]> git.proxmox.com Git - qemu.git/blob - hw/mips_malta.c
pflash_cfi01/pflash_cfi02: convert to memory API
[qemu.git] / hw / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
50
51 //#define DEBUG_BOARD_INIT
52
53 #define ENVP_ADDR 0x80002000l
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
56
57 #define MAX_IDE_BUS 2
58
59 typedef struct {
60 uint32_t leds;
61 uint32_t brk;
62 uint32_t gpout;
63 uint32_t i2cin;
64 uint32_t i2coe;
65 uint32_t i2cout;
66 uint32_t i2csel;
67 CharDriverState *display;
68 char display_text[9];
69 SerialState *uart;
70 } MaltaFPGAState;
71
72 static ISADevice *pit;
73
74 static struct _loaderparams {
75 int ram_size;
76 const char *kernel_filename;
77 const char *kernel_cmdline;
78 const char *initrd_filename;
79 } loaderparams;
80
81 /* Malta FPGA */
82 static void malta_fpga_update_display(void *opaque)
83 {
84 char leds_text[9];
85 int i;
86 MaltaFPGAState *s = opaque;
87
88 for (i = 7 ; i >= 0 ; i--) {
89 if (s->leds & (1 << i))
90 leds_text[i] = '#';
91 else
92 leds_text[i] = ' ';
93 }
94 leds_text[8] = '\0';
95
96 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
97 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
98 }
99
100 /*
101 * EEPROM 24C01 / 24C02 emulation.
102 *
103 * Emulation for serial EEPROMs:
104 * 24C01 - 1024 bit (128 x 8)
105 * 24C02 - 2048 bit (256 x 8)
106 *
107 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
108 */
109
110 //~ #define DEBUG
111
112 #if defined(DEBUG)
113 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
114 #else
115 # define logout(fmt, ...) ((void)0)
116 #endif
117
118 struct _eeprom24c0x_t {
119 uint8_t tick;
120 uint8_t address;
121 uint8_t command;
122 uint8_t ack;
123 uint8_t scl;
124 uint8_t sda;
125 uint8_t data;
126 //~ uint16_t size;
127 uint8_t contents[256];
128 };
129
130 typedef struct _eeprom24c0x_t eeprom24c0x_t;
131
132 static eeprom24c0x_t eeprom = {
133 .contents = {
134 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
135 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
136 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
137 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
138 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
139 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
142 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
150 },
151 };
152
153 static uint8_t eeprom24c0x_read(void)
154 {
155 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
156 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
157 return eeprom.sda;
158 }
159
160 static void eeprom24c0x_write(int scl, int sda)
161 {
162 if (eeprom.scl && scl && (eeprom.sda != sda)) {
163 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
164 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
165 if (!sda) {
166 eeprom.tick = 1;
167 eeprom.command = 0;
168 }
169 } else if (eeprom.tick == 0 && !eeprom.ack) {
170 /* Waiting for start. */
171 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
172 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
173 } else if (!eeprom.scl && scl) {
174 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
175 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
176 if (eeprom.ack) {
177 logout("\ti2c ack bit = 0\n");
178 sda = 0;
179 eeprom.ack = 0;
180 } else if (eeprom.sda == sda) {
181 uint8_t bit = (sda != 0);
182 logout("\ti2c bit = %d\n", bit);
183 if (eeprom.tick < 9) {
184 eeprom.command <<= 1;
185 eeprom.command += bit;
186 eeprom.tick++;
187 if (eeprom.tick == 9) {
188 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
189 eeprom.ack = 1;
190 }
191 } else if (eeprom.tick < 17) {
192 if (eeprom.command & 1) {
193 sda = ((eeprom.data & 0x80) != 0);
194 }
195 eeprom.address <<= 1;
196 eeprom.address += bit;
197 eeprom.tick++;
198 eeprom.data <<= 1;
199 if (eeprom.tick == 17) {
200 eeprom.data = eeprom.contents[eeprom.address];
201 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
202 eeprom.ack = 1;
203 eeprom.tick = 0;
204 }
205 } else if (eeprom.tick >= 17) {
206 sda = 0;
207 }
208 } else {
209 logout("\tsda changed with raising scl\n");
210 }
211 } else {
212 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
213 }
214 eeprom.scl = scl;
215 eeprom.sda = sda;
216 }
217
218 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
219 {
220 MaltaFPGAState *s = opaque;
221 uint32_t val = 0;
222 uint32_t saddr;
223
224 saddr = (addr & 0xfffff);
