]> git.proxmox.com Git - qemu.git/blob - hw/m48t59.c
Merge remote-tracking branch 'qemu-kvm-tmp/memory/int128' into staging
[qemu.git] / hw / m48t59.c
1 /*
2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3 *
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "nvram.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "sysbus.h"
29 #include "isa.h"
30
31 //#define DEBUG_NVRAM
32
33 #if defined(DEBUG_NVRAM)
34 #define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define NVRAM_PRINTF(fmt, ...) do { } while (0)
37 #endif
38
39 /*
40 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
41 * alarm and a watchdog timer and related control registers. In the
42 * PPC platform there is also a nvram lock function.
43 */
44
45 /*
46 * Chipset docs:
47 * http://www.st.com/stonline/products/literature/ds/2410/m48t02.pdf
48 * http://www.st.com/stonline/products/literature/ds/2411/m48t08.pdf
49 * http://www.st.com/stonline/products/literature/od/7001/m48t59y.pdf
50 */
51
52 struct M48t59State {
53 /* Hardware parameters */
54 qemu_irq IRQ;
55 uint32_t io_base;
56 uint32_t size;
57 /* RTC management */
58 time_t time_offset;
59 time_t stop_time;
60 /* Alarm & watchdog */
61 struct tm alarm;
62 struct QEMUTimer *alrm_timer;
63 struct QEMUTimer *wd_timer;
64 /* NVRAM storage */
65 uint8_t *buffer;
66 /* Model parameters */
67 uint32_t type; /* 2 = m48t02, 8 = m48t08, 59 = m48t59 */
68 /* NVRAM storage */
69 uint16_t addr;
70 uint8_t lock;
71 };
72
73 typedef struct M48t59ISAState {
74 ISADevice busdev;
75 M48t59State state;
76 MemoryRegion io;
77 } M48t59ISAState;
78
79 typedef struct M48t59SysBusState {
80 SysBusDevice busdev;
81 M48t59State state;
82 } M48t59SysBusState;
83
84 /* Fake timer functions */
85
86 /* Alarm management */
87 static void alarm_cb (void *opaque)
88 {
89 struct tm tm;
90 uint64_t next_time;
91 M48t59State *NVRAM = opaque;
92
93 qemu_set_irq(NVRAM->IRQ, 1);
94 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
95 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
96 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
97 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
98 /* Repeat once a month */
99 qemu_get_timedate(&tm, NVRAM->time_offset);
100 tm.tm_mon++;
101 if (tm.tm_mon == 13) {
102 tm.tm_mon = 1;
103 tm.tm_year++;
104 }
105 next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
106 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
107 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
108 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
109 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
110 /* Repeat once a day */
111 next_time = 24 * 60 * 60;
112 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
113 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
114 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
115 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
116 /* Repeat once an hour */
117 next_time = 60 * 60;
118 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
119 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
120 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
121 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
