2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
30 #include "mc146818rtc.h"
33 //#define DEBUG_COALESCED
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
44 # define DPRINTF_C(format, ...) do { } while (0)
47 #define RTC_REINJECT_ON_ACK_COUNT 20
50 #define RTC_SECONDS_ALARM 1
52 #define RTC_MINUTES_ALARM 3
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
67 #define REG_A_UIP 0x80
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
77 #define REG_C_IRQF 0x80
81 typedef struct RTCState
{
83 uint8_t cmos_data
[128];
91 QEMUTimer
*periodic_timer
;
92 int64_t next_periodic_time
;
94 int64_t next_second_time
;
95 uint16_t irq_reinject_on_ack_count
;
96 uint32_t irq_coalesced
;
98 QEMUTimer
*coalesced_timer
;
99 QEMUTimer
*second_timer
;
100 QEMUTimer
*second_timer2
;
103 static void rtc_set_time(RTCState
*s
);
104 static void rtc_copy_date(RTCState
*s
);
107 static void rtc_coalesced_timer_update(RTCState
*s
)
109 if (s
->irq_coalesced
== 0) {
110 qemu_del_timer(s
->coalesced_timer
);
112 /* divide each RTC interval to 2 - 8 smaller intervals */
113 int c
= MIN(s
->irq_coalesced
, 7) + 1;
114 int64_t next_clock
= qemu_get_clock(rtc_clock
) +
115 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
116 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
120 static void rtc_coalesced_timer(void *opaque
)
122 RTCState
*s
= opaque
;
124 if (s
->irq_coalesced
!= 0) {
125 apic_reset_irq_delivered();
126 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
127 DPRINTF_C("cmos: injecting from timer\n");
128 qemu_irq_raise(s
->irq
);
129 if (apic_get_irq_delivered()) {
131 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
136 rtc_coalesced_timer_update(s
);
140 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
142 int period_code
, period
;
143 int64_t cur_clock
, next_irq_clock
;
145 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
147 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
148 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
149 if (period_code
<= 2)
151 /* period in 32 Khz cycles */
152 period
= 1 << (period_code
- 1);
154 if (period
!= s
->period
) {
155 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
156 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
160 /* compute 32 khz clock */
161 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
162 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
163 s
->next_periodic_time
=
164 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
165 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
168 s
->irq_coalesced
= 0;
170 qemu_del_timer(s
->periodic_timer
);
174 static void rtc_periodic_timer(void *opaque
)
176 RTCState
*s
= opaque
;
178 rtc_timer_update(s
, s
->next_periodic_time
);
179 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
180 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
183 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
184 s
->irq_reinject_on_ack_count
= 0;
185 apic_reset_irq_delivered();
186 qemu_irq_raise(s
->irq
);
187 if (!apic_get_irq_delivered()) {
189 rtc_coalesced_timer_update(s
);
190 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
195 qemu_irq_raise(s
->irq
);
197 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
198 /* Not square wave at all but we don't want 2048Hz interrupts!