225
226 switch (saddr) {
227
228 /* SWITCH Register */
229 case 0x00200:
230 val = 0x00000000; /* All switches closed */
231 break;
232
233 /* STATUS Register */
234 case 0x00208:
235 #ifdef TARGET_WORDS_BIGENDIAN
236 val = 0x00000012;
237 #else
238 val = 0x00000010;
239 #endif
240 break;
241
242 /* JMPRS Register */
243 case 0x00210:
244 val = 0x00;
245 break;
246
247 /* LEDBAR Register */
248 case 0x00408:
249 val = s->leds;
250 break;
251
252 /* BRKRES Register */
253 case 0x00508:
254 val = s->brk;
255 break;
256
257 /* UART Registers are handled directly by the serial device */
258
259 /* GPOUT Register */
260 case 0x00a00:
261 val = s->gpout;
262 break;
263
264 /* XXX: implement a real I2C controller */
265
266 /* GPINP Register */
267 case 0x00a08:
268 /* IN = OUT until a real I2C control is implemented */
269 if (s->i2csel)
270 val = s->i2cout;
271 else
272 val = 0x00;
273 break;
274
275 /* I2CINP Register */
276 case 0x00b00:
277 val = ((s->i2cin & ~1) | eeprom24c0x_read());
278 break;
279
280 /* I2COE Register */
281 case 0x00b08:
282 val = s->i2coe;
283 break;
284
285 /* I2COUT Register */
286 case 0x00b10:
287 val = s->i2cout;
288 break;
289
290 /* I2CSEL Register */
291 case 0x00b18:
292 val = s->i2csel;
293 break;
294
295 default:
296 #if 0
297 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
298 addr);
299 #endif
300 break;
301 }
302 return val;
303 }
304
305 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
306 uint32_t val)
307 {
308 MaltaFPGAState *s = opaque;
309 uint32_t saddr;
310
311 saddr = (addr & 0xfffff);
312
313 switch (saddr) {
314
315 /* SWITCH Register */
316 case 0x00200:
317 break;
318
319 /* JMPRS Register */
320 case 0x00210:
321 break;
322
323 /* LEDBAR Register */
324 /* XXX: implement a 8-LED array */
325 case 0x00408:
326 s->leds = val & 0xff;
327 break;
328
329 /* ASCIIWORD Register */
330 case 0x00410:
331 snprintf(s->display_text, 9, "%08X", val);
332 malta_fpga_update_display(s);
333 break;
334
335 /* ASCIIPOS0 to ASCIIPOS7 Registers */
336 case 0x00418:
337 case 0x00420:
338 case 0x00428:
339 case 0x00430:
340 case 0x00438:
341 case 0x00440:
342 case 0x00448:
343 case 0x00450:
344 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
345 malta_fpga_update_display(s);
346 break;
347
348 /* SOFTRES Register */
349 case 0x00500:
350 if (val == 0x42)
351 qemu_system_reset_request ();
352 break;
353
354 /* BRKRES Register */
355 case 0x00508:
356 s->brk = val & 0xff;
357 break;
358
359 /* UART Registers are handled directly by the serial device */
360
361 /* GPOUT Register */
362 case 0x00a00:
363 s->gpout = val & 0xff;
364 break;
365
366 /* I2COE Register */
367 case 0x00b08:
368 s->i2coe = val & 0x03;
369 break;
370
371 /* I2COUT Register */
372 case 0x00b10:
373 eeprom24c0x_write(val & 0x02, val & 0x01);
374 s->i2cout = val;
375 break;
376
377 /* I2CSEL Register */
378 case 0x00b18:
379 s->i2csel = val & 0x01;
380 break;
381
382 default:
383 #if 0
384 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
385 addr);
386 #endif
387 break;
388 }
389 }
390
391 static CPUReadMemoryFunc * const malta_fpga_read[] = {
392 malta_fpga_readl,
393 malta_fpga_readl,
394 malta_fpga_readl
395 };
396
397 static CPUWriteMemoryFunc * const malta_fpga_write[] = {
398 malta_fpga_writel,
399 malta_fpga_writel,
400 malta_fpga_writel
401 };
402
403 static void malta_fpga_reset(void *opaque)
404 {
405 MaltaFPGAState *s = opaque;
406
407 s->leds = 0x00;
408 s->brk = 0x0a;
409 s->gpout = 0x00;
410 s->i2cin = 0x3;
411 s->i2coe = 0x0;
412 s->i2cout = 0x3;
413 s->i2csel = 0x1;
414
415 s->display_text[8] = '\0';
416 snprintf(s->display_text, 9, " ");
417 }
418
419 static void malta_fpga_led_init(CharDriverState *chr)
420 {
421 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
422 qemu_chr_fe_printf(chr, "+--------+\r\n");
423 qemu_chr_fe_printf(chr, "+ +\r\n");
424 qemu_chr_fe_printf(chr, "+--------+\r\n");
425 qemu_chr_fe_printf(chr, "\n");
426 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
427 qemu_chr_fe_printf(chr, "+--------+\r\n");
428 qemu_chr_fe_printf(chr, "+ +\r\n");
429 qemu_chr_fe_printf(chr, "+--------+\r\n");
430 }
431
432 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 {
434 MaltaFPGAState *s;
435 int malta;
436
437 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
438
439 malta = cpu_register_io_memory(malta_fpga_read,
440 malta_fpga_write, s,
441 DEVICE_NATIVE_ENDIAN);