122 /* Repeat once a minute */
123 next_time = 60;
124 } else {
125 /* Repeat once a second */
126 next_time = 1;
127 }
128 qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock_ns(vm_clock) +
129 next_time * 1000);
130 qemu_set_irq(NVRAM->IRQ, 0);
131 }
132
133 static void set_alarm(M48t59State *NVRAM)
134 {
135 int diff;
136 if (NVRAM->alrm_timer != NULL) {
137 qemu_del_timer(NVRAM->alrm_timer);
138 diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
139 if (diff > 0)
140 qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
141 }
142 }
143
144 /* RTC management helpers */
145 static inline void get_time(M48t59State *NVRAM, struct tm *tm)
146 {
147 qemu_get_timedate(tm, NVRAM->time_offset);
148 }
149
150 static void set_time(M48t59State *NVRAM, struct tm *tm)
151 {
152 NVRAM->time_offset = qemu_timedate_diff(tm);
153 set_alarm(NVRAM);
154 }
155
156 /* Watchdog management */
157 static void watchdog_cb (void *opaque)
158 {
159 M48t59State *NVRAM = opaque;
160
161 NVRAM->buffer[0x1FF0] |= 0x80;
162 if (NVRAM->buffer[0x1FF7] & 0x80) {
163 NVRAM->buffer[0x1FF7] = 0x00;
164 NVRAM->buffer[0x1FFC] &= ~0x40;
165 /* May it be a hw CPU Reset instead ? */
166 qemu_system_reset_request();
167 } else {
168 qemu_set_irq(NVRAM->IRQ, 1);
169 qemu_set_irq(NVRAM->IRQ, 0);
170 }
171 }
172
173 static void set_up_watchdog(M48t59State *NVRAM, uint8_t value)
174 {
175 uint64_t interval; /* in 1/16 seconds */
176
177 NVRAM->buffer[0x1FF0] &= ~0x80;
178 if (NVRAM->wd_timer != NULL) {
179 qemu_del_timer(NVRAM->wd_timer);
180 if (value != 0) {
181 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
182 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
183 ((interval * 1000) >> 4));
184 }
185 }
186 }
187
188 /* Direct access to NVRAM */
189 void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
190 {
191 M48t59State *NVRAM = opaque;
192 struct tm tm;
193 int tmp;
194
195 if (addr > 0x1FF8 && addr < 0x2000)
196 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
197
198 /* check for NVRAM access */
199 if ((NVRAM->type == 2 && addr < 0x7f8) ||
200 (NVRAM->type == 8 && addr < 0x1ff8) ||
201 (NVRAM->type == 59 && addr < 0x1ff0))
202 goto do_write;
203
204 /* TOD access */
205 switch (addr) {
206 case 0x1FF0:
207 /* flags register : read-only */
208 break;
209 case 0x1FF1:
210 /* unused */
211 break;
212 case 0x1FF2:
213 /* alarm seconds */
214 tmp = from_bcd(val & 0x7F);
215 if (tmp >= 0 && tmp <= 59) {
216 NVRAM->alarm.tm_sec = tmp;
217 NVRAM->buffer[0x1FF2] = val;
218 set_alarm(NVRAM);
219 }
220 break;
221 case 0x1FF3:
222 /* alarm minutes */
223 tmp = from_bcd(val & 0x7F);
224 if (tmp >= 0 && tmp <= 59) {
225 NVRAM->alarm.tm_min = tmp;
226 NVRAM->buffer[0x1FF3] = val;
227 set_alarm(NVRAM);
228 }
229 break;
230 case 0x1FF4:
231 /* alarm hours */
232 tmp = from_bcd(val & 0x3F);
233 if (tmp >= 0 && tmp <= 23) {
234 NVRAM->alarm.tm_hour = tmp;
235 NVRAM->buffer[0x1FF4] = val;
236 set_alarm(NVRAM);
237 }
238 break;
239 case 0x1FF5:
240 /* alarm date */
241 tmp = from_bcd(val & 0x1F);
242 if (tmp != 0) {
243 NVRAM->alarm.tm_mday = tmp;
244 NVRAM->buffer[0x1FF5] = val;
245 set_alarm(NVRAM);
246 }
247 break;
