0_INTF) {
1619 s->istat0 &= ~LSI_ISTAT0_INTF;
1620 lsi_update_irq(s);
1621 }
1622 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1623 DPRINTF("Woken by SIGP\n");
1624 s->waiting = 0;
1625 s->dsp = s->dnad;
1626 lsi_execute_script(s);
1627 }
1628 if (val & LSI_ISTAT0_SRST) {
1629 lsi_soft_reset(s);
1630 }
1631 break;
1632 case 0x16: /* MBOX0 */
1633 s->mbox0 = val;
1634 break;
1635 case 0x17: /* MBOX1 */
1636 s->mbox1 = val;
1637 break;
1638 case 0x1a: /* CTEST2 */
1639 s->ctest2 = val & LSI_CTEST2_PCICIE;
1640 break;
1641 case 0x1b: /* CTEST3 */
1642 s->ctest3 = val & 0x0f;
1643 break;
1644 CASE_SET_REG32(temp, 0x1c)
1645 case 0x21: /* CTEST4 */
1646 if (val & 7) {
1647 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1648 }
1649 s->ctest4 = val;
1650 break;
1651 case 0x22: /* CTEST5 */
1652 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1653 BADF("CTEST5 DMA increment not implemented\n");
1654 }
1655 s->ctest5 = val;
1656 break;
1657 CASE_SET_REG24(dbc, 0x24)
1658 CASE_SET_REG32(dnad, 0x28)
1659 case 0x2c: /* DSP[0:7] */
1660 s->dsp &= 0xffffff00;
1661 s->dsp |= val;
1662 break;
1663 case 0x2d: /* DSP[8:15] */
1664 s->dsp &= 0xffff00ff;
1665 s->dsp |= val << 8;
1666 break;
1667 case 0x2e: /* DSP[16:23] */
1668 s->dsp &= 0xff00ffff;
1669 s->dsp |= val << 16;
1670 break;
1671 case 0x2f: /* DSP[24:31] */
1672 s->dsp &= 0x00ffffff;
1673 s->dsp |= val << 24;
1674 if ((s->dmode & LSI_DMODE_MAN) == 0
1675 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1676 lsi_execute_script(s);
1677 break;
1678 CASE_SET_REG32(dsps, 0x30)
1679 CASE_SET_REG32(scratch[0], 0x34)
1680 case 0x38: /* DMODE */
1681 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1682 BADF("IO mappings not implemented\n");
1683 }
1684 s->dmode = val;
1685 break;
1686 case 0x39: /* DIEN */
1687 s->dien = val;
1688 lsi_update_irq(s);
1689 break;
1690 case 0x3a: /* SBR */
1691 s->sbr = val;
1692 break;
1693 case 0x3b: /* DCNTL */
1694 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1695 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1696 lsi_execute_script(s);
1697 break;
1698 case 0x40: /* SIEN0 */
1699 s->sien0 = val;
1700 lsi_update_irq(s);
1701 break;
1702 case 0x41: /* SIEN1 */
1703 s->sien1 = val;
1704 lsi_update_irq(s);
1705 break;
1706 case 0x47: /* GPCNTL0 */
1707 break;
1708 case 0x48: /* STIME0 */
1709 s->stime0 = val;
1710 break;
1711 case 0x49: /* STIME1 */
1712 if (val & 0xf) {
1713 DPRINTF("General purpose timer not implemented\n");
1714 /* ??? Raising the interrupt immediately seems to be sufficient
1715 to keep the FreeBSD driver happy. */
1716 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1717 }
1718 break;
1719 case 0x4a: /* RESPID0 */
1720 s->respid0 = val;
1721 break;
1722 case 0x4b: /* RESPID1 */
1723 s->respid1 = val;
1724 break;
1725 case 0x4d: /* STEST1 */
1726 s->stest1 = val;
1727 break;
1728 case 0x4e: /* STEST2 */
1729 if (val & 1) {
1730 BADF("Low level mode not implemented\n");
1731 }
1732 s->stest2 = val;
1733 break;
1734 case 0x4f: /* STEST3 */
1735 if (val & 0x41) {
1736 BADF("SCSI FIFO test mode not implemented\n");
1737 }
1738 s->stest3 = val;
1739 break;
1740 case 0x56: /* CCNTL0 */
1741 s->ccntl0 = val;
1742 break;
1743 case 0x57: /* CCNTL1 */
1744 s->ccntl1 = val;
1745 break;
1746 CASE_SET_REG32(mmrs, 0xa0)
1747 CASE_SET_REG32(mmws, 0xa4)
1748 CASE_SET_REG32(sfs, 0xa8)
1749 CASE_SET_REG32(drs, 0xac)
1750 CASE_SET_REG32(sbms, 0xb0)
1751 CASE_SET_REG32(dbms, 0xb4)
1752 CASE_SET_REG32(dnad64, 0xb8)
1753 CASE_SET_REG32(pmjad1, 0xc0)
1754 CASE_SET_REG32(pmjad2, 0xc4)
1755 CASE_SET_REG32(rbc, 0xc8)
1756 CASE_SET_REG32(ua, 0xcc)
1757 CASE_SET_REG32(ia, 0xd4)
1758 CASE_SET_REG32(sbc, 0xd8)
1759 CASE_SET_REG32(csbc, 0xdc)
1760 default:
1761 if (offset >= 0x5c && offset < 0xa0) {
1762 int n;
1763 int shift;
1764 n = (offset - 0x58) >> 2;
1765 shift = (offset & 3) * 8;
1766 s->scratch[n] &= ~(0xff << shift);
1767 s->scratch[n] |= (val & 0xff) << shift;
1768 } else {
