]> git.proxmox.com Git - qemu.git/blob - hw/mc146818rtc.c
Merge remote-tracking branch 'spice/spice.v47' into staging
[qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "apic.h"
29 #include "isa.h"
30 #include "mc146818rtc.h"
31
32 //#define DEBUG_CMOS
33 //#define DEBUG_COALESCED
34
35 #ifdef DEBUG_CMOS
36 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
37 #else
38 # define CMOS_DPRINTF(format, ...) do { } while (0)
39 #endif
40
41 #ifdef DEBUG_COALESCED
42 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
43 #else
44 # define DPRINTF_C(format, ...) do { } while (0)
45 #endif
46
47 #define RTC_REINJECT_ON_ACK_COUNT 20
48
49 #define RTC_SECONDS 0
50 #define RTC_SECONDS_ALARM 1
51 #define RTC_MINUTES 2
52 #define RTC_MINUTES_ALARM 3
53 #define RTC_HOURS 4
54 #define RTC_HOURS_ALARM 5
55 #define RTC_ALARM_DONT_CARE 0xC0
56
57 #define RTC_DAY_OF_WEEK 6
58 #define RTC_DAY_OF_MONTH 7
59 #define RTC_MONTH 8
60 #define RTC_YEAR 9
61
62 #define RTC_REG_A 10
63 #define RTC_REG_B 11
64 #define RTC_REG_C 12
65 #define RTC_REG_D 13
66
67 #define REG_A_UIP 0x80
68
69 #define REG_B_SET 0x80
70 #define REG_B_PIE 0x40
71 #define REG_B_AIE 0x20
72 #define REG_B_UIE 0x10
73 #define REG_B_SQWE 0x08
74 #define REG_B_DM 0x04
75 #define REG_B_24H 0x02
76
77 #define REG_C_UF 0x10
78 #define REG_C_IRQF 0x80
79 #define REG_C_PF 0x40
80 #define REG_C_AF 0x20
81
82 typedef struct RTCState {
83 ISADevice dev;
84 MemoryRegion io;
85 uint8_t cmos_data[128];
86 uint8_t cmos_index;
87 struct tm current_tm;
88 int32_t base_year;
89 qemu_irq irq;
90 qemu_irq sqw_irq;
91 int it_shift;
92 /* periodic timer */
93 QEMUTimer *periodic_timer;
94 int64_t next_periodic_time;
95 /* second update */
96 int64_t next_second_time;
97 uint16_t irq_reinject_on_ack_count;
98 uint32_t irq_coalesced;
99 uint32_t period;
100 QEMUTimer *coalesced_timer;
101 QEMUTimer *second_timer;
102 QEMUTimer *second_timer2;
103 Notifier clock_reset_notifier;
104 } RTCState;
105
106 static void rtc_set_time(RTCState *s);
107 static void rtc_copy_date(RTCState *s);
108
109 #ifdef TARGET_I386
110 static void rtc_coalesced_timer_update(RTCState *s)
111 {
112 if (s->irq_coalesced == 0) {
113 qemu_del_timer(s->coalesced_timer);
114 } else {
115 /* divide each RTC interval to 2 - 8 smaller intervals */
116 int c = MIN(s->irq_coalesced, 7) + 1;
117 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
118 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
119 qemu_mod_timer(s->coalesced_timer, next_clock);
120 }
121 }
122
123 static void rtc_coalesced_timer(void *opaque)
124 {
125 RTCState *s = opaque;
126
127 if (s->irq_coalesced != 0) {
128 apic_reset_irq_delivered();
129 s->cmos_data[RTC_REG_C] |= 0xc0;
130 DPRINTF_C("cmos: injecting from timer\n");
131 qemu_irq_raise(s->irq);
132 if (apic_get_irq_delivered()) {
133 s->irq_coalesced--;
134 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
135 s->irq_coalesced);
136 }
137 }
138
139 rtc_coalesced_timer_update(s);
140 }
141 #endif
142
143 static void rtc_timer_update(RTCState *s, int64_t current_time)
144 {
145 int period_code, period;
146 int64_t cur_clock, next_irq_clock;
147
148 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
149 if (period_code != 0
150 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
151 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152 if (period_code <= 2)
153 period_code += 7;
154 /* period in 32 Khz cycles */
155 period = 1 << (period_code - 1);
156 #ifdef TARGET_I386
157 if (period != s->period) {
158 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
160 }
161 s->period = period;
162 #endif
163 /* compute 32 khz clock */
164 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
165 next_irq_clock = (cur_clock & ~(period - 1)) + period;
166 s->next_periodic_time =
167 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
168 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
169 } else {
170 #ifdef TARGET_I386