248 case 0x1FF6:
249 /* interrupts */
250 NVRAM->buffer[0x1FF6] = val;
251 break;
252 case 0x1FF7:
253 /* watchdog */
254 NVRAM->buffer[0x1FF7] = val;
255 set_up_watchdog(NVRAM, val);
256 break;
257 case 0x1FF8:
258 case 0x07F8:
259 /* control */
260 NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
261 break;
262 case 0x1FF9:
263 case 0x07F9:
264 /* seconds (BCD) */
265 tmp = from_bcd(val & 0x7F);
266 if (tmp >= 0 && tmp <= 59) {
267 get_time(NVRAM, &tm);
268 tm.tm_sec = tmp;
269 set_time(NVRAM, &tm);
270 }
271 if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
272 if (val & 0x80) {
273 NVRAM->stop_time = time(NULL);
274 } else {
275 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
276 NVRAM->stop_time = 0;
277 }
278 }
279 NVRAM->buffer[addr] = val & 0x80;
280 break;
281 case 0x1FFA:
282 case 0x07FA:
283 /* minutes (BCD) */
284 tmp = from_bcd(val & 0x7F);
285 if (tmp >= 0 && tmp <= 59) {
286 get_time(NVRAM, &tm);
287 tm.tm_min = tmp;
288 set_time(NVRAM, &tm);
289 }
290 break;
291 case 0x1FFB:
292 case 0x07FB:
293 /* hours (BCD) */
294 tmp = from_bcd(val & 0x3F);
295 if (tmp >= 0 && tmp <= 23) {
296 get_time(NVRAM, &tm);
297 tm.tm_hour = tmp;
298 set_time(NVRAM, &tm);
299 }
300 break;
301 case 0x1FFC:
302 case 0x07FC:
303 /* day of the week / century */
304 tmp = from_bcd(val & 0x07);
305 get_time(NVRAM, &tm);
306 tm.tm_wday = tmp;
307 set_time(NVRAM, &tm);
308 NVRAM->buffer[addr] = val & 0x40;
309 break;
310 case 0x1FFD:
311 case 0x07FD:
312 /* date */
313 tmp = from_bcd(val & 0x1F);
314 if (tmp != 0) {
315 get_time(NVRAM, &tm);
316 tm.tm_mday = tmp;
317 set_time(NVRAM, &tm);
318 }
319 break;
320 case 0x1FFE:
321 case 0x07FE:
322 /* month */
323 tmp = from_bcd(val & 0x1F);
324 if (tmp >= 1 && tmp <= 12) {
325 get_time(NVRAM, &tm);
326 tm.tm_mon = tmp - 1;
327 set_time(NVRAM, &tm);
328 }
329 break;
330 case 0x1FFF:
331 case 0x07FF:
332 /* year */
333 tmp = from_bcd(val);
334 if (tmp >= 0 && tmp <= 99) {
335 get_time(NVRAM, &tm);
336 if (NVRAM->type == 8)
337 tm.tm_year = from_bcd(val) + 68; // Base year is 1968
338 else
339 tm.tm_year = from_bcd(val);
340 set_time(NVRAM, &tm);
341 }
342 break;
343 default:
344 /* Check lock registers state */
345 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
346 break;
347 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
348 break;
349 do_write:
350 if (addr < NVRAM->size) {
351 NVRAM->buffer[addr] = val & 0xFF;
352 }
353 break;
354 }
355 }
356
357 uint32_t m48t59_read (void *opaque, uint32_t addr)
358 {
359 M48t59State *NVRAM = opaque;
360 struct tm tm;
361 uint32_t retval = 0xFF;
362
363 /* check for NVRAM access */
364 if ((NVRAM->type == 2 && addr < 0x078f) ||
365 (NVRAM->type == 8 && addr < 0x1ff8) ||
366 (NVRAM->type == 59 && addr < 0x1ff0))
367 goto do_read;
368
369 /* TOD access */
370 switch (addr) {
371 case 0x1FF0:
372 /* flags register */
373 goto do_read;
374 case 0x1FF1:
375 /* unused */
376 retval = 0;
377 break;
378 case 0x1FF2:
379 /* alarm seconds */
380 goto do_read;
381 case 0x1FF3:
382 /* alarm minutes */
383 goto do_read;
384 case 0x1FF4:
385 /* alarm hours */
386 goto do_read;
387 case 0x1FF5:
388 /* alarm date */
