]> git.proxmox.com Git - qemu.git/blob - hw/mc146818rtc.c
Revert "Get rid of _t suffix"
[qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "hpet_emul.h"
30
31 //#define DEBUG_CMOS
32
33 #define RTC_SECONDS 0
34 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES 2
36 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS 4
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
40
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
43 #define RTC_MONTH 8
44 #define RTC_YEAR 9
45
46 #define RTC_REG_A 10
47 #define RTC_REG_B 11
48 #define RTC_REG_C 12
49 #define RTC_REG_D 13
50
51 #define REG_A_UIP 0x80
52
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
58 #define REG_B_DM 0x04
59
60 #define REG_C_UF 0x10
61 #define REG_C_IRQF 0x80
62 #define REG_C_PF 0x40
63 #define REG_C_AF 0x20
64
65 struct RTCState {
66 ISADevice dev;
67 uint8_t cmos_data[128];
68 uint8_t cmos_index;
69 struct tm current_tm;
70 int32_t base_year;
71 qemu_irq irq;
72 qemu_irq sqw_irq;
73 int it_shift;
74 /* periodic timer */
75 QEMUTimer *periodic_timer;
76 int64_t next_periodic_time;
77 /* second update */
78 int64_t next_second_time;
79 #ifdef TARGET_I386
80 uint32_t irq_coalesced;
81 uint32_t period;
82 QEMUTimer *coalesced_timer;
83 #endif
84 QEMUTimer *second_timer;
85 QEMUTimer *second_timer2;
86 };
87
88 static void rtc_irq_raise(qemu_irq irq) {
89 /* When HPET is operating in legacy mode, RTC interrupts are disabled
90 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
91 * mode is established while interrupt is raised. We want it to
92 * be lowered in any case
93 */
94 #if defined TARGET_I386 || defined TARGET_X86_64
95 if (!hpet_in_legacy_mode())
96 #endif
97 qemu_irq_raise(irq);
98 }
99
100 static void rtc_set_time(RTCState *s);
101 static void rtc_copy_date(RTCState *s);
102
103 #ifdef TARGET_I386
104 static void rtc_coalesced_timer_update(RTCState *s)
105 {
106 if (s->irq_coalesced == 0) {
107 qemu_del_timer(s->coalesced_timer);
108 } else {
109 /* divide each RTC interval to 2 - 8 smaller intervals */
110 int c = MIN(s->irq_coalesced, 7) + 1;
111 int64_t next_clock = qemu_get_clock(vm_clock) +
112 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
113 qemu_mod_timer(s->coalesced_timer, next_clock);
114 }
115 }
116
117 static void rtc_coalesced_timer(void *opaque)
118 {
119 RTCState *s = opaque;
120
121 if (s->irq_coalesced != 0) {
122 apic_reset_irq_delivered();
123 s->cmos_data[RTC_REG_C] |= 0xc0;
124 rtc_irq_raise(s->irq);
125 if (apic_get_irq_delivered()) {
126 s->irq_coalesced--;
127 }
128 }
129
130 rtc_coalesced_timer_update(s);
131 }
132 #endif
133
134 static void rtc_timer_update(RTCState *s, int64_t current_time)
135 {
136 int period_code, period;
137 int64_t cur_clock, next_irq_clock;
138 int enable_pie;
139
140 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
141 #if defined TARGET_I386 || defined TARGET_X86_64
142 /* disable periodic timer if hpet is in legacy mode, since interrupts are
143 * disabled anyway.
144 */
145 enable_pie = !hpet_in_legacy_mode();
146 #else
147 enable_pie = 1;
148 #endif
149 if (period_code != 0
150 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
151 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152 if (period_code <= 2)
153 period_code += 7;
154 /* period in 32 Khz cycles */
155 period = 1 << (period_code - 1);
156 #ifdef TARGET_I386
157 if(period != s->period)
158 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159 s->period = period;
160 #endif
161 /* compute 32 khz clock */
162 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163 next_irq_clock = (cur_clock & ~(period - 1)) + period;
164 s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
165 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
166 } else {
167 #ifdef TARGET_I386
168 s->irq_coalesced = 0;
169 #endif
170 qemu_del_timer(s->periodic_timer);
171 }
172 }
173
174 static void rtc_periodic_timer(void *opaque)
175 {
176 RTCState *s = opaque;
177
178 rtc_timer_update(s, s->next_periodic_time);
179 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
180 s->cmos_data[RTC_REG_C] |= 0xc0;
181 #ifdef TARGET_I386
182 if(rtc_td_hack) {
183 apic_reset_irq_delivered();
184 rtc_irq_raise(s->irq);
185 if (!apic_get_irq_delivered()) {
186 s->irq_coalesced++;
187 rtc_coalesced_timer_update(s);
188 }
189 } else
190 #endif
191 rtc_irq_raise(s->irq);
192 }
193 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
194 /* Not square wave at all but we don't want 2048Hz interrupts!