442
443 cpu_register_physical_memory(base, 0x900, malta);
444 /* 0xa00 is less than a page, so will still get the right offsets. */
445 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
446
447 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
448
449 #ifdef TARGET_WORDS_BIGENDIAN
450 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
451 #else
452 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
453 #endif
454
455 malta_fpga_reset(s);
456 qemu_register_reset(malta_fpga_reset, s);
457
458 return s;
459 }
460
461 /* Network support */
462 static void network_init(void)
463 {
464 int i;
465
466 for(i = 0; i < nb_nics; i++) {
467 NICInfo *nd = &nd_table[i];
468 const char *default_devaddr = NULL;
469
470 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
471 /* The malta board has a PCNet card using PCI SLOT 11 */
472 default_devaddr = "0b";
473
474 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
475 }
476 }
477
478 /* ROM and pseudo bootloader
479
480 The following code implements a very very simple bootloader. It first
481 loads the registers a0 to a3 to the values expected by the OS, and
482 then jump at the kernel address.
483
484 The bootloader should pass the locations of the kernel arguments and
485 environment variables tables. Those tables contain the 32-bit address
486 of NULL terminated strings. The environment variables table should be
487 terminated by a NULL address.
488
489 For a simpler implementation, the number of kernel arguments is fixed
490 to two (the name of the kernel and the command line), and the two
491 tables are actually the same one.
492
493 The registers a0 to a3 should contain the following values:
494 a0 - number of kernel arguments
495 a1 - 32-bit address of the kernel arguments table
496 a2 - 32-bit address of the environment variables table
497 a3 - RAM size in bytes
498 */
499
500 static void write_bootloader (CPUState *env, uint8_t *base,
501 int64_t kernel_entry)
502 {
503 uint32_t *p;
504
505 /* Small bootloader */
506 p = (uint32_t *)base;
507 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
508 stl_raw(p++, 0x00000000); /* nop */
509
510 /* YAMON service vector */
511 stl_raw(base + 0x500, 0xbfc00580); /* start: */
512 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
513 stl_raw(base + 0x520, 0xbfc00580); /* start: */
514 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
515 stl_raw(base + 0x534, 0xbfc00808); /* print: */
516 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
517 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
518 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
519 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
520 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
521 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
522 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
523 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
524
525
526 /* Second part of the bootloader */
527 p = (uint32_t *) (base + 0x580);
528 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
529 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
530 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
531 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
532 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
533 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
534 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
535 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
536 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
537
538 /* Load BAR registers as done by YAMON */
539 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
540
541 #ifdef TARGET_WORDS_BIGENDIAN
542 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
543 #else
544 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
545 #endif
546 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
547
548 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
549
550 #ifdef TARGET_WORDS_BIGENDIAN
551 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
552 #else
553 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
554 #endif
555 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
556 #ifdef TARGET_WORDS_BIGENDIAN
557 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
558 #else
559 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
560 #endif
561 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
562