389 goto do_read;
390 case 0x1FF6:
391 /* interrupts */
392 goto do_read;
393 case 0x1FF7:
394 /* A read resets the watchdog */
395 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
396 goto do_read;
397 case 0x1FF8:
398 case 0x07F8:
399 /* control */
400 goto do_read;
401 case 0x1FF9:
402 case 0x07F9:
403 /* seconds (BCD) */
404 get_time(NVRAM, &tm);
405 retval = (NVRAM->buffer[addr] & 0x80) | to_bcd(tm.tm_sec);
406 break;
407 case 0x1FFA:
408 case 0x07FA:
409 /* minutes (BCD) */
410 get_time(NVRAM, &tm);
411 retval = to_bcd(tm.tm_min);
412 break;
413 case 0x1FFB:
414 case 0x07FB:
415 /* hours (BCD) */
416 get_time(NVRAM, &tm);
417 retval = to_bcd(tm.tm_hour);
418 break;
419 case 0x1FFC:
420 case 0x07FC:
421 /* day of the week / century */
422 get_time(NVRAM, &tm);
423 retval = NVRAM->buffer[addr] | tm.tm_wday;
424 break;
425 case 0x1FFD:
426 case 0x07FD:
427 /* date */
428 get_time(NVRAM, &tm);
429 retval = to_bcd(tm.tm_mday);
430 break;
431 case 0x1FFE:
432 case 0x07FE:
433 /* month */
434 get_time(NVRAM, &tm);
435 retval = to_bcd(tm.tm_mon + 1);
436 break;
437 case 0x1FFF:
438 case 0x07FF:
439 /* year */
440 get_time(NVRAM, &tm);
441 if (NVRAM->type == 8)
442 retval = to_bcd(tm.tm_year - 68); // Base year is 1968
443 else
444 retval = to_bcd(tm.tm_year);
445 break;
446 default:
447 /* Check lock registers state */
448 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
449 break;
450 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
451 break;
452 do_read:
453 if (addr < NVRAM->size) {
454 retval = NVRAM->buffer[addr];
455 }
456 break;
457 }
458 if (addr > 0x1FF9 && addr < 0x2000)
459 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
460
461 return retval;
462 }
463
464 void m48t59_set_addr (void *opaque, uint32_t addr)
465 {
466 M48t59State *NVRAM = opaque;
467
468 NVRAM->addr = addr;
469 }
470
471 void m48t59_toggle_lock (void *opaque, int lock)
472 {
473 M48t59State *NVRAM = opaque;
474
475 NVRAM->lock ^= 1 << lock;
476 }
477
478 /* IO access to NVRAM */
479 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
480 {
481 M48t59State *NVRAM = opaque;
482
483 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
484 switch (addr) {
485 case 0:
486 NVRAM->addr &= ~0x00FF;
487 NVRAM->addr |= val;
488 break;
489 case 1:
490 NVRAM->addr &= ~0xFF00;
491 NVRAM->addr |= val << 8;
492 break;
493 case 3:
494 m48t59_write(NVRAM, NVRAM->addr, val);
495 NVRAM->addr = 0x0000;
496 break;
497 default:
498 break;
499 }
500 }
501
502 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
503 {
504 M48t59State *NVRAM = opaque;
505 uint32_t retval;
506
507 switch (addr) {
508 case 3:
509 retval = m48t59_read(NVRAM, NVRAM->addr);
510 break;
511 default:
512 retval = -1;
513 break;
514 }
515 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
516
517 return retval;
518 }
519
520 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
521 {
522 M48t59State *NVRAM = opaque;
523
524 m48t59_write(NVRAM, addr, value & 0xff);
525 }
526
527 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
528 {
529 M48t59State *NVRAM = opaque;
530
531 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
532 m48t59_write(NVRAM, addr + 1, value & 0xff);
