]> git.proxmox.com Git - qemu.git/blob - hw/musicpal.c
Musicpal qdev conversion: gpio (except I2C part), keyboard and lcd
[qemu.git] / hw / musicpal.c
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9 #include "sysbus.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
22
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
25
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
28
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
31
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
34
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
37
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
40
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
43
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
46
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
49
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
52
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
55
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
58
59 #define MP_TIMER1_IRQ 4
60 #define MP_TIMER2_IRQ 5
61 #define MP_TIMER3_IRQ 6
62 #define MP_TIMER4_IRQ 7
63 #define MP_EHCI_IRQ 8
64 #define MP_ETH_IRQ 9
65 #define MP_UART1_IRQ 11
66 #define MP_UART2_IRQ 11
67 #define MP_GPIO_IRQ 12
68 #define MP_RTC_IRQ 28
69 #define MP_AUDIO_IRQ 30
70
71 static ram_addr_t sram_off;
72
73 typedef enum i2c_state {
74 STOPPED = 0,
75 INITIALIZING,
76 SENDING_BIT7,
77 SENDING_BIT6,
78 SENDING_BIT5,
79 SENDING_BIT4,
80 SENDING_BIT3,
81 SENDING_BIT2,
82 SENDING_BIT1,
83 SENDING_BIT0,
84 WAITING_FOR_ACK,
85 RECEIVING_BIT7,
86 RECEIVING_BIT6,
87 RECEIVING_BIT5,
88 RECEIVING_BIT4,
89 RECEIVING_BIT3,
90 RECEIVING_BIT2,
91 RECEIVING_BIT1,
92 RECEIVING_BIT0,
93 SENDING_ACK
94 } i2c_state;
95
96 typedef struct i2c_interface {
97 i2c_bus *bus;
98 i2c_state state;
99 int last_data;
100 int last_clock;
101 uint8_t buffer;
102 int current_addr;
103 } i2c_interface;
104
105 static void i2c_enter_stop(i2c_interface *i2c)
106 {
107 if (i2c->current_addr >= 0)
108 i2c_end_transfer(i2c->bus);
109 i2c->current_addr = -1;
110 i2c->state = STOPPED;
111 }
112
113 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
114 {
115 if (!i2c)
116 return;
117
118 switch (i2c->state) {
119 case STOPPED:
120 if (data == 0 && i2c->last_data == 1 && clock == 1)
121 i2c->state = INITIALIZING;
122 break;
123
124 case INITIALIZING:
125 if (clock == 0 && i2c->last_clock == 1 && data == 0)
126 i2c->state = SENDING_BIT7;
127 else
128 i2c_enter_stop(i2c);
129 break;
130
131 case SENDING_BIT7 ... SENDING_BIT0:
132 if (clock == 0 && i2c->last_clock == 1) {
133 i2c->buffer = (i2c->buffer << 1) | data;
134 i2c->state++; /* will end up in WAITING_FOR_ACK */
135 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
136 i2c_enter_stop(i2c);
137 break;
138
139 case WAITING_FOR_ACK:
140 if (clock == 0 && i2c->last_clock == 1) {
141 if (i2c->current_addr < 0) {
142 i2c->current_addr = i2c->buffer;
143 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
144 i2c->buffer & 1);
145 } else
146 i2c_send(i2c->bus, i2c->buffer);
147 if (i2c->current_addr & 1) {
148 i2c->state = RECEIVING_BIT7;
149 i2c->buffer = i2c_recv(i2c->bus);
150 } else
151 i2c->state = SENDING_BIT7;
152 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153 i2c_enter_stop(i2c);
154 break;
155
156 case RECEIVING_BIT7 ... RECEIVING_BIT0:
157 if (clock == 0 && i2c->last_clock == 1) {
158 i2c->state++; /* will end up in SENDING_ACK */
159 i2c->buffer <<= 1;
160 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
161 i2c_enter_stop(i2c);
162 break;
163
164 case SENDING_ACK:
165 if (clock == 0 && i2c->last_clock == 1) {
166 i2c->state = RECEIVING_BIT7;
167 if (data == 0)
168 i2c->buffer = i2c_recv(i2c->bus);
169 else
170 i2c_nack(i2c->bus);
171 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
172 i2c_enter_stop(i2c);
173 break;
174 }
175
176 i2c->last_data = data;
177 i2c->last_clock = clock;
178 }
179
180 static int i2c_get_data(i2c_interface *i2c)
181 {
182 if (!i2c)
183 return 0;
184
185 switch (i2c->state) {
186 case RECEIVING_BIT7 ... RECEIVING_BIT0:
187 return (i2c->buffer >> 7);
188
189 case WAITING_FOR_ACK:
190 default:
191 return 0;
192 }
193 }
194
195 static i2c_interface *mixer_i2c;
196
197 #ifdef HAS_AUDIO
198
199 /* Audio register offsets */
200 #define MP_AUDIO_PLAYBACK_MODE 0x00
201 #define MP_AUDIO_CLOCK_DIV 0x18
202 #define MP_AUDIO_IRQ_STATUS 0x20
203 #define MP_AUDIO_IRQ_ENABLE 0x24
204 #define MP_AUDIO_TX_START_LO 0x28
205 #define MP_AUDIO_TX_THRESHOLD 0x2C
206 #define MP_AUDIO_TX_STATUS 0x38
207 #define MP_AUDIO_TX_START_HI 0x40
208
209 /* Status register and IRQ enable bits */
210 #define MP_AUDIO_TX_HALF (1 << 6)
211 #define MP_AUDIO_TX_FULL (1 << 7)
212
213 /* Playback mode bits */
214 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
215 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
216 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
217 #define MP_AUDIO_MONO (1 << 14)
218
219 /* Wolfson 8750 I2C address */
220 #define MP_WM_ADDR 0x34
221
222 static const char audio_name[] = "mv88w8618";
223
224 typedef struct musicpal_audio_state {
225 qemu_irq irq;
226 uint32_t playback_mode;
227 uint32_t status;
228 uint32_t irq_enable;
229 unsigned long phys_buf;
230 uint32_t target_buffer;
231 unsigned int threshold;
232 unsigned int play_pos;
233 unsigned int last_free;
234 uint32_t clock_div;
235 DeviceState *wm;
236 } musicpal_audio_state;
237
238 static void audio_callback(void *opaque, int free_out, int free_in)
239 {
240 musicpal_audio_state *s = opaque;
241 int16_t *codec_buffer;
242 int8_t buf[4096];
243 int8_t *mem_buffer;
244 int pos, block_size;
245
246 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
247 return;
248
