]> git.proxmox.com Git - qemu.git/blob - hw/mc146818rtc.c
Unify RTCs that use host time, fix M48t59 alarm.
[qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29
30 //#define DEBUG_CMOS
31
32 #define RTC_SECONDS 0
33 #define RTC_SECONDS_ALARM 1
34 #define RTC_MINUTES 2
35 #define RTC_MINUTES_ALARM 3
36 #define RTC_HOURS 4
37 #define RTC_HOURS_ALARM 5
38 #define RTC_ALARM_DONT_CARE 0xC0
39
40 #define RTC_DAY_OF_WEEK 6
41 #define RTC_DAY_OF_MONTH 7
42 #define RTC_MONTH 8
43 #define RTC_YEAR 9
44
45 #define RTC_REG_A 10
46 #define RTC_REG_B 11
47 #define RTC_REG_C 12
48 #define RTC_REG_D 13
49
50 #define REG_A_UIP 0x80
51
52 #define REG_B_SET 0x80
53 #define REG_B_PIE 0x40
54 #define REG_B_AIE 0x20
55 #define REG_B_UIE 0x10
56
57 struct RTCState {
58 uint8_t cmos_data[128];
59 uint8_t cmos_index;
60 struct tm current_tm;
61 qemu_irq irq;
62 target_phys_addr_t base;
63 int it_shift;
64 /* periodic timer */
65 QEMUTimer *periodic_timer;
66 int64_t next_periodic_time;
67 /* second update */
68 int64_t next_second_time;
69 QEMUTimer *second_timer;
70 QEMUTimer *second_timer2;
71 };
72
73 static void rtc_set_time(RTCState *s);
74 static void rtc_copy_date(RTCState *s);
75
76 static void rtc_timer_update(RTCState *s, int64_t current_time)
77 {
78 int period_code, period;
79 int64_t cur_clock, next_irq_clock;
80
81 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
82 if (period_code != 0 &&
83 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
84 if (period_code <= 2)
85 period_code += 7;
86 /* period in 32 Khz cycles */
87 period = 1 << (period_code - 1);
88 /* compute 32 khz clock */
89 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
90 next_irq_clock = (cur_clock & ~(period - 1)) + period;
91 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
92 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
93 } else {
94 qemu_del_timer(s->periodic_timer);
95 }
96 }
97
98 static void rtc_periodic_timer(void *opaque)
99 {
100 RTCState *s = opaque;
101
102 rtc_timer_update(s, s->next_periodic_time);
103 s->cmos_data[RTC_REG_C] |= 0xc0;
104 qemu_irq_raise(s->irq);
105 }
106
107 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
108 {
109 RTCState *s = opaque;
110
111 if ((addr & 1) == 0) {
112 s->cmos_index = data & 0x7f;
113 } else {
114 #ifdef DEBUG_CMOS
115 printf("cmos: write index=0x%02x val=0x%02x\n",
116 s->cmos_index, data);
117 #endif
118 switch(s->cmos_index) {
119 case RTC_SECONDS_ALARM:
120 case RTC_MINUTES_ALARM:
121 case RTC_HOURS_ALARM:
122 /* XXX: not supported */
123 s->cmos_data[s->cmos_index] = data;
124 break;
125 case RTC_SECONDS:
126 case RTC_MINUTES:
127 case RTC_HOURS:
128 case RTC_DAY_OF_WEEK:
129 case RTC_DAY_OF_MONTH:
130 case RTC_MONTH:
131 case RTC_YEAR:
132 s->cmos_data[s->cmos_index] = data;
133 /* if in set mode, do not update the time */
134 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
135 rtc_set_time(s);
136 }
137 break;
138 case RTC_REG_A:
139 /* UIP bit is read only */
140 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
141 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
142 rtc_timer_update(s, qemu_get_clock(vm_clock));
143 break;
144 case RTC_REG_B:
145 if (data & REG_B_SET) {
146 /* set mode: reset UIP mode */
147 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
148 data &= ~REG_B_UIE;
149 } else {
150 /* if disabling set mode, update the time */
151 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
152 rtc_set_time(s);
153 }
154 }
155 s->cmos_data[RTC_REG_B] = data;
156 rtc_timer_update(s, qemu_get_clock(vm_clock));
157 break;
158 case RTC_REG_C:
159 case RTC_REG_D:
160 /* cannot write to them */
161 break;
162 default:
163 s->cmos_data[s->cmos_index] = data;
164 break;
165 }
166 }
167 }
168
169 static inline int to_bcd(RTCState *s, int a)