1769 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1770 }
1771 }
1772 #undef CASE_SET_REG24
1773 #undef CASE_SET_REG32
1774 }
1775
1776 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1777 {
1778 LSIState *s = opaque;
1779
1780 lsi_reg_writeb(s, addr & 0xff, val);
1781 }
1782
1783 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1784 {
1785 LSIState *s = opaque;
1786
1787 addr &= 0xff;
1788 lsi_reg_writeb(s, addr, val & 0xff);
1789 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1790 }
1791
1792 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1793 {
1794 LSIState *s = opaque;
1795
1796 addr &= 0xff;
1797 lsi_reg_writeb(s, addr, val & 0xff);
1798 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1799 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1800 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1801 }
1802
1803 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1804 {
1805 LSIState *s = opaque;
1806
1807 return lsi_reg_readb(s, addr & 0xff);
1808 }
1809
1810 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1811 {
1812 LSIState *s = opaque;
1813 uint32_t val;
1814
1815 addr &= 0xff;
1816 val = lsi_reg_readb(s, addr);
1817 val |= lsi_reg_readb(s, addr + 1) << 8;
1818 return val;
1819 }
1820
1821 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1822 {
1823 LSIState *s = opaque;
1824 uint32_t val;
1825 addr &= 0xff;
1826 val = lsi_reg_readb(s, addr);
1827 val |= lsi_reg_readb(s, addr + 1) << 8;
1828 val |= lsi_reg_readb(s, addr + 2) << 16;
1829 val |= lsi_reg_readb(s, addr + 3) << 24;
1830 return val;
1831 }
1832
1833 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1834 lsi_mmio_readb,
1835 lsi_mmio_readw,
1836 lsi_mmio_readl,
1837 };
1838
1839 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1840 lsi_mmio_writeb,
1841 lsi_mmio_writew,
1842 lsi_mmio_writel,
1843 };
1844
1845 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1846 {
1847 LSIState *s = opaque;
1848 uint32_t newval;
1849 int shift;
1850
1851 addr &= 0x1fff;
1852 newval = s->script_ram[addr >> 2];
1853 shift = (addr & 3) * 8;
1854 newval &= ~(0xff << shift);
1855 newval |= val << shift;
1856 s->script_ram[addr >> 2] = newval;
1857 }
1858
1859 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1860 {
1861 LSIState *s = opaque;
1862 uint32_t newval;
1863
1864 addr &= 0x1fff;
1865 newval = s->script_ram[addr >> 2];
1866 if (addr & 2) {
1867 newval = (newval & 0xffff) | (val << 16);
1868 } else {
1869 newval = (newval & 0xffff0000) | val;
1870 }
1871 s->script_ram[addr >> 2] = newval;
1872 }
1873
1874
1875 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1876 {
1877 LSIState *s = opaque;
1878
1879 addr &= 0x1fff;
1880 s->script_ram[addr >> 2] = val;
1881 }
1882
1883 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1884 {
1885 LSIState *s = opaque;
1886 uint32_t val;
1887
1888 addr &= 0x1fff;
1889 val = s->script_ram[addr >> 2];
1890 val >>= (addr & 3) * 8;
1891 return val & 0xff;
1892 }
1893
1894 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1895 {
1896 LSIState *s = opaque;
1897 uint32_t val;
1898
1899 addr &= 0x1fff;
1900 val = s->script_ram[addr >> 2];
1901 if (addr & 2)
1902 val >>= 16;
1903 return le16_to_cpu(val);
1904 }
1905
1906 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1907 {
1908 LSIState *s = opaque;
1909
1910 addr &= 0x1fff;
1911 return le32_to_cpu(s->script_ram[addr >> 2]);
1912 }
1913
1914 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1915 lsi_ram_readb,
1916 lsi_ram_readw,
1917 lsi_ram_readl,
1918 };
1919
1920 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1921 lsi_ram_writeb,
1922 lsi_ram_writew,
1923 lsi_ram_writel,
1924 };
1925
1926 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1927 {
1928 LSIState *s = opaque;
1929 return lsi_reg_readb(s, addr & 0xff);
1930 }
1931
1932 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1933 {
1934 LSIState *s = opaque;
1935 uint32_t val;
1936 addr &= 0xff;
