]> git.proxmox.com Git - qemu.git/blob - hw/mc146818rtc.c
Support epoch of 1980 in RTC emulation for MIPS Magnum
[qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "hpet_emul.h"
30
31 //#define DEBUG_CMOS
32
33 #define RTC_SECONDS 0
34 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES 2
36 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS 4
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
40
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
43 #define RTC_MONTH 8
44 #define RTC_YEAR 9
45
46 #define RTC_REG_A 10
47 #define RTC_REG_B 11
48 #define RTC_REG_C 12
49 #define RTC_REG_D 13
50
51 #define REG_A_UIP 0x80
52
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_DM 0x04
58
59 struct RTCState {
60 uint8_t cmos_data[128];
61 uint8_t cmos_index;
62 struct tm current_tm;
63 int base_year;
64 qemu_irq irq;
65 int it_shift;
66 /* periodic timer */
67 QEMUTimer *periodic_timer;
68 int64_t next_periodic_time;
69 /* second update */
70 int64_t next_second_time;
71 #ifdef TARGET_I386
72 uint32_t irq_coalesced;
73 uint32_t period;
74 #endif
75 QEMUTimer *second_timer;
76 QEMUTimer *second_timer2;
77 };
78
79 static void rtc_irq_raise(qemu_irq irq) {
80 /* When HPET is operating in legacy mode, RTC interrupts are disabled
81 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
82 * mode is established while interrupt is raised. We want it to
83 * be lowered in any case
84 */
85 #if defined TARGET_I386 || defined TARGET_X86_64
86 if (!hpet_in_legacy_mode())
87 #endif
88 qemu_irq_raise(irq);
89 }
90
91 static void rtc_set_time(RTCState *s);
92 static void rtc_copy_date(RTCState *s);
93
94 static void rtc_timer_update(RTCState *s, int64_t current_time)
95 {
96 int period_code, period;
97 int64_t cur_clock, next_irq_clock;
98
99 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
100 #if defined TARGET_I386 || defined TARGET_X86_64
101 /* disable periodic timer if hpet is in legacy mode, since interrupts are
102 * disabled anyway.
103 */
104 if (period_code != 0 && (s->cmos_data[RTC_REG_B] & REG_B_PIE) && !hpet_in_legacy_mode()) {
105 #else
106 if (period_code != 0 && (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
107 #endif
108 if (period_code <= 2)
109 period_code += 7;
110 /* period in 32 Khz cycles */
111 period = 1 << (period_code - 1);
112 #ifdef TARGET_I386
113 if(period != s->period)
114 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
115 s->period = period;
116 #endif
117 /* compute 32 khz clock */
118 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
119 next_irq_clock = (cur_clock & ~(period - 1)) + period;
120 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
121 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
122 } else {
123 #ifdef TARGET_I386
124 s->irq_coalesced = 0;
125 #endif
126 qemu_del_timer(s->periodic_timer);
127 }
128 }
129
130 static void rtc_periodic_timer(void *opaque)
131 {
132 RTCState *s = opaque;
133
134 rtc_timer_update(s, s->next_periodic_time);
135 #ifdef TARGET_I386
136 if ((s->cmos_data[RTC_REG_C] & 0xc0) && rtc_td_hack) {
137 s->irq_coalesced++;
138 return;
139 }
140 #endif
141 s->cmos_data[RTC_REG_C] |= 0xc0;
142 rtc_irq_raise(s->irq);
143 }
144
145 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
146 {
147 RTCState *s = opaque;
148
149 if ((addr & 1) == 0) {
150 s->cmos_index = data & 0x7f;
151 } else {
152 #ifdef DEBUG_CMOS
153 printf("cmos: write index=0x%02x val=0x%02x\n",
154 s->cmos_index, data);
155 #endif
156 switch(s->cmos_index) {
157 case RTC_SECONDS_ALARM:
158 case RTC_MINUTES_ALARM:
159 case RTC_HOURS_ALARM:
160 /* XXX: not supported */
161 s->cmos_data[s->cmos_index] = data;
162 break;
163 case RTC_SECONDS:
164 case RTC_MINUTES:
165 case RTC_HOURS:
166 case RTC_DAY_OF_WEEK:
167 case RTC_DAY_OF_MONTH:
168 case RTC_MONTH:
169 case RTC_YEAR:
170 s->cmos_data[s->cmos_index] = data;
171 /* if in set mode, do not update the time */
172 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
173 rtc_set_time(s);
174 }
175 break;
176 case RTC_REG_A:
177 /* UIP bit is read only */
178 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
179 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
180 rtc_timer_update(s, qemu_get_clock(vm_clock));
181 break;
182 case RTC_REG_B:
183 if (data & REG_B_SET) {
184 /* set mode: reset UIP mode */