195 Must be seen as a pulse. */
196 qemu_irq_raise(s->sqw_irq);
197 }
198 }
199
200 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
201 {
202 RTCState *s = opaque;
203
204 if ((addr & 1) == 0) {
205 s->cmos_index = data & 0x7f;
206 } else {
207 #ifdef DEBUG_CMOS
208 printf("cmos: write index=0x%02x val=0x%02x\n",
209 s->cmos_index, data);
210 #endif
211 switch(s->cmos_index) {
212 case RTC_SECONDS_ALARM:
213 case RTC_MINUTES_ALARM:
214 case RTC_HOURS_ALARM:
215 /* XXX: not supported */
216 s->cmos_data[s->cmos_index] = data;
217 break;
218 case RTC_SECONDS:
219 case RTC_MINUTES:
220 case RTC_HOURS:
221 case RTC_DAY_OF_WEEK:
222 case RTC_DAY_OF_MONTH:
223 case RTC_MONTH:
224 case RTC_YEAR:
225 s->cmos_data[s->cmos_index] = data;
226 /* if in set mode, do not update the time */
227 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
228 rtc_set_time(s);
229 }
230 break;
231 case RTC_REG_A:
232 /* UIP bit is read only */
233 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
234 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
235 rtc_timer_update(s, qemu_get_clock(vm_clock));
236 break;
237 case RTC_REG_B:
238 if (data & REG_B_SET) {
239 /* set mode: reset UIP mode */
240 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
241 data &= ~REG_B_UIE;
242 } else {
243 /* if disabling set mode, update the time */
244 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
245 rtc_set_time(s);
246 }
247 }
248 s->cmos_data[RTC_REG_B] = data;
249 rtc_timer_update(s, qemu_get_clock(vm_clock));
250 break;
251 case RTC_REG_C:
252 case RTC_REG_D:
253 /* cannot write to them */
254 break;
255 default:
256 s->cmos_data[s->cmos_index] = data;
257 break;
258 }
259 }
260 }
261
262 static inline int to_bcd(RTCState *s, int a)
263 {
264 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
265 return a;
266 } else {
267 return ((a / 10) << 4) | (a % 10);
268 }
269 }
270
271 static inline int from_bcd(RTCState *s, int a)
272 {
273 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
274 return a;
275 } else {
276 return ((a >> 4) * 10) + (a & 0x0f);
277 }
278 }
279
280 static void rtc_set_time(RTCState *s)
281 {
282 struct tm *tm = &s->current_tm;
283
284 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
285 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
286 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
287 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
288 (s->cmos_data[RTC_HOURS] & 0x80)) {
289 tm->tm_hour += 12;
290 }
291 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
292 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
293 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
294 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
295 }
296
297 static void rtc_copy_date(RTCState *s)
298 {
299 const struct tm *tm = &s->current_tm;
300 int year;
301
302 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
303 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
304 if (s->cmos_data[RTC_REG_B] & 0x02) {
305 /* 24 hour format */
306 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
307 } else {
308 /* 12 hour format */
309 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
310 if (tm->tm_hour >= 12)
311 s->cmos_data[RTC_HOURS] |= 0x80;
312 }
313 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
314 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
315 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
316 year = (tm->tm_year - s->base_year) % 100;
317 if (year < 0)
318 year += 100;
319 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
320 }
321
322 /* month is between 0 and 11. */
323 static int get_days_in_month(int month, int year)
324 {
325 static const int days_tab[12] = {
326 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
327 };
328 int d;
329 if ((unsigned )month >= 12)