1937 val = lsi_reg_readb(s, addr);
1938 val |= lsi_reg_readb(s, addr + 1) << 8;
1939 return val;
1940 }
1941
1942 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1943 {
1944 LSIState *s = opaque;
1945 uint32_t val;
1946 addr &= 0xff;
1947 val = lsi_reg_readb(s, addr);
1948 val |= lsi_reg_readb(s, addr + 1) << 8;
1949 val |= lsi_reg_readb(s, addr + 2) << 16;
1950 val |= lsi_reg_readb(s, addr + 3) << 24;
1951 return val;
1952 }
1953
1954 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1955 {
1956 LSIState *s = opaque;
1957 lsi_reg_writeb(s, addr & 0xff, val);
1958 }
1959
1960 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1961 {
1962 LSIState *s = opaque;
1963 addr &= 0xff;
1964 lsi_reg_writeb(s, addr, val & 0xff);
1965 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1966 }
1967
1968 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1969 {
1970 LSIState *s = opaque;
1971 addr &= 0xff;
1972 lsi_reg_writeb(s, addr, val & 0xff);
1973 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1974 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1975 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1976 }
1977
1978 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1979 pcibus_t addr, pcibus_t size, int type)
1980 {
1981 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1982
1983 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
1984
1985 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1986 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1987 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1988 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1989 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1990 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1991 }
1992
1993 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1994 pcibus_t addr, pcibus_t size, int type)
1995 {
1996 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1997
1998 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
1999 s->script_ram_base = addr;
2000 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2001 }
2002
2003 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2004 pcibus_t addr, pcibus_t size, int type)
2005 {
2006 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2007
2008 DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2009 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2010 }
2011
2012 static void lsi_scsi_reset(DeviceState *dev)
2013 {
2014 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2015
2016 lsi_soft_reset(s);
2017 }
2018
2019 static void lsi_pre_save(void *opaque)
2020 {
2021 LSIState *s = opaque;
2022
2023 if (s->current) {
2024 assert(s->current->dma_buf == NULL);
2025 assert(s->current->dma_len == 0);
2026 }
2027 assert(QTAILQ_EMPTY(&s->queue));
2028 }
2029
2030 static const VMStateDescription vmstate_lsi_scsi = {
2031 .name = "lsiscsi",
2032 .version_id = 0,
2033 .minimum_version_id = 0,
2034 .minimum_version_id_old = 0,
2035 .pre_save = lsi_pre_save,
2036 .fields = (VMStateField []) {
2037 VMSTATE_PCI_DEVICE(dev, LSIState),
2038
2039 VMSTATE_INT32(carry, LSIState),
2040 VMSTATE_INT32(sense, LSIState),
2041 VMSTATE_INT32(msg_action, LSIState),
2042 VMSTATE_INT32(msg_len, LSIState),
2043 VMSTATE_BUFFER(msg, LSIState),
2044 VMSTATE_INT32(waiting, LSIState),
2045
2046 VMSTATE_UINT32(dsa, LSIState),
2047 VMSTATE_UINT32(temp, LSIState),
2048 VMSTATE_UINT32(dnad, LSIState),
2049 VMSTATE_UINT32(dbc, LSIState),
2050 VMSTATE_UINT8(istat0, LSIState),
2051 VMSTATE_UINT8(istat1, LSIState),
2052 VMSTATE_UINT8(dcmd, LSIState),
2053 VMSTATE_UINT8(dstat, LSIState),
2054 VMSTATE_UINT8(dien, LSIState),
2055 VMSTATE_UINT8(sist0, LSIState),
2056 VMSTATE_UINT8(sist1, LSIState),
2057 VMSTATE_UINT8(sien0, LSIState),
2058 VMSTATE_UINT8(sien1, LSIState),
2059 VMSTATE_UINT8(mbox0, LSIState),
2060 VMSTATE_UINT8(mbox1, LSIState),
2061 VMSTATE_UINT8(dfifo, LSIState),
2062 VMSTATE_UINT8(ctest2, LSIState),
2063 VMSTATE_UINT8(ctest3, LSIState),