185 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
186 data &= ~REG_B_UIE;
187 } else {
188 /* if disabling set mode, update the time */
189 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
190 rtc_set_time(s);
191 }
192 }
193 s->cmos_data[RTC_REG_B] = data;
194 rtc_timer_update(s, qemu_get_clock(vm_clock));
195 break;
196 case RTC_REG_C:
197 case RTC_REG_D:
198 /* cannot write to them */
199 break;
200 default:
201 s->cmos_data[s->cmos_index] = data;
202 break;
203 }
204 }
205 }
206
207 static inline int to_bcd(RTCState *s, int a)
208 {
209 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
210 return a;
211 } else {
212 return ((a / 10) << 4) | (a % 10);
213 }
214 }
215
216 static inline int from_bcd(RTCState *s, int a)
217 {
218 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
219 return a;
220 } else {
221 return ((a >> 4) * 10) + (a & 0x0f);
222 }
223 }
224
225 static void rtc_set_time(RTCState *s)
226 {
227 struct tm *tm = &s->current_tm;
228
229 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
230 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
231 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
232 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
233 (s->cmos_data[RTC_HOURS] & 0x80)) {
234 tm->tm_hour += 12;
235 }
236 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
237 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
238 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
239 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
240 }
241
242 static void rtc_copy_date(RTCState *s)
243 {
244 const struct tm *tm = &s->current_tm;
245 int year;
246
247 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
248 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
249 if (s->cmos_data[RTC_REG_B] & 0x02) {
250 /* 24 hour format */
251 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
252 } else {
253 /* 12 hour format */
254 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
255 if (tm->tm_hour >= 12)
256 s->cmos_data[RTC_HOURS] |= 0x80;
257 }
258 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
259 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
260 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
261 year = (tm->tm_year - s->base_year) % 100;
262 if (year < 0)
263 year += 100;
264 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
265 }
266
267 /* month is between 0 and 11. */
268 static int get_days_in_month(int month, int year)
269 {
270 static const int days_tab[12] = {
271 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
272 };
273 int d;
274 if ((unsigned )month >= 12)
275 return 31;
276 d = days_tab[month];
277 if (month == 1) {
278 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
279 d++;
280 }
281 return d;
282 }
283
284 /* update 'tm' to the next second */
285 static void rtc_next_second(struct tm *tm)
286 {
287 int days_in_month;
288
289 tm->tm_sec++;
290 if ((unsigned)tm->tm_sec >= 60) {
291 tm->tm_sec = 0;
292 tm->tm_min++;
293 if ((unsigned)tm->tm_min >= 60) {
294 tm->tm_min = 0;
295 tm->tm_hour++;
296 if ((unsigned)tm->tm_hour >= 24) {
297 tm->tm_hour = 0;
298 /* next day */
299 tm->tm_wday++;
300 if ((unsigned)tm->tm_wday >= 7)
301 tm->tm_wday = 0;
302 days_in_month = get_days_in_month(tm->tm_mon,
303 tm->tm_year + 1900);
304 tm->tm_mday++;
305 if (tm->tm_mday < 1) {
306 tm->tm_mday = 1;
307 } else if (tm->tm_mday > days_in_month) {
308 tm->tm_mday = 1;
309 tm->tm_mon++;
310 if (tm->tm_mon >= 12) {
311 tm->tm_mon = 0;
312 tm->tm_year++;
313 }
314 }
315 }
316 }
317 }
318 }
319
320
321 static void rtc_update_second(void *opaque)
322 {
323 RTCState *s = opaque;
324 int64_t delay;
325
326 /* if the oscillator is not in normal operation, we do not update */
327 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
328 s->next_second_time += ticks_per_sec;
329 qemu_mod_timer(s->second_timer, s->next_second_time);
330 } else {
331 rtc_next_second(&s->current_tm);
332
333 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
334 /* update in progress bit */
335 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
336 }
337 /* should be 244 us = 8 / 32768 seconds, but currently the
338 timers do not have the necessary resolution. */
339 delay = (ticks_per_sec * 1) / 100;
340 if (delay < 1)
341 delay = 1;
342 qemu_mod_timer(s->second_timer2,