171 s->irq_coalesced = 0;
172 #endif
173 qemu_del_timer(s->periodic_timer);
174 }
175 }
176
177 static void rtc_periodic_timer(void *opaque)
178 {
179 RTCState *s = opaque;
180
181 rtc_timer_update(s, s->next_periodic_time);
182 s->cmos_data[RTC_REG_C] |= REG_C_PF;
183 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
184 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
185 #ifdef TARGET_I386
186 if(rtc_td_hack) {
187 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
188 s->irq_reinject_on_ack_count = 0;
189 apic_reset_irq_delivered();
190 qemu_irq_raise(s->irq);
191 if (!apic_get_irq_delivered()) {
192 s->irq_coalesced++;
193 rtc_coalesced_timer_update(s);
194 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
195 s->irq_coalesced);
196 }
197 } else
198 #endif
199 qemu_irq_raise(s->irq);
200 }
201 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
202 /* Not square wave at all but we don't want 2048Hz interrupts!
203 Must be seen as a pulse. */
204 qemu_irq_raise(s->sqw_irq);
205 }
206 }
207
208 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
209 {
210 RTCState *s = opaque;
211
212 if ((addr & 1) == 0) {
213 s->cmos_index = data & 0x7f;
214 } else {
215 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
216 s->cmos_index, data);
217 switch(s->cmos_index) {
218 case RTC_SECONDS_ALARM:
219 case RTC_MINUTES_ALARM:
220 case RTC_HOURS_ALARM:
221 s->cmos_data[s->cmos_index] = data;
222 break;
223 case RTC_SECONDS:
224 case RTC_MINUTES:
225 case RTC_HOURS:
226 case RTC_DAY_OF_WEEK:
227 case RTC_DAY_OF_MONTH:
228 case RTC_MONTH:
229 case RTC_YEAR:
230 s->cmos_data[s->cmos_index] = data;
231 /* if in set mode, do not update the time */
232 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
233 rtc_set_time(s);
234 }
235 break;
236 case RTC_REG_A:
237 /* UIP bit is read only */
238 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
239 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
240 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
241 break;
242 case RTC_REG_B:
243 if (data & REG_B_SET) {
244 /* set mode: reset UIP mode */
245 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
246 data &= ~REG_B_UIE;
247 } else {
248 /* if disabling set mode, update the time */
249 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
250 rtc_set_time(s);
251 }
252 }
253 if (((s->cmos_data[RTC_REG_B] ^ data) & (REG_B_DM | REG_B_24H)) &&
254 !(data & REG_B_SET)) {
255 /* If the time format has changed and not in set mode,
256 update the registers immediately. */
257 s->cmos_data[RTC_REG_B] = data;
258 rtc_copy_date(s);
259 } else {
260 s->cmos_data[RTC_REG_B] = data;
261 }
262 rtc_timer_update(s, qemu_get_clock_ns(rtc_clock));
263 break;
264 case RTC_REG_C:
265 case RTC_REG_D:
266 /* cannot write to them */
267 break;
268 default:
269 s->cmos_data[s->cmos_index] = data;
270 break;
271 }
272 }
273 }
274
275 static inline int rtc_to_bcd(RTCState *s, int a)
276 {
277 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
278 return a;
279 } else {
280 return ((a / 10) << 4) | (a % 10);
281 }
282 }
283
284 static inline int rtc_from_bcd(RTCState *s, int a)
285 {
286 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
287 return a;
288 } else {
289 return ((a >> 4) * 10) + (a & 0x0f);
290 }
291 }
292
293 static void rtc_set_time(RTCState *s)
294 {
295 struct tm *tm = &s->current_tm;
296
297 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
298 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
299 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
300 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
301 tm->tm_hour %= 12;
302 if (s->cmos_data[RTC_HOURS] & 0x80) {
303 tm->tm_hour += 12;
304 }
305 }
306 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
307 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
308 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
309 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
310
311 rtc_change_mon_event(tm);