199 Must be seen as a pulse. */
200 qemu_irq_raise(s
->sqw_irq
);
204 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
206 RTCState
*s
= opaque
;
208 if ((addr
& 1) == 0) {
209 s
->cmos_index
= data
& 0x7f;
211 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
212 s
->cmos_index
, data
);
213 switch(s
->cmos_index
) {
214 case RTC_SECONDS_ALARM
:
215 case RTC_MINUTES_ALARM
:
216 case RTC_HOURS_ALARM
:
217 s
->cmos_data
[s
->cmos_index
] = data
;
222 case RTC_DAY_OF_WEEK
:
223 case RTC_DAY_OF_MONTH
:
226 s
->cmos_data
[s
->cmos_index
] = data
;
227 /* if in set mode, do not update the time */
228 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
233 /* UIP bit is read only */
234 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
235 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
236 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
239 if (data
& REG_B_SET
) {
240 /* set mode: reset UIP mode */
241 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
244 /* if disabling set mode, update the time */
245 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
249 s
->cmos_data
[RTC_REG_B
] = data
;
250 rtc_timer_update(s
, qemu_get_clock(rtc_clock
));
254 /* cannot write to them */
257 s
->cmos_data
[s
->cmos_index
] = data
;
263 static inline int rtc_to_bcd(RTCState
*s
, int a
)
265 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
268 return ((a
/ 10) << 4) | (a
% 10);
272 static inline int rtc_from_bcd(RTCState
*s
, int a
)
274 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
277 return ((a
>> 4) * 10) + (a
& 0x0f);
281 static void rtc_set_time(RTCState
*s
)
283 struct tm
*tm
= &s
->current_tm
;
285 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
286 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
287 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
288 if (!(s
->cmos_data
[RTC_REG_B
] & 0x02) &&
289 (s
->cmos_data
[RTC_HOURS
] & 0x80)) {
292 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
293 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
294 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
295 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
297 rtc_change_mon_event(tm
);
300 static void rtc_copy_date(RTCState
*s
)
302 const struct tm
*tm
= &s
->current_tm
;
305 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
306 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
307 if (s
->cmos_data
[RTC_REG_B
] & 0x02) {
309 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
312 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
% 12);
313 if (tm
->tm_hour
>= 12)
314 s
->cmos_data
[RTC_HOURS
] |= 0x80;
316 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
317 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
318 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
319 year
= (tm
->tm_year
- s
->base_year
) % 100;
322 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
325 /* month is between 0 and 11. */
326 static int get_days_in_month(int month
, int year
)
328 static const int days_tab
[12] = {
329 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
332 if ((unsigned )month
>= 12)
336 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
342 /* update 'tm' to the next second */
343 static void rtc_next_second(struct tm
*tm
)
348 if ((unsigned)tm
->tm_sec
>= 60) {
351 if ((unsigned)tm
->tm_min
>= 60) {
354 if ((unsigned)tm
->tm_hour
>= 24) {
358 if ((unsigned)tm
->tm_wday
>= 7)
360 days_in_month
= get_days_in_month(tm
->tm_mon
,
363 if (tm
->tm_mday
< 1) {
365 } else if (tm
->tm_mday
> days_in_month
) {
368 if (tm
->tm_mon
>= 12) {
379 static void rtc_update_second(void *opaque
)
381 RTCState
*s
= opaque
;
384 /* if the oscillator is not in normal operation, we do not update */
385 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
386 s
->next_second_time
+= get_ticks_per_sec();
387 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
389 rtc_next_second(&s
->current_tm
);
391 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
392 /* update in progress bit */
393 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
395 /* should be 244 us = 8 / 32768 seconds, but currently the
396 timers do not have the necessary resolution. */
397 delay
= (get_ticks_per_sec() * 1) / 100;
400 qemu_mod_timer(s
->second_timer2
,
401 s
->next_second_time
+ delay
);
405 static void rtc_update_second2(void *opaque
)
407 RTCState
*s
= opaque
;
409 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
414 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
415 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
416 rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]) == s
->current_tm
.tm_sec
) &&
417 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
418 rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]) == s
->current_tm
.tm_min
) &&
419 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
420 rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]) == s
->current_tm
.tm_hour
)) {
422 s
->cmos_data
[RTC_REG_C
] |= 0xa0;
423 qemu_irq_raise(s
->irq
);
427 /* update ended interrupt */
428 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