343 s->next_second_time + delay);
344 }
345 }
346
347 static void rtc_update_second2(void *opaque)
348 {
349 RTCState *s = opaque;
350
351 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
352 rtc_copy_date(s);
353 }
354
355 /* check alarm */
356 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
357 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
358 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
359 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
360 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
361 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
362 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
363
364 s->cmos_data[RTC_REG_C] |= 0xa0;
365 rtc_irq_raise(s->irq);
366 }
367 }
368
369 /* update ended interrupt */
370 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
371 s->cmos_data[RTC_REG_C] |= 0x90;
372 rtc_irq_raise(s->irq);
373 }
374
375 /* clear update in progress bit */
376 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
377
378 s->next_second_time += ticks_per_sec;
379 qemu_mod_timer(s->second_timer, s->next_second_time);
380 }
381
382 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
383 {
384 RTCState *s = opaque;
385 int ret;
386 if ((addr & 1) == 0) {
387 return 0xff;
388 } else {
389 switch(s->cmos_index) {
390 case RTC_SECONDS:
391 case RTC_MINUTES:
392 case RTC_HOURS:
393 case RTC_DAY_OF_WEEK:
394 case RTC_DAY_OF_MONTH:
395 case RTC_MONTH:
396 case RTC_YEAR:
397 ret = s->cmos_data[s->cmos_index];
398 break;
399 case RTC_REG_A:
400 ret = s->cmos_data[s->cmos_index];
401 break;
402 case RTC_REG_C:
403 ret = s->cmos_data[s->cmos_index];
404 qemu_irq_lower(s->irq);
405 #ifdef TARGET_I386
406 if(s->irq_coalesced) {
407 apic_reset_irq_delivered();
408 qemu_irq_raise(s->irq);
409 if (apic_get_irq_delivered())
410 s->irq_coalesced--;
411 break;
412 }
413 #endif
414 s->cmos_data[RTC_REG_C] = 0x00;
415 break;
416 default:
417 ret = s->cmos_data[s->cmos_index];
418 break;
419 }
420 #ifdef DEBUG_CMOS
421 printf("cmos: read index=0x%02x val=0x%02x\n",
422 s->cmos_index, ret);
423 #endif
424 return ret;
425 }
426 }
427
428 void rtc_set_memory(RTCState *s, int addr, int val)
429 {
430 if (addr >= 0 && addr <= 127)
431 s->cmos_data[addr] = val;
432 }
433
434 void rtc_set_date(RTCState *s, const struct tm *tm)
435 {
436 s->current_tm = *tm;
437 rtc_copy_date(s);
438 }
439
440 /* PC cmos mappings */
441 #define REG_IBM_CENTURY_BYTE 0x32
442 #define REG_IBM_PS2_CENTURY_BYTE 0x37
443
444 static void rtc_set_date_from_host(RTCState *s)
445 {
446 struct tm tm;
447 int val;
448
449 /* set the CMOS date */
450 qemu_get_timedate(&tm, 0);
451 rtc_set_date(s, &tm);
452
453 val = to_bcd(s, (tm.tm_year / 100) + 19);
454 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
455 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
456 }
457
458 static void rtc_save(QEMUFile *f, void *opaque)
459 {
460 RTCState *s = opaque;
461
462 qemu_put_buffer(f, s->cmos_data, 128);
463 qemu_put_8s(f, &s->cmos_index);
464
465 qemu_put_be32(f, s->current_tm.tm_sec);
466 qemu_put_be32(f, s->current_tm.tm_min);
467 qemu_put_be32(f, s->current_tm.tm_hour);
468 qemu_put_be32(f, s->current_tm.tm_wday);
469 qemu_put_be32(f, s->current_tm.tm_mday);
470 qemu_put_be32(f, s->current_tm.tm_mon);
471 qemu_put_be32(f, s->current_tm.tm_year);
472
473 qemu_put_timer(f, s->periodic_timer);
474 qemu_put_be64(f, s->next_periodic_time);
475
476 qemu_put_be64(f, s->next_second_time);
477 qemu_put_timer(f, s->second_timer);
478 qemu_put_timer(f, s->second_timer2);
479 }
480
481 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
482 {
483 RTCState *s = opaque;
484
485 if (version_id != 1)
486 return -EINVAL;
487
488 qemu_get_buffer(f, s->cmos_data, 128);
489 qemu_get_8s(f, &s->cmos_index);
490
491 s->current_tm.tm_sec=qemu_get_be32(f);
492 s->current_tm.tm_min=qemu_get_be32(f);
493 s->current_tm.tm_hour=qemu_get_be32(f);
494 s->current_tm.tm_wday=qemu_get_be32(f);
495 s->current_tm.tm_mday=qemu_get_be32(f);
496 s->current_tm.tm_mon=qemu_get_be32(f);
497 s->current_tm.tm_year=qemu_get_be32(f);
498
499 qemu_get_timer(f, s->periodic_timer);
500 s->next_periodic_time=qemu_get_be64(f);
501
502 s->next_second_time=qemu_get_be64(f);
503 qemu_get_timer(f, s->second_timer);
504 qemu_get_timer(f, s->second_timer2);