170 {
171 if (s->cmos_data[RTC_REG_B] & 0x04) {
172 return a;
173 } else {
174 return ((a / 10) << 4) | (a % 10);
175 }
176 }
177
178 static inline int from_bcd(RTCState *s, int a)
179 {
180 if (s->cmos_data[RTC_REG_B] & 0x04) {
181 return a;
182 } else {
183 return ((a >> 4) * 10) + (a & 0x0f);
184 }
185 }
186
187 static void rtc_set_time(RTCState *s)
188 {
189 struct tm *tm = &s->current_tm;
190
191 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
192 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
193 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
194 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
195 (s->cmos_data[RTC_HOURS] & 0x80)) {
196 tm->tm_hour += 12;
197 }
198 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
199 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
200 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
201 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
202 }
203
204 static void rtc_copy_date(RTCState *s)
205 {
206 const struct tm *tm = &s->current_tm;
207
208 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
209 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
210 if (s->cmos_data[RTC_REG_B] & 0x02) {
211 /* 24 hour format */
212 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
213 } else {
214 /* 12 hour format */
215 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
216 if (tm->tm_hour >= 12)
217 s->cmos_data[RTC_HOURS] |= 0x80;
218 }
219 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
220 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
221 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
222 s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
223 }
224
225 /* month is between 0 and 11. */
226 static int get_days_in_month(int month, int year)
227 {
228 static const int days_tab[12] = {
229 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
230 };
231 int d;
232 if ((unsigned )month >= 12)
233 return 31;
234 d = days_tab[month];
235 if (month == 1) {
236 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
237 d++;
238 }
239 return d;
240 }
241
242 /* update 'tm' to the next second */
243 static void rtc_next_second(struct tm *tm)
244 {
245 int days_in_month;
246
247 tm->tm_sec++;
248 if ((unsigned)tm->tm_sec >= 60) {
249 tm->tm_sec = 0;
250 tm->tm_min++;
251 if ((unsigned)tm->tm_min >= 60) {
252 tm->tm_min = 0;
253 tm->tm_hour++;
254 if ((unsigned)tm->tm_hour >= 24) {
255 tm->tm_hour = 0;
256 /* next day */
257 tm->tm_wday++;
258 if ((unsigned)tm->tm_wday >= 7)
259 tm->tm_wday = 0;
260 days_in_month = get_days_in_month(tm->tm_mon,
261 tm->tm_year + 1900);
262 tm->tm_mday++;
263 if (tm->tm_mday < 1) {
264 tm->tm_mday = 1;
265 } else if (tm->tm_mday > days_in_month) {
266 tm->tm_mday = 1;
267 tm->tm_mon++;
268 if (tm->tm_mon >= 12) {
269 tm->tm_mon = 0;
270 tm->tm_year++;
271 }
272 }
273 }
274 }
275 }
276 }
277
278
279 static void rtc_update_second(void *opaque)
280 {
281 RTCState *s = opaque;
282 int64_t delay;
283
284 /* if the oscillator is not in normal operation, we do not update */
285 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
286 s->next_second_time += ticks_per_sec;
287 qemu_mod_timer(s->second_timer, s->next_second_time);
288 } else {
289 rtc_next_second(&s->current_tm);
290
291 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
292 /* update in progress bit */
293 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
294 }
295 /* should be 244 us = 8 / 32768 seconds, but currently the
296 timers do not have the necessary resolution. */
297 delay = (ticks_per_sec * 1) / 100;
298 if (delay < 1)
299 delay = 1;
300 qemu_mod_timer(s->second_timer2,
301 s->next_second_time + delay);
302 }
303 }
304
305 static void rtc_update_second2(void *opaque)
306 {
307 RTCState *s = opaque;