330 return 31;
331 d = days_tab[month];
332 if (month == 1) {
333 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
334 d++;
335 }
336 return d;
337 }
338
339 /* update 'tm' to the next second */
340 static void rtc_next_second(struct tm *tm)
341 {
342 int days_in_month;
343
344 tm->tm_sec++;
345 if ((unsigned)tm->tm_sec >= 60) {
346 tm->tm_sec = 0;
347 tm->tm_min++;
348 if ((unsigned)tm->tm_min >= 60) {
349 tm->tm_min = 0;
350 tm->tm_hour++;
351 if ((unsigned)tm->tm_hour >= 24) {
352 tm->tm_hour = 0;
353 /* next day */
354 tm->tm_wday++;
355 if ((unsigned)tm->tm_wday >= 7)
356 tm->tm_wday = 0;
357 days_in_month = get_days_in_month(tm->tm_mon,
358 tm->tm_year + 1900);
359 tm->tm_mday++;
360 if (tm->tm_mday < 1) {
361 tm->tm_mday = 1;
362 } else if (tm->tm_mday > days_in_month) {
363 tm->tm_mday = 1;
364 tm->tm_mon++;
365 if (tm->tm_mon >= 12) {
366 tm->tm_mon = 0;
367 tm->tm_year++;
368 }
369 }
370 }
371 }
372 }
373 }
374
375
376 static void rtc_update_second(void *opaque)
377 {
378 RTCState *s = opaque;
379 int64_t delay;
380
381 /* if the oscillator is not in normal operation, we do not update */
382 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
383 s->next_second_time += get_ticks_per_sec();
384 qemu_mod_timer(s->second_timer, s->next_second_time);
385 } else {
386 rtc_next_second(&s->current_tm);
387
388 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
389 /* update in progress bit */
390 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
391 }
392 /* should be 244 us = 8 / 32768 seconds, but currently the
393 timers do not have the necessary resolution. */
394 delay = (get_ticks_per_sec() * 1) / 100;
395 if (delay < 1)
396 delay = 1;
397 qemu_mod_timer(s->second_timer2,
398 s->next_second_time + delay);
399 }
400 }
401
402 static void rtc_update_second2(void *opaque)
403 {
404 RTCState *s = opaque;
405
406 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
407 rtc_copy_date(s);
408 }
409
410 /* check alarm */
411 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
412 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
413 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
414 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
415 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
416 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
417 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
418
419 s->cmos_data[RTC_REG_C] |= 0xa0;
420 rtc_irq_raise(s->irq);
421 }
422 }
423
424 /* update ended interrupt */
425 s->cmos_data[RTC_REG_C] |= REG_C_UF;
426 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
427 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
428 rtc_irq_raise(s->irq);
429 }
430
431 /* clear update in progress bit */
432 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
433
434 s->next_second_time += get_ticks_per_sec();
435 qemu_mod_timer(s->second_timer, s->next_second_time);
436 }
437
438 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
439 {
440 RTCState *s = opaque;
441 int ret;
442 if ((addr & 1) == 0) {
443 return 0xff;
444 } else {
445 switch(s->cmos_index) {
446 case RTC_SECONDS:
447 case RTC_MINUTES:
448 case RTC_HOURS:
449 case RTC_DAY_OF_WEEK:
450 case RTC_DAY_OF_MONTH:
451 case RTC_MONTH:
452 case RTC_YEAR:
453 ret = s->cmos_data[s->cmos_index];
454 break;
455 case RTC_REG_A:
456 ret = s->cmos_data[s->cmos_index];
457 break;
458 case RTC_REG_C:
459 ret = s->cmos_data[s->cmos_index];
460 qemu_irq_lower(s->irq);
461 s->cmos_data[RTC_REG_C] = 0x00;
462 break;
463 default:
464 ret = s->cmos_data[s->cmos_index];
465 break;
466 }
467 #ifdef DEBUG_CMOS
468 printf("cmos: read index=0x%02x val=0x%02x\n",
469 s->cmos_index, ret);
470 #endif
471 return ret;
472 }
473 }
474
475 void rtc_set_memory(RTCState *s, int addr, int val)
476 {
477 if (addr >= 0 && addr <= 127)