312 }
313
314 static void rtc_copy_date(RTCState *s)
315 {
316 const struct tm *tm = &s->current_tm;
317 int year;
318
319 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
320 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
321 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
322 /* 24 hour format */
323 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
324 } else {
325 /* 12 hour format */
326 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
327 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
328 if (tm->tm_hour >= 12)
329 s->cmos_data[RTC_HOURS] |= 0x80;
330 }
331 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
332 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
333 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
334 year = (tm->tm_year - s->base_year) % 100;
335 if (year < 0)
336 year += 100;
337 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
338 }
339
340 /* month is between 0 and 11. */
341 static int get_days_in_month(int month, int year)
342 {
343 static const int days_tab[12] = {
344 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
345 };
346 int d;
347 if ((unsigned )month >= 12)
348 return 31;
349 d = days_tab[month];
350 if (month == 1) {
351 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
352 d++;
353 }
354 return d;
355 }
356
357 /* update 'tm' to the next second */
358 static void rtc_next_second(struct tm *tm)
359 {
360 int days_in_month;
361
362 tm->tm_sec++;
363 if ((unsigned)tm->tm_sec >= 60) {
364 tm->tm_sec = 0;
365 tm->tm_min++;
366 if ((unsigned)tm->tm_min >= 60) {
367 tm->tm_min = 0;
368 tm->tm_hour++;
369 if ((unsigned)tm->tm_hour >= 24) {
370 tm->tm_hour = 0;
371 /* next day */
372 tm->tm_wday++;
373 if ((unsigned)tm->tm_wday >= 7)
374 tm->tm_wday = 0;
375 days_in_month = get_days_in_month(tm->tm_mon,
376 tm->tm_year + 1900);
377 tm->tm_mday++;
378 if (tm->tm_mday < 1) {
379 tm->tm_mday = 1;
380 } else if (tm->tm_mday > days_in_month) {
381 tm->tm_mday = 1;
382 tm->tm_mon++;
383 if (tm->tm_mon >= 12) {
384 tm->tm_mon = 0;
385 tm->tm_year++;
386 }
387 }
388 }
389 }
390 }
391 }
392
393
394 static void rtc_update_second(void *opaque)
395 {
396 RTCState *s = opaque;
397 int64_t delay;
398
399 /* if the oscillator is not in normal operation, we do not update */
400 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
401 s->next_second_time += get_ticks_per_sec();
402 qemu_mod_timer(s->second_timer, s->next_second_time);
403 } else {
404 rtc_next_second(&s->current_tm);
405
406 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
407 /* update in progress bit */
408 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
409 }
410 /* should be 244 us = 8 / 32768 seconds, but currently the
411 timers do not have the necessary resolution. */
412 delay = (get_ticks_per_sec() * 1) / 100;
413 if (delay < 1)
414 delay = 1;
415 qemu_mod_timer(s->second_timer2,
416 s->next_second_time + delay);
417 }
418 }
419
420 static void rtc_update_second2(void *opaque)
421 {
422 RTCState *s = opaque;
423
424 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
425 rtc_copy_date(s);
426 }
427
428 /* check alarm */
429 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
430 rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]) == s->current_tm.tm_sec) &&
431 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
432 rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]) == s->current_tm.tm_min) &&
433 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
434 rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]) == s->current_tm.tm_hour)) {
435
436 s->cmos_data[RTC_REG_C] |= REG_C_AF;
437 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
438 qemu_irq_raise(s->irq);
439 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
440 }
441 }
442
443 /* update ended interrupt */
444 s->cmos_data[RTC_REG_C] |= REG_C_UF;
445 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