249 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
250 free_out <<= 1;
251
252 if (!(s->playback_mode & MP_AUDIO_MONO))
253 free_out <<= 1;
254
255 block_size = s->threshold/2;
256 if (free_out - s->last_free < block_size)
257 return;
258
259 if (block_size > 4096)
260 return;
261
262 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
263 block_size);
264 mem_buffer = buf;
265 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
266 if (s->playback_mode & MP_AUDIO_MONO) {
267 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
268 for (pos = 0; pos < block_size; pos += 2) {
269 *codec_buffer++ = *(int16_t *)mem_buffer;
270 *codec_buffer++ = *(int16_t *)mem_buffer;
271 mem_buffer += 2;
272 }
273 } else
274 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
275 (uint32_t *)mem_buffer, block_size);
276 } else {
277 if (s->playback_mode & MP_AUDIO_MONO) {
278 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
279 for (pos = 0; pos < block_size; pos++) {
280 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
281 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
282 }
283 } else {
284 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
285 for (pos = 0; pos < block_size; pos += 2) {
286 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
287 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
288 }
289 }
290 }
291 wm8750_dac_commit(s->wm);
292
293 s->last_free = free_out - block_size;
294
295 if (s->play_pos == 0) {
296 s->status |= MP_AUDIO_TX_HALF;
297 s->play_pos = block_size;
298 } else {
299 s->status |= MP_AUDIO_TX_FULL;
300 s->play_pos = 0;
301 }
302
303 if (s->status & s->irq_enable)
304 qemu_irq_raise(s->irq);
305 }
306
307 static void musicpal_audio_clock_update(musicpal_audio_state *s)
308 {
309 int rate;
310
311 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
312 rate = 24576000 / 64; /* 24.576MHz */
313 else
314 rate = 11289600 / 64; /* 11.2896MHz */
315
316 rate /= ((s->clock_div >> 8) & 0xff) + 1;
317
318 wm8750_set_bclk_in(s->wm, rate);
319 }
320
321 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
322 {
323 musicpal_audio_state *s = opaque;
324
325 switch (offset) {
326 case MP_AUDIO_PLAYBACK_MODE:
327 return s->playback_mode;
328
329 case MP_AUDIO_CLOCK_DIV:
330 return s->clock_div;
331
332 case MP_AUDIO_IRQ_STATUS:
333 return s->status;
334
335 case MP_AUDIO_IRQ_ENABLE:
336 return s->irq_enable;
337
338 case MP_AUDIO_TX_STATUS:
339 return s->play_pos >> 2;
340
341 default:
342 return 0;
343 }
344 }
345
346 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
347 uint32_t value)
348 {
349 musicpal_audio_state *s = opaque;
350
351 switch (offset) {
352 case MP_AUDIO_PLAYBACK_MODE:
353 if (value & MP_AUDIO_PLAYBACK_EN &&
354 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
355 s->status = 0;
356 s->last_free = 0;
357 s->play_pos = 0;
358 }
359 s->playback_mode = value;
360 musicpal_audio_clock_update(s);
361 break;
362
363 case MP_AUDIO_CLOCK_DIV:
364 s->clock_div = value;
365 s->last_free = 0;
366 s->play_pos = 0;
367 musicpal_audio_clock_update(s);
368 break;
369
370 case MP_AUDIO_IRQ_STATUS:
371 s->status &= ~value;
372 break;
373
374 case MP_AUDIO_IRQ_ENABLE:
375 s->irq_enable = value;
376 if (s->status & s->irq_enable)
377 qemu_irq_raise(s->irq);
378 break;
379
380 case MP_AUDIO_TX_START_LO:
381 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
382 s->target_buffer = s->phys_buf;
383 s->play_pos = 0;
384 s->last_free = 0;
385 break;
386
387 case MP_AUDIO_TX_THRESHOLD:
388 s->threshold = (value + 1) * 4;
389 break;
390
391 case MP_AUDIO_TX_START_HI:
392 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
393 s->target_buffer = s->phys_buf;
394 s->play_pos = 0;
395 s->last_free = 0;
396 break;
397 }
398 }
399
400 static void musicpal_audio_reset(void *opaque)
401 {
402 musicpal_audio_state *s = opaque;
403
404 s->playback_mode = 0;
405 s->status = 0;
406 s->irq_enable = 0;
407 }
408
409 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
410 musicpal_audio_read,
411 musicpal_audio_read,
412 musicpal_audio_read
413 };
414
415 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
416 musicpal_audio_write,
417 musicpal_audio_write,
418 musicpal_audio_write
419 };
420
421 static i2c_interface *musicpal_audio_init(qemu_irq irq)
422 {
423 musicpal_audio_state *s;
424 i2c_interface *i2c;
425 int iomemtype;
426
427 s = qemu_mallocz(sizeof(musicpal_audio_state));
428 s->irq = irq;
429
430 i2c = qemu_mallocz(sizeof(i2c_interface));
431 i2c->bus = i2c_init_bus(NULL, "i2c");
432 i2c->current_addr = -1;
433
434 s->wm = i2c_create_slave(i2c->bus, "wm8750", MP_WM_ADDR);
435 wm8750_data_req_set(s->wm, audio_callback, s);
436
437 iomemtype = cpu_register_io_memory(musicpal_audio_readfn,
438 musicpal_audio_writefn, s);
439 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
440
441 qemu_register_reset(musicpal_audio_reset, s);
442
443 return i2c;
444 }
445 #else /* !HAS_AUDIO */
446 static i2c_interface *musicpal_audio_init(qemu_irq irq)
447 {
448 return NULL;
449 }
450 #endif /* !HAS_AUDIO */
451
452 /* Ethernet register offsets */
453 #define MP_ETH_SMIR 0x010
454 #define MP_ETH_PCXR 0x408
455 #define MP_ETH_SDCMR 0x448
456 #define MP_ETH_ICR 0x450
457 #define MP_ETH_IMR 0x458
458 #define MP_ETH_FRDP0 0x480
459 #define MP_ETH_FRDP1 0x484
460 #define MP_ETH_FRDP2 0x488
461 #define MP_ETH_FRDP3 0x48C
462 #define MP_ETH_CRDP0 0x4A0
463 #define MP_ETH_CRDP1 0x4A4
464 #define MP_ETH_CRDP2 0x4A8
465 #define MP_ETH_CRDP3 0x4AC
466 #define MP_ETH_CTDP0 0x4E0
467 #define MP_ETH_CTDP1 0x4E4
468 #define MP_ETH_CTDP2 0x4E8
469 #define MP_ETH_CTDP3 0x4EC
470
471 /* MII PHY access */
472 #define MP_ETH_SMIR_DATA 0x0000FFFF
473 #define MP_ETH_SMIR_ADDR 0x03FF0000