429 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
430 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
431 qemu_irq_raise(s
->irq
);
434 /* clear update in progress bit */
435 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
437 s
->next_second_time
+= get_ticks_per_sec();
438 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
441 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
443 RTCState
*s
= opaque
;
445 if ((addr
& 1) == 0) {
448 switch(s
->cmos_index
) {
452 case RTC_DAY_OF_WEEK
:
453 case RTC_DAY_OF_MONTH
:
456 ret
= s
->cmos_data
[s
->cmos_index
];
459 ret
= s
->cmos_data
[s
->cmos_index
];
462 ret
= s
->cmos_data
[s
->cmos_index
];
463 qemu_irq_lower(s
->irq
);
465 if(s
->irq_coalesced
&&
466 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
467 s
->irq_reinject_on_ack_count
++;
468 apic_reset_irq_delivered();
469 DPRINTF_C("cmos: injecting on ack\n");
470 qemu_irq_raise(s
->irq
);
471 if (apic_get_irq_delivered()) {
473 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
480 s
->cmos_data
[RTC_REG_C
] = 0x00;
483 ret
= s
->cmos_data
[s
->cmos_index
];
486 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
492 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
494 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
495 if (addr
>= 0 && addr
<= 127)
496 s
->cmos_data
[addr
] = val
;
499 void rtc_set_date(ISADevice
*dev
, const struct tm
*tm
)
501 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
506 /* PC cmos mappings */
507 #define REG_IBM_CENTURY_BYTE 0x32
508 #define REG_IBM_PS2_CENTURY_BYTE 0x37
510 static void rtc_set_date_from_host(ISADevice
*dev
)
512 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
516 /* set the CMOS date */
517 qemu_get_timedate(&tm
, 0);
518 rtc_set_date(dev
, &tm
);
520 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
521 rtc_set_memory(dev
, REG_IBM_CENTURY_BYTE
, val
);
522 rtc_set_memory(dev
, REG_IBM_PS2_CENTURY_BYTE
, val
);
525 static int rtc_post_load(void *opaque
, int version_id
)
528 RTCState
*s
= opaque
;
530 if (version_id
>= 2) {
532 rtc_coalesced_timer_update(s
);
539 static const VMStateDescription vmstate_rtc
= {
540 .name
= "mc146818rtc",
542 .minimum_version_id
= 1,
543 .minimum_version_id_old
= 1,
544 .post_load
= rtc_post_load
,
545 .fields
= (VMStateField
[]) {
546 VMSTATE_BUFFER(cmos_data
, RTCState
),
547 VMSTATE_UINT8(cmos_index
, RTCState
),
548 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
549 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
550 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
551 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
552 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
553 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
554 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
555 VMSTATE_TIMER(periodic_timer
, RTCState
),
556 VMSTATE_INT64(next_periodic_time
, RTCState
),
557 VMSTATE_INT64(next_second_time
, RTCState
),
558 VMSTATE_TIMER(second_timer
, RTCState
),
559 VMSTATE_TIMER(second_timer2
, RTCState
),
560 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
561 VMSTATE_UINT32_V(period
, RTCState
, 2),
562 VMSTATE_END_OF_LIST()
566 static void rtc_reset(void *opaque
)
568 RTCState
*s
= opaque
;
570 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
571 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
573 qemu_irq_lower(s
->irq
);
577 s
->irq_coalesced
= 0;
581 static int rtc_initfn(ISADevice
*dev
)
583 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
586 s
->cmos_data
[RTC_REG_A
] = 0x26;
587 s
->cmos_data
[RTC_REG_B
] = 0x02;
588 s
->cmos_data
[RTC_REG_C
] = 0x00;
589 s
->cmos_data
[RTC_REG_D
] = 0x80;
591 rtc_set_date_from_host(dev
);
593 s
->periodic_timer
= qemu_new_timer(rtc_clock
, rtc_periodic_timer
, s
);
597 qemu_new_timer(rtc_clock
, rtc_coalesced_timer
, s
);
599 s
->second_timer
= qemu_new_timer(rtc_clock
, rtc_update_second
, s
);
600 s
->second_timer2
= qemu_new_timer(rtc_clock
, rtc_update_second2
, s
);
602 s
->next_second_time
=
603 qemu_get_clock(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
604 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
606 register_ioport_write(base
, 2, 1, cmos_ioport_write
, s
);
607 register_ioport_read(base
, 2, 1, cmos_ioport_read
, s
);
609 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 2);
610 qemu_register_reset(rtc_reset
, s
);
614 ISADevice
*rtc_init(int base_year
, qemu_irq intercept_irq
)
619 dev
= isa_create("mc146818rtc");
620 s
= DO_UPCAST(RTCState
, dev
, dev
);
621 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
622 qdev_init_nofail(&dev
->qdev
);
624 s
->irq
= intercept_irq
;
626 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
631 static ISADeviceInfo mc146818rtc_info
= {
632 .qdev
.name
= "mc146818rtc",
633 .qdev
.size
= sizeof(RTCState
),
635 .qdev
.vmsd
= &vmstate_rtc
,
637 .qdev
.props
= (Property
[]) {
638 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
639 DEFINE_PROP_END_OF_LIST(),
643 static void mc146818rtc_register(void)
645 isa_qdev_register(&mc146818rtc_info
);
647 device_init(mc146818rtc_register
)