446 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
447 qemu_irq_raise(s->irq);
448 }
449
450 /* clear update in progress bit */
451 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
452
453 s->next_second_time += get_ticks_per_sec();
454 qemu_mod_timer(s->second_timer, s->next_second_time);
455 }
456
457 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
458 {
459 RTCState *s = opaque;
460 int ret;
461 if ((addr & 1) == 0) {
462 return 0xff;
463 } else {
464 switch(s->cmos_index) {
465 case RTC_SECONDS:
466 case RTC_MINUTES:
467 case RTC_HOURS:
468 case RTC_DAY_OF_WEEK:
469 case RTC_DAY_OF_MONTH:
470 case RTC_MONTH:
471 case RTC_YEAR:
472 ret = s->cmos_data[s->cmos_index];
473 break;
474 case RTC_REG_A:
475 ret = s->cmos_data[s->cmos_index];
476 break;
477 case RTC_REG_C:
478 ret = s->cmos_data[s->cmos_index];
479 qemu_irq_lower(s->irq);
480 s->cmos_data[RTC_REG_C] = 0x00;
481 #ifdef TARGET_I386
482 if(s->irq_coalesced &&
483 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
484 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
485 s->irq_reinject_on_ack_count++;
486 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
487 apic_reset_irq_delivered();
488 DPRINTF_C("cmos: injecting on ack\n");
489 qemu_irq_raise(s->irq);
490 if (apic_get_irq_delivered()) {
491 s->irq_coalesced--;
492 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
493 s->irq_coalesced);
494 }
495 }
496 #endif
497 break;
498 default:
499 ret = s->cmos_data[s->cmos_index];
500 break;
501 }
502 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
503 s->cmos_index, ret);
504 return ret;
505 }
506 }
507
508 void rtc_set_memory(ISADevice *dev, int addr, int val)
509 {
510 RTCState *s = DO_UPCAST(RTCState, dev, dev);
511 if (addr >= 0 && addr <= 127)
512 s->cmos_data[addr] = val;
513 }
514
515 void rtc_set_date(ISADevice *dev, const struct tm *tm)
516 {
517 RTCState *s = DO_UPCAST(RTCState, dev, dev);
518 s->current_tm = *tm;
519 rtc_copy_date(s);
520 }
521
522 /* PC cmos mappings */
523 #define REG_IBM_CENTURY_BYTE 0x32
524 #define REG_IBM_PS2_CENTURY_BYTE 0x37
525
526 static void rtc_set_date_from_host(ISADevice *dev)
527 {
528 RTCState *s = DO_UPCAST(RTCState, dev, dev);
529 struct tm tm;
530 int val;
531
532 /* set the CMOS date */
533 qemu_get_timedate(&tm, 0);
534 rtc_set_date(dev, &tm);
535
536 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
537 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
538 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
539 }
540
541 static int rtc_post_load(void *opaque, int version_id)
542 {
543 #ifdef TARGET_I386
544 RTCState *s = opaque;
545
546 if (version_id >= 2) {
547 if (rtc_td_hack) {
548 rtc_coalesced_timer_update(s);
549 }
550 }
551 #endif
552 return 0;
553 }
554
555 static const VMStateDescription vmstate_rtc = {
556 .name = "mc146818rtc",
557 .version_id = 2,
558 .minimum_version_id = 1,
559 .minimum_version_id_old = 1,
560 .post_load = rtc_post_load,
561 .fields = (VMStateField []) {
562 VMSTATE_BUFFER(cmos_data, RTCState),
563 VMSTATE_UINT8(cmos_index, RTCState),
564 VMSTATE_INT32(current_tm.tm_sec, RTCState),
565 VMSTATE_INT32(current_tm.tm_min, RTCState),
566 VMSTATE_INT32(current_tm.tm_hour, RTCState),
567 VMSTATE_INT32(current_tm.tm_wday, RTCState),
568 VMSTATE_INT32(current_tm.tm_mday, RTCState),
569 VMSTATE_INT32(current_tm.tm_mon, RTCState),
570 VMSTATE_INT32(current_tm.tm_year, RTCState),
571 VMSTATE_TIMER(periodic_timer, RTCState),
572 VMSTATE_INT64(next_periodic_time, RTCState),
573 VMSTATE_INT64(next_second_time, RTCState),
574 VMSTATE_TIMER(second_timer, RTCState),
575 VMSTATE_TIMER(second_timer2, RTCState),
576 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
577 VMSTATE_UINT32_V(period, RTCState, 2),
578 VMSTATE_END_OF_LIST()
579 }
580 };
581
582 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
583 {
584 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
585 int64_t now = *(int64_t *)data;
586