474 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
475 #define MP_ETH_SMIR_RDVALID (1 << 27)
476
477 /* PHY registers */
478 #define MP_ETH_PHY1_BMSR 0x00210000
479 #define MP_ETH_PHY1_PHYSID1 0x00410000
480 #define MP_ETH_PHY1_PHYSID2 0x00610000
481
482 #define MP_PHY_BMSR_LINK 0x0004
483 #define MP_PHY_BMSR_AUTONEG 0x0008
484
485 #define MP_PHY_88E3015 0x01410E20
486
487 /* TX descriptor status */
488 #define MP_ETH_TX_OWN (1 << 31)
489
490 /* RX descriptor status */
491 #define MP_ETH_RX_OWN (1 << 31)
492
493 /* Interrupt cause/mask bits */
494 #define MP_ETH_IRQ_RX_BIT 0
495 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
496 #define MP_ETH_IRQ_TXHI_BIT 2
497 #define MP_ETH_IRQ_TXLO_BIT 3
498
499 /* Port config bits */
500 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
501
502 /* SDMA command bits */
503 #define MP_ETH_CMD_TXHI (1 << 23)
504 #define MP_ETH_CMD_TXLO (1 << 22)
505
506 typedef struct mv88w8618_tx_desc {
507 uint32_t cmdstat;
508 uint16_t res;
509 uint16_t bytes;
510 uint32_t buffer;
511 uint32_t next;
512 } mv88w8618_tx_desc;
513
514 typedef struct mv88w8618_rx_desc {
515 uint32_t cmdstat;
516 uint16_t bytes;
517 uint16_t buffer_size;
518 uint32_t buffer;
519 uint32_t next;
520 } mv88w8618_rx_desc;
521
522 typedef struct mv88w8618_eth_state {
523 SysBusDevice busdev;
524 qemu_irq irq;
525 uint32_t smir;
526 uint32_t icr;
527 uint32_t imr;
528 int mmio_index;
529 int vlan_header;
530 uint32_t tx_queue[2];
531 uint32_t rx_queue[4];
532 uint32_t frx_queue[4];
533 uint32_t cur_rx[4];
534 VLANClientState *vc;
535 } mv88w8618_eth_state;
536
537 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
538 {
539 cpu_to_le32s(&desc->cmdstat);
540 cpu_to_le16s(&desc->bytes);
541 cpu_to_le16s(&desc->buffer_size);
542 cpu_to_le32s(&desc->buffer);
543 cpu_to_le32s(&desc->next);
544 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
545 }
546
547 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
548 {
549 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
550 le32_to_cpus(&desc->cmdstat);
551 le16_to_cpus(&desc->bytes);
552 le16_to_cpus(&desc->buffer_size);
553 le32_to_cpus(&desc->buffer);
554 le32_to_cpus(&desc->next);
555 }
556
557 static int eth_can_receive(VLANClientState *vc)
558 {
559 return 1;
560 }
561
562 static ssize_t eth_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
563 {
564 mv88w8618_eth_state *s = vc->opaque;
565 uint32_t desc_addr;
566 mv88w8618_rx_desc desc;
567 int i;
568
569 for (i = 0; i < 4; i++) {
570 desc_addr = s->cur_rx[i];
571 if (!desc_addr)
572 continue;
573 do {
574 eth_rx_desc_get(desc_addr, &desc);
575 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
576 cpu_physical_memory_write(desc.buffer + s->vlan_header,
577 buf, size);
578 desc.bytes = size + s->vlan_header;
579 desc.cmdstat &= ~MP_ETH_RX_OWN;
580 s->cur_rx[i] = desc.next;
581
582 s->icr |= MP_ETH_IRQ_RX;
583 if (s->icr & s->imr)
584 qemu_irq_raise(s->irq);
585 eth_rx_desc_put(desc_addr, &desc);
586 return size;
587 }
588 desc_addr = desc.next;
589 } while (desc_addr != s->rx_queue[i]);
590 }
591 return size;
592 }
593
594 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
595 {
596 cpu_to_le32s(&desc->cmdstat);
597 cpu_to_le16s(&desc->res);
598 cpu_to_le16s(&desc->bytes);
599 cpu_to_le32s(&desc->buffer);
600 cpu_to_le32s(&desc->next);
601 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
602 }
603
604 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
605 {
606 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
607 le32_to_cpus(&desc->cmdstat);
608 le16_to_cpus(&desc->res);
609 le16_to_cpus(&desc->bytes);
610 le32_to_cpus(&desc->buffer);
611 le32_to_cpus(&desc->next);
612 }
613
614 static void eth_send(mv88w8618_eth_state *s, int queue_index)
615 {
616 uint32_t desc_addr = s->tx_queue[queue_index];
617 mv88w8618_tx_desc desc;
618 uint8_t buf[2048];
619 int len;
620
621
622 do {
623 eth_tx_desc_get(desc_addr, &desc);
624 if (desc.cmdstat & MP_ETH_TX_OWN) {
625 len = desc.bytes;
626 if (len < 2048) {
627 cpu_physical_memory_read(desc.buffer, buf, len);
628 qemu_send_packet(s->vc, buf, len);
629 }
630 desc.cmdstat &= ~MP_ETH_TX_OWN;
631 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
632 eth_tx_desc_put(desc_addr, &desc);
633 }
634 desc_addr = desc.next;
635 } while (desc_addr != s->tx_queue[queue_index]);
636 }
637
638 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
639 {
640 mv88w8618_eth_state *s = opaque;
641
642 switch (offset) {
643 case MP_ETH_SMIR:
644 if (s->smir & MP_ETH_SMIR_OPCODE) {
645 switch (s->smir & MP_ETH_SMIR_ADDR) {
646 case MP_ETH_PHY1_BMSR:
647 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
648 MP_ETH_SMIR_RDVALID;
649 case MP_ETH_PHY1_PHYSID1:
650 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
651 case MP_ETH_PHY1_PHYSID2:
652 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
653 default:
654 return MP_ETH_SMIR_RDVALID;
655 }
656 }
657 return 0;
658
659 case MP_ETH_ICR:
660 return s->icr;
661
662 case MP_ETH_IMR:
663 return s->imr;
664
665 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
666 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
667
668 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
669 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
670
671 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
672 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
673
674 default:
675 return 0;
676 }
677 }
678
679 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
680 uint32_t value)
681 {
682 mv88w8618_eth_state *s = opaque;
683
684 switch (offset) {
685 case MP_ETH_SMIR:
686 s->smir = value;
687 break;
688
689 case MP_ETH_PCXR:
690 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