308
309 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
310 rtc_copy_date(s);
311 }
312
313 /* check alarm */
314 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
315 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
316 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
317 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
318 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
319 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
320 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
321
322 s->cmos_data[RTC_REG_C] |= 0xa0;
323 qemu_irq_raise(s->irq);
324 }
325 }
326
327 /* update ended interrupt */
328 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
329 s->cmos_data[RTC_REG_C] |= 0x90;
330 qemu_irq_raise(s->irq);
331 }
332
333 /* clear update in progress bit */
334 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
335
336 s->next_second_time += ticks_per_sec;
337 qemu_mod_timer(s->second_timer, s->next_second_time);
338 }
339
340 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
341 {
342 RTCState *s = opaque;
343 int ret;
344 if ((addr & 1) == 0) {
345 return 0xff;
346 } else {
347 switch(s->cmos_index) {
348 case RTC_SECONDS:
349 case RTC_MINUTES:
350 case RTC_HOURS:
351 case RTC_DAY_OF_WEEK:
352 case RTC_DAY_OF_MONTH:
353 case RTC_MONTH:
354 case RTC_YEAR:
355 ret = s->cmos_data[s->cmos_index];
356 break;
357 case RTC_REG_A:
358 ret = s->cmos_data[s->cmos_index];
359 break;
360 case RTC_REG_C:
361 ret = s->cmos_data[s->cmos_index];
362 qemu_irq_lower(s->irq);
363 s->cmos_data[RTC_REG_C] = 0x00;
364 break;
365 default:
366 ret = s->cmos_data[s->cmos_index];
367 break;
368 }
369 #ifdef DEBUG_CMOS
370 printf("cmos: read index=0x%02x val=0x%02x\n",
371 s->cmos_index, ret);
372 #endif
373 return ret;
374 }
375 }
376
377 void rtc_set_memory(RTCState *s, int addr, int val)
378 {
379 if (addr >= 0 && addr <= 127)
380 s->cmos_data[addr] = val;
381 }
382
383 void rtc_set_date(RTCState *s, const struct tm *tm)
384 {
385 s->current_tm = *tm;
386 rtc_copy_date(s);
387 }
388
389 /* PC cmos mappings */
390 #define REG_IBM_CENTURY_BYTE 0x32
391 #define REG_IBM_PS2_CENTURY_BYTE 0x37
392
393 static void rtc_set_date_from_host(RTCState *s)
394 {
395 struct tm tm;
396 int val;
397
398 /* set the CMOS date */
399 qemu_get_timedate(&tm, 0);
400 rtc_set_date(s, &tm);
401
402 val = to_bcd(s, (tm.tm_year / 100) + 19);
403 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
404 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
405 }
406
407 static void rtc_save(QEMUFile *f, void *opaque)
408 {
409 RTCState *s = opaque;
410
411 qemu_put_buffer(f, s->cmos_data, 128);
412 qemu_put_8s(f, &s->cmos_index);
413
414 qemu_put_be32(f, s->current_tm.tm_sec);
415 qemu_put_be32(f, s->current_tm.tm_min);
416 qemu_put_be32(f, s->current_tm.tm_hour);
417 qemu_put_be32(f, s->current_tm.tm_wday);
418 qemu_put_be32(f, s->current_tm.tm_mday);
419 qemu_put_be32(f, s->current_tm.tm_mon);
420 qemu_put_be32(f, s->current_tm.tm_year);
421
422 qemu_put_timer(f, s->periodic_timer);
423 qemu_put_be64(f, s->next_periodic_time);
424
425 qemu_put_be64(f, s->next_second_time);
426 qemu_put_timer(f, s->second_timer);
427 qemu_put_timer(f, s->second_timer2);
428 }
429
430 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
431 {
432 RTCState *s = opaque;
433
434 if (version_id != 1)
435 return -EINVAL;
436
437 qemu_get_buffer(f, s->cmos_data, 128);
438 qemu_get_8s(f, &s->cmos_index);
439
440 s->current_tm.tm_sec=qemu_get_be32(f);
441 s->current_tm.tm_min=qemu_get_be32(f);
442 s->current_tm.tm_hour=qemu_get_be32(f);
443 s->current_tm.tm_wday=qemu_get_be32(f);
444 s->current_tm.tm_mday=qemu_get_be32(f);
445 s->current_tm.tm_mon=qemu_get_be32(f);
446 s->current_tm.tm_year=qemu_get_be32(f);
447