587 rtc_set_date_from_host(&s->dev);
588 s->next_second_time = now + (get_ticks_per_sec() * 99) / 100;
589 qemu_mod_timer(s->second_timer2, s->next_second_time);
590 rtc_timer_update(s, now);
591 #ifdef TARGET_I386
592 if (rtc_td_hack) {
593 rtc_coalesced_timer_update(s);
594 }
595 #endif
596 }
597
598 static void rtc_reset(void *opaque)
599 {
600 RTCState *s = opaque;
601
602 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
603 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
604
605 qemu_irq_lower(s->irq);
606
607 #ifdef TARGET_I386
608 if (rtc_td_hack)
609 s->irq_coalesced = 0;
610 #endif
611 }
612
613 static const MemoryRegionPortio cmos_portio[] = {
614 {0, 2, 1, .read = cmos_ioport_read, .write = cmos_ioport_write },
615 PORTIO_END_OF_LIST(),
616 };
617
618 static const MemoryRegionOps cmos_ops = {
619 .old_portio = cmos_portio
620 };
621
622 // FIXME add int32 visitor
623 static void visit_type_int32(Visitor *v, int *value, const char *name, Error **errp)
624 {
625 int64_t val = *value;
626 visit_type_int(v, &val, name, errp);
627 }
628
629 static void rtc_get_date(DeviceState *dev, Visitor *v, void *opaque,
630 const char *name, Error **errp)
631 {
632 ISADevice *isa = DO_UPCAST(ISADevice, qdev, dev);
633 RTCState *s = DO_UPCAST(RTCState, dev, isa);
634
635 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
636 visit_type_int32(v, &s->current_tm.tm_year, "tm_year", errp);
637 visit_type_int32(v, &s->current_tm.tm_mon, "tm_mon", errp);
638 visit_type_int32(v, &s->current_tm.tm_mday, "tm_mday", errp);
639 visit_type_int32(v, &s->current_tm.tm_hour, "tm_hour", errp);
640 visit_type_int32(v, &s->current_tm.tm_min, "tm_min", errp);
641 visit_type_int32(v, &s->current_tm.tm_sec, "tm_sec", errp);
642 visit_end_struct(v, errp);
643 }
644
645 static int rtc_initfn(ISADevice *dev)
646 {
647 RTCState *s = DO_UPCAST(RTCState, dev, dev);
648 int base = 0x70;
649
650 s->cmos_data[RTC_REG_A] = 0x26;
651 s->cmos_data[RTC_REG_B] = 0x02;
652 s->cmos_data[RTC_REG_C] = 0x00;
653 s->cmos_data[RTC_REG_D] = 0x80;
654
655 rtc_set_date_from_host(dev);
656
657 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
658 #ifdef TARGET_I386
659 if (rtc_td_hack)
660 s->coalesced_timer =
661 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
662 #endif
663 s->second_timer = qemu_new_timer_ns(rtc_clock, rtc_update_second, s);
664 s->second_timer2 = qemu_new_timer_ns(rtc_clock, rtc_update_second2, s);
665
666 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
667 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
668
669 s->next_second_time =
670 qemu_get_clock_ns(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
671 qemu_mod_timer(s->second_timer2, s->next_second_time);
672
673 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
674 isa_register_ioport(dev, &s->io, base);
675
676 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
677 qemu_register_reset(rtc_reset, s);
678
679 qdev_property_add(&s->dev.qdev, "date", "struct tm",
680 rtc_get_date, NULL, NULL, s, NULL);
681
682 return 0;
683 }
684
685 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
686 {
687 ISADevice *dev;
688 RTCState *s;
689
690 dev = isa_create(bus, "mc146818rtc");
691 s = DO_UPCAST(RTCState, dev, dev);
692 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
693 qdev_init_nofail(&dev->qdev);
694 if (intercept_irq) {
695 s->irq = intercept_irq;
696 } else {
697 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
698 }
699 return dev;
700 }
701
702 static ISADeviceInfo mc146818rtc_info = {
703 .qdev.name = "mc146818rtc",
704 .qdev.size = sizeof(RTCState),
705 .qdev.no_user = 1,
706 .qdev.vmsd = &vmstate_rtc,
707 .init = rtc_initfn,
708 .qdev.props = (Property[]) {
709 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
710 DEFINE_PROP_END_OF_LIST(),
711 }
712 };
713
714 static void mc146818rtc_register(void)
715 {
716 isa_qdev_register(&mc146818rtc_info);
717 }
718 device_init(mc146818rtc_register)