691 break;
692
693 case MP_ETH_SDCMR:
694 if (value & MP_ETH_CMD_TXHI)
695 eth_send(s, 1);
696 if (value & MP_ETH_CMD_TXLO)
697 eth_send(s, 0);
698 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
699 qemu_irq_raise(s->irq);
700 break;
701
702 case MP_ETH_ICR:
703 s->icr &= value;
704 break;
705
706 case MP_ETH_IMR:
707 s->imr = value;
708 if (s->icr & s->imr)
709 qemu_irq_raise(s->irq);
710 break;
711
712 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
713 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
714 break;
715
716 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
717 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
718 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
719 break;
720
721 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
722 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
723 break;
724 }
725 }
726
727 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
728 mv88w8618_eth_read,
729 mv88w8618_eth_read,
730 mv88w8618_eth_read
731 };
732
733 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
734 mv88w8618_eth_write,
735 mv88w8618_eth_write,
736 mv88w8618_eth_write
737 };
738
739 static void eth_cleanup(VLANClientState *vc)
740 {
741 mv88w8618_eth_state *s = vc->opaque;
742
743 cpu_unregister_io_memory(s->mmio_index);
744
745 qemu_free(s);
746 }
747
748 static void mv88w8618_eth_init(SysBusDevice *dev)
749 {
750 mv88w8618_eth_state *s = FROM_SYSBUS(mv88w8618_eth_state, dev);
751
752 sysbus_init_irq(dev, &s->irq);
753 s->vc = qdev_get_vlan_client(&dev->qdev,
754 eth_can_receive, eth_receive, NULL,
755 eth_cleanup, s);
756 s->mmio_index = cpu_register_io_memory(mv88w8618_eth_readfn,
757 mv88w8618_eth_writefn, s);
758 sysbus_init_mmio(dev, MP_ETH_SIZE, s->mmio_index);
759 }
760
761 /* LCD register offsets */
762 #define MP_LCD_IRQCTRL 0x180
763 #define MP_LCD_IRQSTAT 0x184
764 #define MP_LCD_SPICTRL 0x1ac
765 #define MP_LCD_INST 0x1bc
766 #define MP_LCD_DATA 0x1c0
767
768 /* Mode magics */
769 #define MP_LCD_SPI_DATA 0x00100011
770 #define MP_LCD_SPI_CMD 0x00104011
771 #define MP_LCD_SPI_INVALID 0x00000000
772
773 /* Commmands */
774 #define MP_LCD_INST_SETPAGE0 0xB0
775 /* ... */
776 #define MP_LCD_INST_SETPAGE7 0xB7
777
778 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
779
780 typedef struct musicpal_lcd_state {
781 SysBusDevice busdev;
782 uint32_t brightness;
783 uint32_t mode;
784 uint32_t irqctrl;
785 int page;
786 int page_off;
787 DisplayState *ds;
788 uint8_t video_ram[128*64/8];
789 } musicpal_lcd_state;
790
791 static uint8_t scale_lcd_color(musicpal_lcd_state *s, uint8_t col)
792 {
793 switch (s->brightness) {
794 case 7:
795 return col;
796 case 0:
797 return 0;
798 default:
799 return (col * s->brightness) / 7;
800 }
801 }
802
803 #define SET_LCD_PIXEL(depth, type) \
804 static inline void glue(set_lcd_pixel, depth) \
805 (musicpal_lcd_state *s, int x, int y, type col) \
806 { \
807 int dx, dy; \
808 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
809 \
810 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
811 for (dx = 0; dx < 3; dx++, pixel++) \
812 *pixel = col; \
813 }
814 SET_LCD_PIXEL(8, uint8_t)
815 SET_LCD_PIXEL(16, uint16_t)
816 SET_LCD_PIXEL(32, uint32_t)
817
818 #include "pixel_ops.h"
819
820 static void lcd_refresh(void *opaque)
821 {
822 musicpal_lcd_state *s = opaque;
823 int x, y, col;
824
825 switch (ds_get_bits_per_pixel(s->ds)) {
826 case 0:
827 return;
828 #define LCD_REFRESH(depth, func) \
829 case depth: \
830 col = func(scale_lcd_color(s, (MP_LCD_TEXTCOLOR >> 16) & 0xff), \
831 scale_lcd_color(s, (MP_LCD_TEXTCOLOR >> 8) & 0xff), \
832 scale_lcd_color(s, MP_LCD_TEXTCOLOR & 0xff)); \
833 for (x = 0; x < 128; x++) \
834 for (y = 0; y < 64; y++) \
835 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
836 glue(set_lcd_pixel, depth)(s, x, y, col); \
837 else \
838 glue(set_lcd_pixel, depth)(s, x, y, 0); \
839 break;
840 LCD_REFRESH(8, rgb_to_pixel8)
841 LCD_REFRESH(16, rgb_to_pixel16)
842 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
843 rgb_to_pixel32bgr : rgb_to_pixel32))
844 default:
845 hw_error("unsupported colour depth %i\n",
846 ds_get_bits_per_pixel(s->ds));
847 }
848
849 dpy_update(s->ds, 0, 0, 128*3, 64*3);
850 }
851
852 static void lcd_invalidate(void *opaque)
853 {
854 }
855
856 static void musicpal_lcd_gpio_brigthness_in(void *opaque, int irq, int level)
857 {
858 musicpal_lcd_state *s = (musicpal_lcd_state *) opaque;
859 s->brightness &= ~(1 << irq);
860 s->brightness |= level << irq;
861 }
862
863 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
864 {
865 musicpal_lcd_state *s = opaque;
866
867 switch (offset) {
868 case MP_LCD_IRQCTRL:
869 return s->irqctrl;
870
871 default:
872 return 0;
873 }
874 }
875
876 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
877 uint32_t value)
878 {
879 musicpal_lcd_state *s = opaque;
880
881 switch (offset) {
882 case MP_LCD_IRQCTRL:
883 s->irqctrl = value;
884 break;
885
886 case MP_LCD_SPICTRL:
887 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
888 s->mode = value;
889 else
890 s->mode = MP_LCD_SPI_INVALID;
891 break;
892
893 case MP_LCD_INST:
894 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
895 s->page = value - MP_LCD_INST_SETPAGE0;
896 s->page_off = 0;
897 }
898 break;
899
900 case MP_LCD_DATA:
901 if (s->mode == MP_LCD_SPI_CMD) {
902 if (value >= MP_LCD_INST_SETPAGE0 &&
903 value <= MP_LCD_INST_SETPAGE7) {
904 s->page = value - MP_LCD_INST_SETPAGE0;
905 s->page_off = 0;
906 }
907 } else if (s->mode == MP_LCD_SPI_DATA) {
908 s->video_ram[s->page*128 + s->page_off] = value;
909 s->page_off = (s->page_off + 1) & 127;
910 }
911 break;
912 }
913 }
914
915 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