563 #ifdef TARGET_WORDS_BIGENDIAN
564 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
565 #else
566 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
567 #endif
568 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
569 #ifdef TARGET_WORDS_BIGENDIAN
570 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
571 #else
572 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
573 #endif
574 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
575
576 #ifdef TARGET_WORDS_BIGENDIAN
577 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
578 #else
579 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
580 #endif
581 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
582 #ifdef TARGET_WORDS_BIGENDIAN
583 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
584 #else
585 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
586 #endif
587 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
588
589 /* Jump to kernel code */
590 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
591 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
592 stl_raw(p++, 0x03e00008); /* jr ra */
593 stl_raw(p++, 0x00000000); /* nop */
594
595 /* YAMON subroutines */
596 p = (uint32_t *) (base + 0x800);
597 stl_raw(p++, 0x03e00008); /* jr ra */
598 stl_raw(p++, 0x24020000); /* li v0,0 */
599 /* 808 YAMON print */
600 stl_raw(p++, 0x03e06821); /* move t5,ra */
601 stl_raw(p++, 0x00805821); /* move t3,a0 */
602 stl_raw(p++, 0x00a05021); /* move t2,a1 */
603 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
604 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
605 stl_raw(p++, 0x10800005); /* beqz a0,834 */
606 stl_raw(p++, 0x00000000); /* nop */
607 stl_raw(p++, 0x0ff0021c); /* jal 870 */
608 stl_raw(p++, 0x00000000); /* nop */
609 stl_raw(p++, 0x08000205); /* j 814 */
610 stl_raw(p++, 0x00000000); /* nop */
611 stl_raw(p++, 0x01a00008); /* jr t5 */
612 stl_raw(p++, 0x01602021); /* move a0,t3 */
613 /* 0x83c YAMON print_count */
614 stl_raw(p++, 0x03e06821); /* move t5,ra */
615 stl_raw(p++, 0x00805821); /* move t3,a0 */
616 stl_raw(p++, 0x00a05021); /* move t2,a1 */
617 stl_raw(p++, 0x00c06021); /* move t4,a2 */
618 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
619 stl_raw(p++, 0x0ff0021c); /* jal 870 */
620 stl_raw(p++, 0x00000000); /* nop */
621 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
622 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
623 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x01a00008); /* jr t5 */
626 stl_raw(p++, 0x01602021); /* move a0,t3 */
627 /* 0x870 */
628 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
629 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
630 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
631 stl_raw(p++, 0x00000000); /* nop */
632 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
633 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
634 stl_raw(p++, 0x00000000); /* nop */
635 stl_raw(p++, 0x03e00008); /* jr ra */
636 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
637
638 }
639
640 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
641 const char *string, ...)
642 {
643 va_list ap;
644 int32_t table_addr;
645
646 if (index >= ENVP_NB_ENTRIES)
647 return;
648
649 if (string == NULL) {
650 prom_buf[index] = 0;
651 return;
652 }
653
654 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
655 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
656
657 va_start(ap, string);
658 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
659 va_end(ap);
660 }
661
662 /* Kernel */
663 static int64_t load_kernel (void)
664 {
665 int64_t kernel_entry, kernel_high;
666 long initrd_size;
667 ram_addr_t initrd_offset;
668 int big_endian;
669 uint32_t *prom_buf;
670 long prom_size;
671 int prom_index = 0;
672
673 #ifdef TARGET_WORDS_BIGENDIAN
674 big_endian = 1;
675 #else
676 big_endian = 0;
677 #endif
678
679 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
680 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
681 big_endian, ELF_MACHINE, 1) < 0) {
682 fprintf(stderr, "qemu: could not load kernel '%s'\n",
683 loaderparams.kernel_filename);
684 exit(1);
685 }
686
687 /* load initrd */
688 initrd_size = 0;
689 initrd_offset = 0;
690 if (loaderparams.initrd_filename) {
691 initrd_size = get_image_size (loaderparams.initrd_filename);
692 if (initrd_size > 0) {
693 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