448 qemu_get_timer(f, s->periodic_timer);
449 s->next_periodic_time=qemu_get_be64(f);
450
451 s->next_second_time=qemu_get_be64(f);
452 qemu_get_timer(f, s->second_timer);
453 qemu_get_timer(f, s->second_timer2);
454 return 0;
455 }
456
457 RTCState *rtc_init(int base, qemu_irq irq)
458 {
459 RTCState *s;
460
461 s = qemu_mallocz(sizeof(RTCState));
462 if (!s)
463 return NULL;
464
465 s->irq = irq;
466 s->cmos_data[RTC_REG_A] = 0x26;
467 s->cmos_data[RTC_REG_B] = 0x02;
468 s->cmos_data[RTC_REG_C] = 0x00;
469 s->cmos_data[RTC_REG_D] = 0x80;
470
471 rtc_set_date_from_host(s);
472
473 s->periodic_timer = qemu_new_timer(vm_clock,
474 rtc_periodic_timer, s);
475 s->second_timer = qemu_new_timer(vm_clock,
476 rtc_update_second, s);
477 s->second_timer2 = qemu_new_timer(vm_clock,
478 rtc_update_second2, s);
479
480 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
481 qemu_mod_timer(s->second_timer2, s->next_second_time);
482
483 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
484 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
485
486 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
487 return s;
488 }
489
490 /* Memory mapped interface */
491 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
492 {
493 RTCState *s = opaque;
494
495 return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
496 }
497
498 static void cmos_mm_writeb (void *opaque,
499 target_phys_addr_t addr, uint32_t value)
500 {
501 RTCState *s = opaque;
502
503 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
504 }
505
506 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
507 {
508 RTCState *s = opaque;
509 uint32_t val;
510
511 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
512 #ifdef TARGET_WORDS_BIGENDIAN
513 val = bswap16(val);
514 #endif
515 return val;
516 }
517
518 static void cmos_mm_writew (void *opaque,
519 target_phys_addr_t addr, uint32_t value)
520 {
521 RTCState *s = opaque;
522 #ifdef TARGET_WORDS_BIGENDIAN
523 value = bswap16(value);
524 #endif
525 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
526 }
527
528 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
529 {
530 RTCState *s = opaque;
531 uint32_t val;
532
533 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
534 #ifdef TARGET_WORDS_BIGENDIAN
535 val = bswap32(val);
536 #endif
537 return val;
538 }
539
540 static void cmos_mm_writel (void *opaque,
541 target_phys_addr_t addr, uint32_t value)
542 {
543 RTCState *s = opaque;
544 #ifdef TARGET_WORDS_BIGENDIAN
545 value = bswap32(value);
546 #endif
547 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
548 }
549
550 static CPUReadMemoryFunc *rtc_mm_read[] = {
551 &cmos_mm_readb,
552 &cmos_mm_readw,
553 &cmos_mm_readl,
554 };
555
556 static CPUWriteMemoryFunc *rtc_mm_write[] = {
557 &cmos_mm_writeb,
558 &cmos_mm_writew,
559 &cmos_mm_writel,
560 };
561
562 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
563 {
564 RTCState *s;
565 int io_memory;
566
567 s = qemu_mallocz(sizeof(RTCState));
568 if (!s)
569 return NULL;
570
571 s->irq = irq;
572 s->cmos_data[RTC_REG_A] = 0x26;
573 s->cmos_data[RTC_REG_B] = 0x02;
574 s->cmos_data[RTC_REG_C] = 0x00;
575 s->cmos_data[RTC_REG_D] = 0x80;
576 s->base = base;
577
578 rtc_set_date_from_host(s);
579
580 s->periodic_timer = qemu_new_timer(vm_clock,
581 rtc_periodic_timer, s);
582 s->second_timer = qemu_new_timer(vm_clock,
583 rtc_update_second, s);
584 s->second_timer2 = qemu_new_timer(vm_clock,
585 rtc_update_second2, s);
586
587 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
588 qemu_mod_timer(s->second_timer2, s->next_second_time);
589
590 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
591 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
592
593 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
594 return s;
595 }