916 musicpal_lcd_read,
917 musicpal_lcd_read,
918 musicpal_lcd_read
919 };
920
921 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
922 musicpal_lcd_write,
923 musicpal_lcd_write,
924 musicpal_lcd_write
925 };
926
927 static void musicpal_lcd_init(SysBusDevice *dev)
928 {
929 musicpal_lcd_state *s = FROM_SYSBUS(musicpal_lcd_state, dev);
930 int iomemtype;
931
932 s->brightness = 7;
933
934 iomemtype = cpu_register_io_memory(musicpal_lcd_readfn,
935 musicpal_lcd_writefn, s);
936 sysbus_init_mmio(dev, MP_LCD_SIZE, iomemtype);
937
938 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
939 NULL, NULL, s);
940 qemu_console_resize(s->ds, 128*3, 64*3);
941
942 qdev_init_gpio_in(&dev->qdev, musicpal_lcd_gpio_brigthness_in, 3);
943 }
944
945 /* PIC register offsets */
946 #define MP_PIC_STATUS 0x00
947 #define MP_PIC_ENABLE_SET 0x08
948 #define MP_PIC_ENABLE_CLR 0x0C
949
950 typedef struct mv88w8618_pic_state
951 {
952 SysBusDevice busdev;
953 uint32_t level;
954 uint32_t enabled;
955 qemu_irq parent_irq;
956 } mv88w8618_pic_state;
957
958 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
959 {
960 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
961 }
962
963 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
964 {
965 mv88w8618_pic_state *s = opaque;
966
967 if (level)
968 s->level |= 1 << irq;
969 else
970 s->level &= ~(1 << irq);
971 mv88w8618_pic_update(s);
972 }
973
974 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
975 {
976 mv88w8618_pic_state *s = opaque;
977
978 switch (offset) {
979 case MP_PIC_STATUS:
980 return s->level & s->enabled;
981
982 default:
983 return 0;
984 }
985 }
986
987 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
988 uint32_t value)
989 {
990 mv88w8618_pic_state *s = opaque;
991
992 switch (offset) {
993 case MP_PIC_ENABLE_SET:
994 s->enabled |= value;
995 break;
996
997 case MP_PIC_ENABLE_CLR:
998 s->enabled &= ~value;
999 s->level &= ~value;
1000 break;
1001 }
1002 mv88w8618_pic_update(s);
1003 }
1004
1005 static void mv88w8618_pic_reset(void *opaque)
1006 {
1007 mv88w8618_pic_state *s = opaque;
1008
1009 s->level = 0;
1010 s->enabled = 0;
1011 }
1012
1013 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1014 mv88w8618_pic_read,
1015 mv88w8618_pic_read,
1016 mv88w8618_pic_read
1017 };
1018
1019 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1020 mv88w8618_pic_write,
1021 mv88w8618_pic_write,
1022 mv88w8618_pic_write
1023 };
1024
1025 static void mv88w8618_pic_init(SysBusDevice *dev)
1026 {
1027 mv88w8618_pic_state *s = FROM_SYSBUS(mv88w8618_pic_state, dev);
1028 int iomemtype;
1029
1030 qdev_init_gpio_in(&dev->qdev, mv88w8618_pic_set_irq, 32);
1031 sysbus_init_irq(dev, &s->parent_irq);
1032 iomemtype = cpu_register_io_memory(mv88w8618_pic_readfn,
1033 mv88w8618_pic_writefn, s);
1034 sysbus_init_mmio(dev, MP_PIC_SIZE, iomemtype);
1035
1036 qemu_register_reset(mv88w8618_pic_reset, s);
1037 }
1038
1039 /* PIT register offsets */
1040 #define MP_PIT_TIMER1_LENGTH 0x00
1041 /* ... */
1042 #define MP_PIT_TIMER4_LENGTH 0x0C
1043 #define MP_PIT_CONTROL 0x10
1044 #define MP_PIT_TIMER1_VALUE 0x14
1045 /* ... */
1046 #define MP_PIT_TIMER4_VALUE 0x20
1047 #define MP_BOARD_RESET 0x34
1048
1049 /* Magic board reset value (probably some watchdog behind it) */
1050 #define MP_BOARD_RESET_MAGIC 0x10000
1051
1052 typedef struct mv88w8618_timer_state {
1053 ptimer_state *ptimer;
1054 uint32_t limit;
1055 int freq;
1056 qemu_irq irq;
1057 } mv88w8618_timer_state;
1058
1059 typedef struct mv88w8618_pit_state {
1060 SysBusDevice busdev;
1061 mv88w8618_timer_state timer[4];
1062 uint32_t control;
1063 } mv88w8618_pit_state;
1064
1065 static void mv88w8618_timer_tick(void *opaque)
1066 {
1067 mv88w8618_timer_state *s = opaque;
1068
1069 qemu_irq_raise(s->irq);
1070 }
1071
1072 static void mv88w8618_timer_init(SysBusDevice *dev, mv88w8618_timer_state *s,
1073 uint32_t freq)
1074 {
1075 QEMUBH *bh;
1076
1077 sysbus_init_irq(dev, &s->irq);
1078 s->freq = freq;
1079
1080 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1081 s->ptimer = ptimer_init(bh);
1082 }
1083
1084 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1085 {
1086 mv88w8618_pit_state *s = opaque;
1087 mv88w8618_timer_state *t;
1088
1089 switch (offset) {
1090 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1091 t = &s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1092 return ptimer_get_count(t->ptimer);
1093
1094 default:
1095 return 0;
1096 }
1097 }
1098
1099 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1100 uint32_t value)
1101 {
1102 mv88w8618_pit_state *s = opaque;
1103 mv88w8618_timer_state *t;
1104 int i;
1105
1106 switch (offset) {
1107 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1108 t = &s->timer[offset >> 2];
1109 t->limit = value;
1110 ptimer_set_limit(t->ptimer, t->limit, 1);
1111 break;
1112
1113 case MP_PIT_CONTROL:
1114 for (i = 0; i < 4; i++) {
1115 if (value & 0xf) {
1116 t = &s->timer[i];
1117 ptimer_set_limit(t->ptimer, t->limit, 0);
1118 ptimer_set_freq(t->ptimer, t->freq);
1119 ptimer_run(t->ptimer, 0);
1120 }
1121 value >>= 4;
1122 }
1123 break;
1124
1125 case MP_BOARD_RESET:
1126 if (value == MP_BOARD_RESET_MAGIC)
1127 qemu_system_reset_request();
1128 break;
1129 }
1130 }
1131
1132 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1133 mv88w8618_pit_read,
1134 mv88w8618_pit_read,
1135 mv88w8618_pit_read
1136 };
1137
1138 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1139 mv88w8618_pit_write,
1140 mv88w8618_pit_write,
1141 mv88w8618_pit_write
1142 };
1143
1144 static void mv88w8618_pit_init(SysBusDevice *dev)
1145 {
1146 int iomemtype;
1147 mv88w8618_pit_state *s = FROM_SYSBUS(mv88w8618_pit_state, dev);