694 if (initrd_offset + initrd_size > ram_size) {
695 fprintf(stderr,
696 "qemu: memory too small for initial ram disk '%s'\n",
697 loaderparams.initrd_filename);
698 exit(1);
699 }
700 initrd_size = load_image_targphys(loaderparams.initrd_filename,
701 initrd_offset,
702 ram_size - initrd_offset);
703 }
704 if (initrd_size == (target_ulong) -1) {
705 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
706 loaderparams.initrd_filename);
707 exit(1);
708 }
709 }
710
711 /* Setup prom parameters. */
712 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
713 prom_buf = g_malloc(prom_size);
714
715 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
716 if (initrd_size > 0) {
717 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
718 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
719 loaderparams.kernel_cmdline);
720 } else {
721 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
722 }
723
724 prom_set(prom_buf, prom_index++, "memsize");
725 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
726 prom_set(prom_buf, prom_index++, "modetty0");
727 prom_set(prom_buf, prom_index++, "38400n8r");
728 prom_set(prom_buf, prom_index++, NULL);
729
730 rom_add_blob_fixed("prom", prom_buf, prom_size,
731 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
732
733 return kernel_entry;
734 }
735
736 static void main_cpu_reset(void *opaque)
737 {
738 CPUState *env = opaque;
739 cpu_reset(env);
740
741 /* The bootloader does not need to be rewritten as it is located in a
742 read only location. The kernel location and the arguments table
743 location does not change. */
744 if (loaderparams.kernel_filename) {
745 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
746 }
747 }
748
749 static void cpu_request_exit(void *opaque, int irq, int level)
750 {
751 CPUState *env = cpu_single_env;
752
753 if (env && level) {
754 cpu_exit(env);
755 }
756 }
757
758 static
759 void mips_malta_init (ram_addr_t ram_size,
760 const char *boot_device,
761 const char *kernel_filename, const char *kernel_cmdline,
762 const char *initrd_filename, const char *cpu_model)
763 {
764 char *filename;
765 pflash_t *fl;
766 ram_addr_t ram_offset;
767 MemoryRegion *system_memory = get_system_memory();
768 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
769 target_long bios_size;
770 int64_t kernel_entry;
771 PCIBus *pci_bus;
772 CPUState *env;
773 qemu_irq *i8259;
774 qemu_irq *cpu_exit_irq;
775 int piix4_devfn;
776 i2c_bus *smbus;
777 int i;
778 DriveInfo *dinfo;
779 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
780 DriveInfo *fd[MAX_FD];
781 int fl_idx = 0;
782 int fl_sectors = 0;
783 int be;
784
785 /* Make sure the first 3 serial ports are associated with a device. */
786 for(i = 0; i < 3; i++) {
787 if (!serial_hds[i]) {
788 char label[32];
789 snprintf(label, sizeof(label), "serial%d", i);
790 serial_hds[i] = qemu_chr_new(label, "null", NULL);
791 }
792 }
793
794 /* init CPUs */
795 if (cpu_model == NULL) {
796 #ifdef TARGET_MIPS64
797 cpu_model = "20Kc";
798 #else
799 cpu_model = "24Kf";
800 #endif
801 }
802 env = cpu_init(cpu_model);
803 if (!env) {
804 fprintf(stderr, "Unable to find CPU definition\n");
805 exit(1);
806 }
807 qemu_register_reset(main_cpu_reset, env);
808
809 /* allocate RAM */
810 if (ram_size > (256 << 20)) {
811 fprintf(stderr,
812 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
813 ((unsigned int)ram_size / (1 << 20)));
814 exit(1);
815 }
816 ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
817
818 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
819
820 #ifdef TARGET_WORDS_BIGENDIAN
821 be = 1;
822 #else
823 be = 0;
824 #endif
825 /* FPGA */
826 malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
827
828 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
829 if (kernel_filename) {
830 /* Write a small bootloader to the flash location. */
831 bios = g_new(MemoryRegion, 1);
832 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
833 memory_region_set_readonly(bios, true);
834 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
835 /* Map the bios at two physical locations, as on the real board. */
836 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
837 memory_region_add_subregion(system_memory, 0x1fc00000LL, bios_alias);
838 loaderparams.ram_size = ram_size;
839 loaderparams.kernel_filename = kernel_filename;
840 loaderparams.kernel_cmdline = kernel_cmdline;