478 s->cmos_data[addr] = val;
479 }
480
481 void rtc_set_date(RTCState *s, const struct tm *tm)
482 {
483 s->current_tm = *tm;
484 rtc_copy_date(s);
485 }
486
487 /* PC cmos mappings */
488 #define REG_IBM_CENTURY_BYTE 0x32
489 #define REG_IBM_PS2_CENTURY_BYTE 0x37
490
491 static void rtc_set_date_from_host(RTCState *s)
492 {
493 struct tm tm;
494 int val;
495
496 /* set the CMOS date */
497 qemu_get_timedate(&tm, 0);
498 rtc_set_date(s, &tm);
499
500 val = to_bcd(s, (tm.tm_year / 100) + 19);
501 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
502 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
503 }
504
505 static void rtc_save(QEMUFile *f, void *opaque)
506 {
507 RTCState *s = opaque;
508
509 qemu_put_buffer(f, s->cmos_data, 128);
510 qemu_put_8s(f, &s->cmos_index);
511
512 qemu_put_be32(f, s->current_tm.tm_sec);
513 qemu_put_be32(f, s->current_tm.tm_min);
514 qemu_put_be32(f, s->current_tm.tm_hour);
515 qemu_put_be32(f, s->current_tm.tm_wday);
516 qemu_put_be32(f, s->current_tm.tm_mday);
517 qemu_put_be32(f, s->current_tm.tm_mon);
518 qemu_put_be32(f, s->current_tm.tm_year);
519
520 qemu_put_timer(f, s->periodic_timer);
521 qemu_put_be64(f, s->next_periodic_time);
522
523 qemu_put_be64(f, s->next_second_time);
524 qemu_put_timer(f, s->second_timer);
525 qemu_put_timer(f, s->second_timer2);
526 }
527
528 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
529 {
530 RTCState *s = opaque;
531
532 if (version_id != 1)
533 return -EINVAL;
534
535 qemu_get_buffer(f, s->cmos_data, 128);
536 qemu_get_8s(f, &s->cmos_index);
537
538 s->current_tm.tm_sec=qemu_get_be32(f);
539 s->current_tm.tm_min=qemu_get_be32(f);
540 s->current_tm.tm_hour=qemu_get_be32(f);
541 s->current_tm.tm_wday=qemu_get_be32(f);
542 s->current_tm.tm_mday=qemu_get_be32(f);
543 s->current_tm.tm_mon=qemu_get_be32(f);
544 s->current_tm.tm_year=qemu_get_be32(f);
545
546 qemu_get_timer(f, s->periodic_timer);
547 s->next_periodic_time=qemu_get_be64(f);
548
549 s->next_second_time=qemu_get_be64(f);
550 qemu_get_timer(f, s->second_timer);
551 qemu_get_timer(f, s->second_timer2);
552 return 0;
553 }
554
555 #ifdef TARGET_I386
556 static void rtc_save_td(QEMUFile *f, void *opaque)
557 {
558 RTCState *s = opaque;
559
560 qemu_put_be32(f, s->irq_coalesced);
561 qemu_put_be32(f, s->period);
562 }
563
564 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
565 {
566 RTCState *s = opaque;
567
568 if (version_id != 1)
569 return -EINVAL;
570
571 s->irq_coalesced = qemu_get_be32(f);
572 s->period = qemu_get_be32(f);
573 rtc_coalesced_timer_update(s);
574 return 0;
575 }
576 #endif
577
578 static void rtc_reset(void *opaque)
579 {
580 RTCState *s = opaque;
581
582 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
583 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
584
585 qemu_irq_lower(s->irq);
586
587 #ifdef TARGET_I386
588 if (rtc_td_hack)
589 s->irq_coalesced = 0;
590 #endif
591 }
592
593 static int rtc_initfn(ISADevice *dev)
594 {
595 RTCState *s = DO_UPCAST(RTCState, dev, dev);
596 int base = 0x70;
597 int isairq = 8;
598
599 isa_init_irq(dev, &s->irq, isairq);
600
601 s->cmos_data[RTC_REG_A] = 0x26;
602 s->cmos_data[RTC_REG_B] = 0x02;
603 s->cmos_data[RTC_REG_C] = 0x00;
604 s->cmos_data[RTC_REG_D] = 0x80;
605
606 rtc_set_date_from_host(s);
607
608 s->periodic_timer = qemu_new_timer(vm_clock,
609 rtc_periodic_timer, s);
610 #ifdef TARGET_I386
611 if (rtc_td_hack)
612 s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s);
613 #endif
614 s->second_timer = qemu_new_timer(vm_clock,
615 rtc_update_second, s);
616 s->second_timer2 = qemu_new_timer(vm_clock,
617 rtc_update_second2, s);
618
619 s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
620 qemu_mod_timer(s->second_timer2, s->next_second_time);
621
622 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