1148 int i;
1149
1150 /* Letting them all run at 1 MHz is likely just a pragmatic
1151 * simplification. */
1152 for (i = 0; i < 4; i++) {
1153 mv88w8618_timer_init(dev, &s->timer[i], 1000000);
1154 }
1155
1156 iomemtype = cpu_register_io_memory(mv88w8618_pit_readfn,
1157 mv88w8618_pit_writefn, s);
1158 sysbus_init_mmio(dev, MP_PIT_SIZE, iomemtype);
1159 }
1160
1161 /* Flash config register offsets */
1162 #define MP_FLASHCFG_CFGR0 0x04
1163
1164 typedef struct mv88w8618_flashcfg_state {
1165 SysBusDevice busdev;
1166 uint32_t cfgr0;
1167 } mv88w8618_flashcfg_state;
1168
1169 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1170 target_phys_addr_t offset)
1171 {
1172 mv88w8618_flashcfg_state *s = opaque;
1173
1174 switch (offset) {
1175 case MP_FLASHCFG_CFGR0:
1176 return s->cfgr0;
1177
1178 default:
1179 return 0;
1180 }
1181 }
1182
1183 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1184 uint32_t value)
1185 {
1186 mv88w8618_flashcfg_state *s = opaque;
1187
1188 switch (offset) {
1189 case MP_FLASHCFG_CFGR0:
1190 s->cfgr0 = value;
1191 break;
1192 }
1193 }
1194
1195 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1196 mv88w8618_flashcfg_read,
1197 mv88w8618_flashcfg_read,
1198 mv88w8618_flashcfg_read
1199 };
1200
1201 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1202 mv88w8618_flashcfg_write,
1203 mv88w8618_flashcfg_write,
1204 mv88w8618_flashcfg_write
1205 };
1206
1207 static void mv88w8618_flashcfg_init(SysBusDevice *dev)
1208 {
1209 int iomemtype;
1210 mv88w8618_flashcfg_state *s = FROM_SYSBUS(mv88w8618_flashcfg_state, dev);
1211
1212 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1213 iomemtype = cpu_register_io_memory(mv88w8618_flashcfg_readfn,
1214 mv88w8618_flashcfg_writefn, s);
1215 sysbus_init_mmio(dev, MP_FLASHCFG_SIZE, iomemtype);
1216 }
1217
1218 /* Misc register offsets */
1219 #define MP_MISC_BOARD_REVISION 0x18
1220
1221 #define MP_BOARD_REVISION 0x31
1222
1223 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1224 {
1225 switch (offset) {
1226 case MP_MISC_BOARD_REVISION:
1227 return MP_BOARD_REVISION;
1228
1229 default:
1230 return 0;
1231 }
1232 }
1233
1234 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1235 uint32_t value)
1236 {
1237 }
1238
1239 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1240 musicpal_misc_read,
1241 musicpal_misc_read,
1242 musicpal_misc_read,
1243 };
1244
1245 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1246 musicpal_misc_write,
1247 musicpal_misc_write,
1248 musicpal_misc_write,
1249 };
1250
1251 static void musicpal_misc_init(void)
1252 {
1253 int iomemtype;
1254
1255 iomemtype = cpu_register_io_memory(musicpal_misc_readfn,
1256 musicpal_misc_writefn, NULL);
1257 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1258 }
1259
1260 /* WLAN register offsets */
1261 #define MP_WLAN_MAGIC1 0x11c
1262 #define MP_WLAN_MAGIC2 0x124
1263
1264 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1265 {
1266 switch (offset) {
1267 /* Workaround to allow loading the binary-only wlandrv.ko crap
1268 * from the original Freecom firmware. */
1269 case MP_WLAN_MAGIC1:
1270 return ~3;
1271 case MP_WLAN_MAGIC2:
1272 return -1;
1273
1274 default:
1275 return 0;
1276 }
1277 }
1278
1279 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1280 uint32_t value)
1281 {
1282 }
1283
1284 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1285 mv88w8618_wlan_read,
1286 mv88w8618_wlan_read,
1287 mv88w8618_wlan_read,
1288 };
1289
1290 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1291 mv88w8618_wlan_write,
1292 mv88w8618_wlan_write,
1293 mv88w8618_wlan_write,
1294 };
1295
1296 static void mv88w8618_wlan_init(SysBusDevice *dev)
1297 {
1298 int iomemtype;
1299
1300 iomemtype = cpu_register_io_memory(mv88w8618_wlan_readfn,
1301 mv88w8618_wlan_writefn, NULL);
1302 sysbus_init_mmio(dev, MP_WLAN_SIZE, iomemtype);
1303 }
1304
1305 /* GPIO register offsets */
1306 #define MP_GPIO_OE_LO 0x008
1307 #define MP_GPIO_OUT_LO 0x00c
1308 #define MP_GPIO_IN_LO 0x010
1309 #define MP_GPIO_ISR_LO 0x020
1310 #define MP_GPIO_OE_HI 0x508
1311 #define MP_GPIO_OUT_HI 0x50c
1312 #define MP_GPIO_IN_HI 0x510
1313 #define MP_GPIO_ISR_HI 0x520
1314
1315 /* GPIO bits & masks */
1316 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1317 #define MP_GPIO_I2C_DATA_BIT 29
1318 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1319 #define MP_GPIO_I2C_CLOCK_BIT 30
1320
1321 /* LCD brightness bits in GPIO_OE_HI */
1322 #define MP_OE_LCD_BRIGHTNESS 0x0007
1323
1324 typedef struct musicpal_gpio_state {
1325 SysBusDevice busdev;
1326 uint32_t lcd_brightness;
1327 uint32_t out_state;
1328 uint32_t in_state;
1329 uint32_t isr;
1330 uint32_t key_released;
1331 uint32_t keys_event; /* store the received key event */
1332 qemu_irq irq;
1333 qemu_irq out[3];
1334 } musicpal_gpio_state;
1335
1336 static void musicpal_gpio_brightness_update(musicpal_gpio_state *s) {
1337 int i;
1338 uint32_t brightness;
1339
1340 /* compute brightness ratio */
1341 switch (s->lcd_brightness) {
1342 case 0x00000007:
1343 brightness = 0;
1344 break;
1345
1346 case 0x00020000:
1347 brightness = 1;
1348 break;
1349
1350 case 0x00020001:
1351 brightness = 2;
1352 break;
1353
1354 case 0x00040000:
1355 brightness = 3;
1356 break;
1357
1358 case 0x00010006:
1359 brightness = 4;
1360 break;
1361
1362 case 0x00020005:
1363 brightness = 5;
1364 break;
1365
1366 case 0x00040003:
1367 brightness = 6;
1368 break;
1369
1370 case 0x00030004:
1371 default:
1372 brightness = 7;
1373 }
1374
1375 /* set lcd brightness GPIOs */
1376 for (i = 0; i <= 2; i++)
1377 qemu_set_irq(s->out[i], (brightness >> i) & 1);
1378 }
1379
1380 static void musicpal_gpio_keys_update(musicpal_gpio_state *s)