505 return 0;
506 }
507
508 #ifdef TARGET_I386
509 static void rtc_save_td(QEMUFile *f, void *opaque)
510 {
511 RTCState *s = opaque;
512
513 qemu_put_be32(f, s->irq_coalesced);
514 qemu_put_be32(f, s->period);
515 }
516
517 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
518 {
519 RTCState *s = opaque;
520
521 if (version_id != 1)
522 return -EINVAL;
523
524 s->irq_coalesced = qemu_get_be32(f);
525 s->period = qemu_get_be32(f);
526 return 0;
527 }
528 #endif
529
530 RTCState *rtc_init(int base, qemu_irq irq, int base_year)
531 {
532 RTCState *s;
533
534 s = qemu_mallocz(sizeof(RTCState));
535 if (!s)
536 return NULL;
537
538 s->irq = irq;
539 s->cmos_data[RTC_REG_A] = 0x26;
540 s->cmos_data[RTC_REG_B] = 0x02;
541 s->cmos_data[RTC_REG_C] = 0x00;
542 s->cmos_data[RTC_REG_D] = 0x80;
543
544 s->base_year = base_year;
545 rtc_set_date_from_host(s);
546
547 s->periodic_timer = qemu_new_timer(vm_clock,
548 rtc_periodic_timer, s);
549 s->second_timer = qemu_new_timer(vm_clock,
550 rtc_update_second, s);
551 s->second_timer2 = qemu_new_timer(vm_clock,
552 rtc_update_second2, s);
553
554 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
555 qemu_mod_timer(s->second_timer2, s->next_second_time);
556
557 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
558 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
559
560 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
561 #ifdef TARGET_I386
562 if (rtc_td_hack)
563 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
564 #endif
565 return s;
566 }
567
568 /* Memory mapped interface */
569 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
570 {
571 RTCState *s = opaque;
572
573 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
574 }
575
576 static void cmos_mm_writeb (void *opaque,
577 target_phys_addr_t addr, uint32_t value)
578 {
579 RTCState *s = opaque;
580
581 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
582 }
583
584 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
585 {
586 RTCState *s = opaque;
587 uint32_t val;
588
589 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
590 #ifdef TARGET_WORDS_BIGENDIAN
591 val = bswap16(val);
592 #endif
593 return val;
594 }
595
596 static void cmos_mm_writew (void *opaque,
597 target_phys_addr_t addr, uint32_t value)
598 {
599 RTCState *s = opaque;
600 #ifdef TARGET_WORDS_BIGENDIAN
601 value = bswap16(value);
602 #endif
603 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
604 }
605
606 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
607 {
608 RTCState *s = opaque;
609 uint32_t val;
610
611 val = cmos_ioport_read(s, addr >> s->it_shift);
612 #ifdef TARGET_WORDS_BIGENDIAN
613 val = bswap32(val);
614 #endif
615 return val;
616 }
617
618 static void cmos_mm_writel (void *opaque,
619 target_phys_addr_t addr, uint32_t value)
620 {
621 RTCState *s = opaque;
622 #ifdef TARGET_WORDS_BIGENDIAN
623 value = bswap32(value);
624 #endif
625 cmos_ioport_write(s, addr >> s->it_shift, value);
626 }
627
628 static CPUReadMemoryFunc *rtc_mm_read[] = {
629 &cmos_mm_readb,
630 &cmos_mm_readw,
631 &cmos_mm_readl,
632 };
633
634 static CPUWriteMemoryFunc *rtc_mm_write[] = {
635 &cmos_mm_writeb,
636 &cmos_mm_writew,
637 &cmos_mm_writel,
638 };
639
640 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
641 int base_year)
642 {
643 RTCState *s;
644 int io_memory;
645
646 s = qemu_mallocz(sizeof(RTCState));
647 if (!s)
648 return NULL;
649
650 s->irq = irq;
651 s->cmos_data[RTC_REG_A] = 0x26;
652 s->cmos_data[RTC_REG_B] = 0x02;
653 s->cmos_data[RTC_REG_C] = 0x00;
654 s->cmos_data[RTC_REG_D] = 0x80;
655
656 s->base_year = base_year;
657 rtc_set_date_from_host(s);
658
659 s->periodic_timer = qemu_new_timer(vm_clock,
660 rtc_periodic_timer, s);
661 s->second_timer = qemu_new_timer(vm_clock,
662 rtc_update_second, s);
663 s->second_timer2 = qemu_new_timer(vm_clock,
664 rtc_update_second2, s);
665
666 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
667 qemu_mod_timer(s->second_timer2, s->next_second_time);
668
669 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
670 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
671
672 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
673 #ifdef TARGET_I386
674 if (rtc_td_hack)
675 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
676 #endif
677 return s;
678 }