623 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
624
625 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
626 #ifdef TARGET_I386
627 if (rtc_td_hack)
628 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
629 #endif
630 qemu_register_reset(rtc_reset, s);
631 return 0;
632 }
633
634 RTCState *rtc_init(int base_year)
635 {
636 ISADevice *dev;
637
638 dev = isa_create("mc146818rtc");
639 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
640 qdev_init(&dev->qdev);
641 return DO_UPCAST(RTCState, dev, dev);
642 }
643
644 static ISADeviceInfo mc146818rtc_info = {
645 .qdev.name = "mc146818rtc",
646 .qdev.size = sizeof(RTCState),
647 .qdev.no_user = 1,
648 .init = rtc_initfn,
649 .qdev.props = (Property[]) {
650 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
651 DEFINE_PROP_END_OF_LIST(),
652 }
653 };
654
655 static void mc146818rtc_register(void)
656 {
657 isa_qdev_register(&mc146818rtc_info);
658 }
659 device_init(mc146818rtc_register)
660
661 /* Memory mapped interface */
662 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
663 {
664 RTCState *s = opaque;
665
666 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
667 }
668
669 static void cmos_mm_writeb (void *opaque,
670 target_phys_addr_t addr, uint32_t value)
671 {
672 RTCState *s = opaque;
673
674 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
675 }
676
677 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
678 {
679 RTCState *s = opaque;
680 uint32_t val;
681
682 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
683 #ifdef TARGET_WORDS_BIGENDIAN
684 val = bswap16(val);
685 #endif
686 return val;
687 }
688
689 static void cmos_mm_writew (void *opaque,
690 target_phys_addr_t addr, uint32_t value)
691 {
692 RTCState *s = opaque;
693 #ifdef TARGET_WORDS_BIGENDIAN
694 value = bswap16(value);
695 #endif
696 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
697 }
698
699 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
700 {
701 RTCState *s = opaque;
702 uint32_t val;
703
704 val = cmos_ioport_read(s, addr >> s->it_shift);
705 #ifdef TARGET_WORDS_BIGENDIAN
706 val = bswap32(val);
707 #endif
708 return val;
709 }
710
711 static void cmos_mm_writel (void *opaque,
712 target_phys_addr_t addr, uint32_t value)
713 {
714 RTCState *s = opaque;
715 #ifdef TARGET_WORDS_BIGENDIAN
716 value = bswap32(value);
717 #endif
718 cmos_ioport_write(s, addr >> s->it_shift, value);
719 }
720
721 static CPUReadMemoryFunc * const rtc_mm_read[] = {
722 &cmos_mm_readb,
723 &cmos_mm_readw,
724 &cmos_mm_readl,
725 };
726
727 static CPUWriteMemoryFunc * const rtc_mm_write[] = {
728 &cmos_mm_writeb,
729 &cmos_mm_writew,
730 &cmos_mm_writel,
731 };
732
733 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
734 int base_year)
735 {
736 RTCState *s;
737 int io_memory;
738
739 s = qemu_mallocz(sizeof(RTCState));
740
741 s->irq = irq;
742 s->cmos_data[RTC_REG_A] = 0x26;
743 s->cmos_data[RTC_REG_B] = 0x02;
744 s->cmos_data[RTC_REG_C] = 0x00;
745 s->cmos_data[RTC_REG_D] = 0x80;
746
747 s->base_year = base_year;
748 rtc_set_date_from_host(s);
749
750 s->periodic_timer = qemu_new_timer(vm_clock,
751 rtc_periodic_timer, s);
752 s->second_timer = qemu_new_timer(vm_clock,
753 rtc_update_second, s);
754 s->second_timer2 = qemu_new_timer(vm_clock,
755 rtc_update_second2, s);
756
757 s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100;
758 qemu_mod_timer(s->second_timer2, s->next_second_time);
759
760 io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
761 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
762
763 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
764 #ifdef TARGET_I386
765 if (rtc_td_hack)
766 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
767 #endif
768 qemu_register_reset(rtc_reset, s);
769 return s;
770 }