2064 VMSTATE_UINT8(ctest4, LSIState),
2065 VMSTATE_UINT8(ctest5, LSIState),
2066 VMSTATE_UINT8(ccntl0, LSIState),
2067 VMSTATE_UINT8(ccntl1, LSIState),
2068 VMSTATE_UINT32(dsp, LSIState),
2069 VMSTATE_UINT32(dsps, LSIState),
2070 VMSTATE_UINT8(dmode, LSIState),
2071 VMSTATE_UINT8(dcntl, LSIState),
2072 VMSTATE_UINT8(scntl0, LSIState),
2073 VMSTATE_UINT8(scntl1, LSIState),
2074 VMSTATE_UINT8(scntl2, LSIState),
2075 VMSTATE_UINT8(scntl3, LSIState),
2076 VMSTATE_UINT8(sstat0, LSIState),
2077 VMSTATE_UINT8(sstat1, LSIState),
2078 VMSTATE_UINT8(scid, LSIState),
2079 VMSTATE_UINT8(sxfer, LSIState),
2080 VMSTATE_UINT8(socl, LSIState),
2081 VMSTATE_UINT8(sdid, LSIState),
2082 VMSTATE_UINT8(ssid, LSIState),
2083 VMSTATE_UINT8(sfbr, LSIState),
2084 VMSTATE_UINT8(stest1, LSIState),
2085 VMSTATE_UINT8(stest2, LSIState),
2086 VMSTATE_UINT8(stest3, LSIState),
2087 VMSTATE_UINT8(sidl, LSIState),
2088 VMSTATE_UINT8(stime0, LSIState),
2089 VMSTATE_UINT8(respid0, LSIState),
2090 VMSTATE_UINT8(respid1, LSIState),
2091 VMSTATE_UINT32(mmrs, LSIState),
2092 VMSTATE_UINT32(mmws, LSIState),
2093 VMSTATE_UINT32(sfs, LSIState),
2094 VMSTATE_UINT32(drs, LSIState),
2095 VMSTATE_UINT32(sbms, LSIState),
2096 VMSTATE_UINT32(dbms, LSIState),
2097 VMSTATE_UINT32(dnad64, LSIState),
2098 VMSTATE_UINT32(pmjad1, LSIState),
2099 VMSTATE_UINT32(pmjad2, LSIState),
2100 VMSTATE_UINT32(rbc, LSIState),
2101 VMSTATE_UINT32(ua, LSIState),
2102 VMSTATE_UINT32(ia, LSIState),
2103 VMSTATE_UINT32(sbc, LSIState),
2104 VMSTATE_UINT32(csbc, LSIState),
2105 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2106 VMSTATE_UINT8(sbr, LSIState),
2107
2108 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2109 VMSTATE_END_OF_LIST()
2110 }
2111 };
2112
2113 static int lsi_scsi_uninit(PCIDevice *d)
2114 {
2115 LSIState *s = DO_UPCAST(LSIState, dev, d);
2116
2117 cpu_unregister_io_memory(s->mmio_io_addr);
2118 cpu_unregister_io_memory(s->ram_io_addr);
2119
2120 return 0;
2121 }
2122
2123 static int lsi_scsi_init(PCIDevice *dev)
2124 {
2125 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2126 uint8_t *pci_conf;
2127
2128 pci_conf = s->dev.config;
2129
2130 /* PCI Vendor ID (word) */
2131 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2132 /* PCI device ID (word) */
2133 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2134 /* PCI base class code */
2135 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2136 /* PCI subsystem ID */
2137 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2138 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2139 /* PCI latency timer = 255 */
2140 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2141 /* TODO: RST# value should be 0 */
2142 /* Interrupt pin 1 */
2143 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2144
2145 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2146 lsi_mmio_writefn, s);
2147 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2148 lsi_ram_writefn, s);
2149
2150 /* TODO: use dev and get rid of cast below */
2151 pci_register_bar((struct PCIDevice *)s, 0, 256,
2152 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2153 pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2154 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2155 pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2156 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2157 QTAILQ_INIT(&s->queue);
2158
2159 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2160 if (!dev->qdev.hotplugged) {
2161 scsi_bus_legacy_handle_cmdline(&s->bus);
2162 }
2163 return 0;
2164 }
2165
2166 static PCIDeviceInfo lsi_info = {
2167 .qdev.name = "lsi53c895a",
2168 .qdev.alias = "lsi",
2169 .qdev.size = sizeof(LSIState),
2170 .qdev.reset = lsi_scsi_reset,
2171 .qdev.vmsd = &vmstate_lsi_scsi,
2172 .init = lsi_scsi_init,
2173 .exit = lsi_scsi_uninit,
2174 };
2175
2176 static void lsi53c895a_register_devices(void)
2177 {
2178 pci_qdev_register(&lsi_info);
2179 }
2180
2181 device_init(lsi53c895a_register_devices);