533 }
534
535 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
536 {
537 M48t59State *NVRAM = opaque;
538
539 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
540 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
541 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
542 m48t59_write(NVRAM, addr + 3, value & 0xff);
543 }
544
545 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
546 {
547 M48t59State *NVRAM = opaque;
548 uint32_t retval;
549
550 retval = m48t59_read(NVRAM, addr);
551 return retval;
552 }
553
554 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
555 {
556 M48t59State *NVRAM = opaque;
557 uint32_t retval;
558
559 retval = m48t59_read(NVRAM, addr) << 8;
560 retval |= m48t59_read(NVRAM, addr + 1);
561 return retval;
562 }
563
564 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
565 {
566 M48t59State *NVRAM = opaque;
567 uint32_t retval;
568
569 retval = m48t59_read(NVRAM, addr) << 24;
570 retval |= m48t59_read(NVRAM, addr + 1) << 16;
571 retval |= m48t59_read(NVRAM, addr + 2) << 8;
572 retval |= m48t59_read(NVRAM, addr + 3);
573 return retval;
574 }
575
576 static CPUWriteMemoryFunc * const nvram_write[] = {
577 &nvram_writeb,
578 &nvram_writew,
579 &nvram_writel,
580 };
581
582 static CPUReadMemoryFunc * const nvram_read[] = {
583 &nvram_readb,
584 &nvram_readw,
585 &nvram_readl,
586 };
587
588 static const VMStateDescription vmstate_m48t59 = {
589 .name = "m48t59",
590 .version_id = 1,
591 .minimum_version_id = 1,
592 .minimum_version_id_old = 1,
593 .fields = (VMStateField[]) {
594 VMSTATE_UINT8(lock, M48t59State),
595 VMSTATE_UINT16(addr, M48t59State),
596 VMSTATE_VBUFFER_UINT32(buffer, M48t59State, 0, NULL, 0, size),
597 VMSTATE_END_OF_LIST()
598 }
599 };
600
601 static void m48t59_reset_common(M48t59State *NVRAM)
602 {
603 NVRAM->addr = 0;
604 NVRAM->lock = 0;
605 if (NVRAM->alrm_timer != NULL)
606 qemu_del_timer(NVRAM->alrm_timer);
607
608 if (NVRAM->wd_timer != NULL)
609 qemu_del_timer(NVRAM->wd_timer);
610 }
611
612 static void m48t59_reset_isa(DeviceState *d)
613 {
614 M48t59ISAState *isa = container_of(d, M48t59ISAState, busdev.qdev);
615 M48t59State *NVRAM = &isa->state;
616
617 m48t59_reset_common(NVRAM);
618 }
619
620 static void m48t59_reset_sysbus(DeviceState *d)
621 {
622 M48t59SysBusState *sys = container_of(d, M48t59SysBusState, busdev.qdev);
623 M48t59State *NVRAM = &sys->state;
624
625 m48t59_reset_common(NVRAM);
626 }
627
628 static const MemoryRegionPortio m48t59_portio[] = {
629 {0, 4, 1, .read = NVRAM_readb, .write = NVRAM_writeb },
630 PORTIO_END_OF_LIST(),
631 };
632
633 static const MemoryRegionOps m48t59_io_ops = {
634 .old_portio = m48t59_portio,
635 };
636
637 /* Initialisation routine */
638 M48t59State *m48t59_init(qemu_irq IRQ, target_phys_addr_t mem_base,
639 uint32_t io_base, uint16_t size, int type)
640 {
641 DeviceState *dev;
642 SysBusDevice *s;
643 M48t59SysBusState *d;
644 M48t59State *state;
645
646 dev = qdev_create(NULL, "m48t59");
647 qdev_prop_set_uint32(dev, "type", type);
648 qdev_prop_set_uint32(dev, "size", size);
649 qdev_prop_set_uint32(dev, "io_base", io_base);
650 qdev_init_nofail(dev);