841 loaderparams.initrd_filename = initrd_filename;
842 kernel_entry = load_kernel();
843 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
844 } else {
845 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
846 if (dinfo) {
847 /* Load firmware from flash. */
848 bios_size = 0x400000;
849 fl_sectors = bios_size >> 16;
850 #ifdef DEBUG_BOARD_INIT
851 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
852 "addr %08llx '%s' %x\n",
853 fl_idx, bios_size, 0x1e000000LL,
854 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
855 #endif
856 fl = pflash_cfi01_register(0x1e000000LL,
857 NULL, "mips_malta.bios", BIOS_SIZE,
858 dinfo->bdrv, 65536, fl_sectors,
859 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
860 bios = pflash_cfi01_get_memory(fl);
861 /* Map the bios at two physical locations, as on the real board. */
862 memory_region_init_alias(bios_alias, "bios.1fc",
863 bios, 0, BIOS_SIZE);
864 memory_region_add_subregion(system_memory, 0x1fc00000LL,
865 bios_alias);
866 fl_idx++;
867 } else {
868 bios = g_new(MemoryRegion, 1);
869 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
870 memory_region_set_readonly(bios, true);
871 memory_region_init_alias(bios_alias, "bios.1fc",
872 bios, 0, BIOS_SIZE);
873 /* Map the bios at two physical locations, as on the real board. */
874 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
875 memory_region_add_subregion(system_memory, 0x1fc00000LL,
876 bios_alias);
877 /* Load a BIOS image. */
878 if (bios_name == NULL)
879 bios_name = BIOS_FILENAME;
880 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
881 if (filename) {
882 bios_size = load_image_targphys(filename, 0x1fc00000LL,
883 BIOS_SIZE);
884 g_free(filename);
885 } else {
886 bios_size = -1;
887 }
888 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
889 fprintf(stderr,
890 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
891 bios_name);
892 exit(1);
893 }
894 }
895 /* In little endian mode the 32bit words in the bios are swapped,
896 a neat trick which allows bi-endian firmware. */
897 #ifndef TARGET_WORDS_BIGENDIAN
898 {
899 uint32_t *addr = memory_region_get_ram_ptr(bios);
900 uint32_t *end = addr + bios_size;
901 while (addr < end) {
902 bswap32s(addr);
903 }
904 }
905 #endif
906 }
907
908 /* Board ID = 0x420 (Malta Board with CoreLV)
909 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
910 map to the board ID. */
911 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
912
913 /* Init internal devices */
914 cpu_mips_irq_init_cpu(env);
915 cpu_mips_clock_init(env);
916
917 /* Interrupt controller */
918 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
919 i8259 = i8259_init(env->irq[2]);
920
921 /* Northbridge */
922 pci_bus = gt64120_register(i8259);
923
924 /* Southbridge */
925 ide_drive_get(hd, MAX_IDE_BUS);
926
927 piix4_devfn = piix4_init(pci_bus, 80);
928 isa_bus_irqs(i8259);
929 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
930 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
931 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_get_irq(9),
932 NULL, NULL, 0);
933 /* TODO: Populate SPD eeprom data. */
934 smbus_eeprom_init(smbus, 8, NULL, 0);
935 pit = pit_init(0x40, 0);
936 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
937 DMA_init(0, cpu_exit_irq);
938
939 /* Super I/O */
940 isa_create_simple("i8042");
941
942 rtc_init(2000, NULL);
943 serial_isa_init(0, serial_hds[0]);
944 serial_isa_init(1, serial_hds[1]);
945 if (parallel_hds[0])
946 parallel_init(0, parallel_hds[0]);
947 for(i = 0; i < MAX_FD; i++) {
948 fd[i] = drive_get(IF_FLOPPY, 0, i);
949 }
950 fdctrl_init_isa(fd);
951
952 /* Sound card */
953 audio_init(NULL, pci_bus);
954
955 /* Network card */
956 network_init();
957
958 /* Optional PCI video card */
959 if (cirrus_vga_enabled) {
960 pci_cirrus_vga_init(pci_bus);
961 } else if (vmsvga_enabled) {
962 if (!pci_vmsvga_init(pci_bus)) {
963 fprintf(stderr, "Warning: vmware_vga not available,"
964 " using standard VGA instead\n");
965 pci_vga_init(pci_bus);
966 }
967 } else if (std_vga_enabled) {
968 pci_vga_init(pci_bus);
969 }
970 }
971
972 static QEMUMachine mips_malta_machine = {
973 .name = "malta",
974 .desc = "MIPS Malta Core LV",
975 .init = mips_malta_init,
976 .is_default = 1,
977 };
978
979 static void mips_malta_machine_init(void)
980 {
981 qemu_register_machine(&mips_malta_machine);
982 }
983
984 machine_init(mips_malta_machine_init);