1381 {
1382 int gpio_mask = 0;
1383
1384 /* transform the key state for GPIO usage */
1385 gpio_mask |= (s->keys_event & 15) << 8;
1386 gpio_mask |= ((s->keys_event >> 4) & 15) << 19;
1387
1388 /* update GPIO state */
1389 if (s->key_released) {
1390 s->in_state |= gpio_mask;
1391 } else {
1392 s->in_state &= ~gpio_mask;
1393 s->isr = gpio_mask;
1394 qemu_irq_raise(s->irq);
1395 }
1396 }
1397
1398 static void musicpal_gpio_irq(void *opaque, int irq, int level)
1399 {
1400 musicpal_gpio_state *s = (musicpal_gpio_state *) opaque;
1401
1402 /* receives keys bits */
1403 if (irq <= 7) {
1404 s->keys_event &= ~(1 << irq);
1405 s->keys_event |= level << irq;
1406 return;
1407 }
1408
1409 /* receives key press/release */
1410 if (irq == 8) {
1411 s->key_released = level;
1412 return;
1413 }
1414
1415 /* a key has been transmited */
1416 if (irq == 9 && level == 1)
1417 musicpal_gpio_keys_update(s);
1418 }
1419
1420 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1421 {
1422 musicpal_gpio_state *s = (musicpal_gpio_state *) opaque;
1423
1424 switch (offset) {
1425 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1426 return s->lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1427
1428 case MP_GPIO_OUT_LO:
1429 return s->out_state & 0xFFFF;
1430 case MP_GPIO_OUT_HI:
1431 return s->out_state >> 16;
1432
1433 case MP_GPIO_IN_LO:
1434 return s->in_state & 0xFFFF;
1435 case MP_GPIO_IN_HI:
1436 /* Update received I2C data */
1437 s->in_state = (s->in_state & ~MP_GPIO_I2C_DATA) |
1438 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1439 return s->in_state >> 16;
1440
1441 case MP_GPIO_ISR_LO:
1442 return s->isr & 0xFFFF;
1443 case MP_GPIO_ISR_HI:
1444 return s->isr >> 16;
1445
1446 default:
1447 return 0;
1448 }
1449 }
1450
1451 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1452 uint32_t value)
1453 {
1454 musicpal_gpio_state *s = (musicpal_gpio_state *) opaque;
1455 switch (offset) {
1456 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1457 s->lcd_brightness = (s->lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1458 (value & MP_OE_LCD_BRIGHTNESS);
1459 musicpal_gpio_brightness_update(s);
1460 break;
1461
1462 case MP_GPIO_OUT_LO:
1463 s->out_state = (s->out_state & 0xFFFF0000) | (value & 0xFFFF);
1464 break;
1465 case MP_GPIO_OUT_HI:
1466 s->out_state = (s->out_state & 0xFFFF) | (value << 16);
1467 s->lcd_brightness = (s->lcd_brightness & 0xFFFF) |
1468 (s->out_state & MP_GPIO_LCD_BRIGHTNESS);
1469 musicpal_gpio_brightness_update(s);
1470 i2c_state_update(mixer_i2c,
1471 (s->out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1472 (s->out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1473 break;
1474
1475 }
1476 }
1477
1478 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1479 musicpal_gpio_read,
1480 musicpal_gpio_read,
1481 musicpal_gpio_read,
1482 };
1483
1484 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1485 musicpal_gpio_write,
1486 musicpal_gpio_write,
1487 musicpal_gpio_write,
1488 };
1489
1490 static void musicpal_gpio_reset(musicpal_gpio_state *s)
1491 {
1492 s->in_state = 0xffffffff;
1493 s->key_released = 0;
1494 s->keys_event = 0;
1495 s->isr = 0;
1496 }
1497
1498 static void musicpal_gpio_init(SysBusDevice *dev)
1499 {
1500 musicpal_gpio_state *s = FROM_SYSBUS(musicpal_gpio_state, dev);
1501 int iomemtype;
1502
1503 sysbus_init_irq(dev, &s->irq);
1504
1505 iomemtype = cpu_register_io_memory(musicpal_gpio_readfn,
1506 musicpal_gpio_writefn, s);
1507 sysbus_init_mmio(dev, MP_GPIO_SIZE, iomemtype);
1508
1509 musicpal_gpio_reset(s);
1510
1511 qdev_init_gpio_out(&dev->qdev, s->out, 3);
1512 qdev_init_gpio_in(&dev->qdev, musicpal_gpio_irq, 10);
1513 }
1514
1515 /* Keyboard codes & masks */
1516 #define KEY_RELEASED 0x80
1517 #define KEY_CODE 0x7f
1518
1519 #define KEYCODE_TAB 0x0f
1520 #define KEYCODE_ENTER 0x1c
1521 #define KEYCODE_F 0x21
1522 #define KEYCODE_M 0x32
1523
1524 #define KEYCODE_EXTENDED 0xe0
1525 #define KEYCODE_UP 0x48
1526 #define KEYCODE_DOWN 0x50
1527 #define KEYCODE_LEFT 0x4b
1528 #define KEYCODE_RIGHT 0x4d
1529
1530 #define MP_KEY_WHEEL_VOL (1)
1531 #define MP_KEY_WHEEL_VOL_INV (1 << 1)
1532 #define MP_KEY_WHEEL_NAV (1 << 2)
1533 #define MP_KEY_WHEEL_NAV_INV (1 << 3)
1534 #define MP_KEY_BTN_FAVORITS (1 << 4)
1535 #define MP_KEY_BTN_MENU (1 << 5)
1536 #define MP_KEY_BTN_VOLUME (1 << 6)
1537 #define MP_KEY_BTN_NAVIGATION (1 << 7)
1538
1539 typedef struct musicpal_key_state {
1540 SysBusDevice busdev;
1541 uint32_t kbd_extended;
1542 uint32_t keys_state;
1543 qemu_irq out[10];
1544 } musicpal_key_state;
1545
1546 static void musicpal_key_event(void *opaque, int keycode)
1547 {
1548 musicpal_key_state *s = (musicpal_key_state *) opaque;
1549 uint32_t event = 0;
1550 int i;
1551
1552 if (keycode == KEYCODE_EXTENDED) {
1553 s->kbd_extended = 1;
1554 return;
1555 }
1556
1557 if (s->kbd_extended)
1558 switch (keycode & KEY_CODE) {
1559 case KEYCODE_UP:
1560 event = MP_KEY_WHEEL_NAV | MP_KEY_WHEEL_NAV_INV;
1561 break;
1562
1563 case KEYCODE_DOWN:
1564 event = MP_KEY_WHEEL_NAV;
1565 break;
1566
1567 case KEYCODE_LEFT:
1568 event = MP_KEY_WHEEL_VOL | MP_KEY_WHEEL_VOL_INV;
1569 break;
1570
1571 case KEYCODE_RIGHT:
1572 event = MP_KEY_WHEEL_VOL;
1573 break;
1574 }
1575 else {
1576 switch (keycode & KEY_CODE) {
1577 case KEYCODE_F:
1578 event = MP_KEY_BTN_FAVORITS;
1579 break;
1580
1581 case KEYCODE_TAB:
1582 event = MP_KEY_BTN_VOLUME;
1583 break;
1584
1585 case KEYCODE_ENTER:
1586 event = MP_KEY_BTN_NAVIGATION;
1587 break;
1588
1589 case KEYCODE_M:
1590 event = MP_KEY_BTN_MENU;
1591 break;
1592 }
1593 /* Do not repeat already pressed buttons */
1594 if (!(keycode & KEY_RELEASED) && !(s->keys_state & event))
1595 event = 0;
1596 }
1597