651 s = sysbus_from_qdev(dev);
652 d = FROM_SYSBUS(M48t59SysBusState, s);
653 state = &d->state;
654 sysbus_connect_irq(s, 0, IRQ);
655 if (io_base != 0) {
656 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, state);
657 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, state);
658 }
659 if (mem_base != 0) {
660 sysbus_mmio_map(s, 0, mem_base);
661 }
662
663 return state;
664 }
665
666 M48t59State *m48t59_init_isa(uint32_t io_base, uint16_t size, int type)
667 {
668 M48t59ISAState *d;
669 ISADevice *dev;
670 M48t59State *s;
671
672 dev = isa_create("m48t59_isa");
673 qdev_prop_set_uint32(&dev->qdev, "type", type);
674 qdev_prop_set_uint32(&dev->qdev, "size", size);
675 qdev_prop_set_uint32(&dev->qdev, "io_base", io_base);
676 qdev_init_nofail(&dev->qdev);
677 d = DO_UPCAST(M48t59ISAState, busdev, dev);
678 s = &d->state;
679
680 memory_region_init_io(&d->io, &m48t59_io_ops, s, "m48t59", 4);
681 if (io_base != 0) {
682 isa_register_ioport(dev, &d->io, io_base);
683 }
684
685 return s;
686 }
687
688 static void m48t59_init_common(M48t59State *s)
689 {
690 s->buffer = g_malloc0(s->size);
691 if (s->type == 59) {
692 s->alrm_timer = qemu_new_timer_ns(vm_clock, &alarm_cb, s);
693 s->wd_timer = qemu_new_timer_ns(vm_clock, &watchdog_cb, s);
694 }
695 qemu_get_timedate(&s->alarm, 0);
696
697 vmstate_register(NULL, -1, &vmstate_m48t59, s);
698 }
699
700 static int m48t59_init_isa1(ISADevice *dev)
701 {
702 M48t59ISAState *d = DO_UPCAST(M48t59ISAState, busdev, dev);
703 M48t59State *s = &d->state;
704
705 isa_init_irq(dev, &s->IRQ, 8);
706 m48t59_init_common(s);
707
708 return 0;
709 }
710
711 static int m48t59_init1(SysBusDevice *dev)
712 {
713 M48t59SysBusState *d = FROM_SYSBUS(M48t59SysBusState, dev);
714 M48t59State *s = &d->state;
715 int mem_index;
716
717 sysbus_init_irq(dev, &s->IRQ);
718
719 mem_index = cpu_register_io_memory(nvram_read, nvram_write, s,
720 DEVICE_NATIVE_ENDIAN);
721 sysbus_init_mmio(dev, s->size, mem_index);
722 m48t59_init_common(s);
723
724 return 0;
725 }
726
727 static ISADeviceInfo m48t59_isa_info = {
728 .init = m48t59_init_isa1,
729 .qdev.name = "m48t59_isa",
730 .qdev.size = sizeof(M48t59ISAState),
731 .qdev.reset = m48t59_reset_isa,
732 .qdev.no_user = 1,
733 .qdev.props = (Property[]) {
734 DEFINE_PROP_UINT32("size", M48t59ISAState, state.size, -1),
735 DEFINE_PROP_UINT32("type", M48t59ISAState, state.type, -1),
736 DEFINE_PROP_HEX32( "io_base", M48t59ISAState, state.io_base, 0),
737 DEFINE_PROP_END_OF_LIST(),
738 }
739 };
740
741 static SysBusDeviceInfo m48t59_info = {
742 .init = m48t59_init1,
743 .qdev.name = "m48t59",
744 .qdev.size = sizeof(M48t59SysBusState),
745 .qdev.reset = m48t59_reset_sysbus,
746 .qdev.props = (Property[]) {
747 DEFINE_PROP_UINT32("size", M48t59SysBusState, state.size, -1),
748 DEFINE_PROP_UINT32("type", M48t59SysBusState, state.type, -1),
749 DEFINE_PROP_HEX32( "io_base", M48t59SysBusState, state.io_base, 0),
750 DEFINE_PROP_END_OF_LIST(),
751 }
752 };
753
754 static void m48t59_register_devices(void)
755 {
756 sysbus_register_withprop(&m48t59_info);
757 isa_qdev_register(&m48t59_isa_info);
758 }
759
760 device_init(m48t59_register_devices)