1598 if (event) {
1599
1600 /* transmit key event on GPIOS */
1601 for (i = 0; i <= 7; i++)
1602 qemu_set_irq(s->out[i], (event >> i) & 1);
1603
1604 /* handle key press/release */
1605 if (keycode & KEY_RELEASED) {
1606 s->keys_state |= event;
1607 qemu_irq_raise(s->out[8]);
1608 } else {
1609 s->keys_state &= ~event;
1610 qemu_irq_lower(s->out[8]);
1611 }
1612
1613 /* signal that a key event occured */
1614 qemu_irq_pulse(s->out[9]);
1615 }
1616
1617 s->kbd_extended = 0;
1618 }
1619
1620 static void musicpal_key_init(SysBusDevice *dev)
1621 {
1622 musicpal_key_state *s = FROM_SYSBUS(musicpal_key_state, dev);
1623
1624 sysbus_init_mmio(dev, 0x0, 0);
1625
1626 s->kbd_extended = 0;
1627 s->keys_state = 0;
1628
1629 /* 8 key event GPIO + 1 key press/release + 1 strobe */
1630 qdev_init_gpio_out(&dev->qdev, s->out, 10);
1631
1632 qemu_add_kbd_event_handler(musicpal_key_event, s);
1633 }
1634
1635 static struct arm_boot_info musicpal_binfo = {
1636 .loader_start = 0x0,
1637 .board_id = 0x20e,
1638 };
1639
1640 static void musicpal_init(ram_addr_t ram_size,
1641 const char *boot_device,
1642 const char *kernel_filename, const char *kernel_cmdline,
1643 const char *initrd_filename, const char *cpu_model)
1644 {
1645 CPUState *env;
1646 qemu_irq *cpu_pic;
1647 qemu_irq pic[32];
1648 DeviceState *dev;
1649 DeviceState *lcd_dev;
1650 DeviceState *key_dev;
1651 int i;
1652 unsigned long flash_size;
1653 DriveInfo *dinfo;
1654
1655 if (!cpu_model)
1656 cpu_model = "arm926";
1657
1658 env = cpu_init(cpu_model);
1659 if (!env) {
1660 fprintf(stderr, "Unable to find CPU definition\n");
1661 exit(1);
1662 }
1663 cpu_pic = arm_pic_init_cpu(env);
1664
1665 /* For now we use a fixed - the original - RAM size */
1666 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1667 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1668
1669 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1670 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1671
1672 dev = sysbus_create_simple("mv88w8618_pic", MP_PIC_BASE,
1673 cpu_pic[ARM_PIC_CPU_IRQ]);
1674 for (i = 0; i < 32; i++) {
1675 pic[i] = qdev_get_gpio_in(dev, i);
1676 }
1677 sysbus_create_varargs("mv88w8618_pit", MP_PIT_BASE, pic[MP_TIMER1_IRQ],
1678 pic[MP_TIMER2_IRQ], pic[MP_TIMER3_IRQ],
1679 pic[MP_TIMER4_IRQ], NULL);
1680
1681 if (serial_hds[0])
1682 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1683 serial_hds[0], 1);
1684 if (serial_hds[1])
1685 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1686 serial_hds[1], 1);
1687
1688 /* Register flash */
1689 dinfo = drive_get(IF_PFLASH, 0, 0);
1690 if (dinfo) {
1691 flash_size = bdrv_getlength(dinfo->bdrv);
1692 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1693 flash_size != 32*1024*1024) {
1694 fprintf(stderr, "Invalid flash image size\n");
1695 exit(1);
1696 }
1697
1698 /*
1699 * The original U-Boot accesses the flash at 0xFE000000 instead of
1700 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1701 * image is smaller than 32 MB.
1702 */
1703 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1704 dinfo->bdrv, 0x10000,
1705 (flash_size + 0xffff) >> 16,
1706 MP_FLASH_SIZE_MAX / flash_size,
1707 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1708 0x5555, 0x2AAA);
1709 }
1710 sysbus_create_simple("mv88w8618_flashcfg", MP_FLASHCFG_BASE, NULL);
1711
1712 qemu_check_nic_model(&nd_table[0], "mv88w8618");
1713 dev = qdev_create(NULL, "mv88w8618_eth");
1714 dev->nd = &nd_table[0];
1715 qdev_init(dev);
1716 sysbus_mmio_map(sysbus_from_qdev(dev), 0, MP_ETH_BASE);
1717 sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[MP_ETH_IRQ]);
1718
1719 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1720
1721 sysbus_create_simple("mv88w8618_wlan", MP_WLAN_BASE, NULL);
1722
1723 musicpal_misc_init();
1724
1725 dev = sysbus_create_simple("musicpal_gpio", MP_GPIO_BASE, pic[MP_GPIO_IRQ]);
1726 lcd_dev = sysbus_create_simple("musicpal_lcd", MP_LCD_BASE, NULL);
1727 key_dev = sysbus_create_simple("musicpal_key", 0, NULL);
1728
1729 for (i = 0; i < 3; i++)
1730 qdev_connect_gpio_out(dev, i, qdev_get_gpio_in(lcd_dev, i));
1731
1732 for (i = 0; i < 10; i++)
1733 qdev_connect_gpio_out(key_dev, i, qdev_get_gpio_in(dev, i));
1734
1735 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1736 musicpal_binfo.kernel_filename = kernel_filename;
1737 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1738 musicpal_binfo.initrd_filename = initrd_filename;
1739 arm_load_kernel(env, &musicpal_binfo);
1740 }
1741
1742 static QEMUMachine musicpal_machine = {
1743 .name = "musicpal",
1744 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1745 .init = musicpal_init,
1746 };
1747
1748 static void musicpal_machine_init(void)
1749 {
1750 qemu_register_machine(&musicpal_machine);
1751 }
1752
1753 machine_init(musicpal_machine_init);
1754
1755 static void musicpal_register_devices(void)
1756 {
1757 sysbus_register_dev("mv88w8618_pic", sizeof(mv88w8618_pic_state),
1758 mv88w8618_pic_init);
1759 sysbus_register_dev("mv88w8618_pit", sizeof(mv88w8618_pit_state),
1760 mv88w8618_pit_init);
1761 sysbus_register_dev("mv88w8618_flashcfg", sizeof(mv88w8618_flashcfg_state),
1762 mv88w8618_flashcfg_init);
1763 sysbus_register_dev("mv88w8618_eth", sizeof(mv88w8618_eth_state),
1764 mv88w8618_eth_init);
1765 sysbus_register_dev("mv88w8618_wlan", sizeof(SysBusDevice),
1766 mv88w8618_wlan_init);
1767 sysbus_register_dev("musicpal_lcd", sizeof(musicpal_lcd_state),
1768 musicpal_lcd_init);
1769 sysbus_register_dev("musicpal_gpio", sizeof(musicpal_gpio_state),
1770 musicpal_gpio_init);
1771 sysbus_register_dev("musicpal_key", sizeof(musicpal_key_state),
1772 musicpal_key_init);
1773 }
1774
1775 device_init(musicpal_register_devices)