]> git.proxmox.com Git - qemu.git/blob - hw/musicpal.c
musicpal: Improve button handling (Jan Kiszka).
[qemu.git] / hw / musicpal.c
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
22
23 #define MP_ETH_BASE 0x80008000
24 #define MP_ETH_SIZE 0x00001000
25
26 #define MP_UART1_BASE 0x8000C840
27 #define MP_UART2_BASE 0x8000C940
28
29 #define MP_FLASHCFG_BASE 0x90006000
30 #define MP_FLASHCFG_SIZE 0x00001000
31
32 #define MP_AUDIO_BASE 0x90007000
33 #define MP_AUDIO_SIZE 0x00001000
34
35 #define MP_PIC_BASE 0x90008000
36 #define MP_PIC_SIZE 0x00001000
37
38 #define MP_PIT_BASE 0x90009000
39 #define MP_PIT_SIZE 0x00001000
40
41 #define MP_LCD_BASE 0x9000c000
42 #define MP_LCD_SIZE 0x00001000
43
44 #define MP_SRAM_BASE 0xC0000000
45 #define MP_SRAM_SIZE 0x00020000
46
47 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
48 #define MP_FLASH_SIZE_MAX 32*1024*1024
49
50 #define MP_TIMER1_IRQ 4
51 /* ... */
52 #define MP_TIMER4_IRQ 7
53 #define MP_EHCI_IRQ 8
54 #define MP_ETH_IRQ 9
55 #define MP_UART1_IRQ 11
56 #define MP_UART2_IRQ 11
57 #define MP_GPIO_IRQ 12
58 #define MP_RTC_IRQ 28
59 #define MP_AUDIO_IRQ 30
60
61 static uint32_t gpio_in_state = 0xffffffff;
62 static uint32_t gpio_isr;
63 static uint32_t gpio_out_state;
64 static ram_addr_t sram_off;
65
66 /* Address conversion helpers */
67 static void *target2host_addr(uint32_t addr)
68 {
69 if (addr < MP_SRAM_BASE) {
70 if (addr >= MP_RAM_DEFAULT_SIZE)
71 return NULL;
72 return (void *)(phys_ram_base + addr);
73 } else {
74 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
75 return NULL;
76 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
77 }
78 }
79
80 static uint32_t host2target_addr(void *addr)
81 {
82 if (addr < ((void *)phys_ram_base) + sram_off)
83 return (unsigned long)addr - (unsigned long)phys_ram_base;
84 else
85 return (unsigned long)addr - (unsigned long)phys_ram_base -
86 sram_off + MP_SRAM_BASE;
87 }
88
89
90 typedef enum i2c_state {
91 STOPPED = 0,
92 INITIALIZING,
93 SENDING_BIT7,
94 SENDING_BIT6,
95 SENDING_BIT5,
96 SENDING_BIT4,
97 SENDING_BIT3,
98 SENDING_BIT2,
99 SENDING_BIT1,
100 SENDING_BIT0,
101 WAITING_FOR_ACK,
102 RECEIVING_BIT7,
103 RECEIVING_BIT6,
104 RECEIVING_BIT5,
105 RECEIVING_BIT4,
106 RECEIVING_BIT3,
107 RECEIVING_BIT2,
108 RECEIVING_BIT1,
109 RECEIVING_BIT0,
110 SENDING_ACK
111 } i2c_state;
112
113 typedef struct i2c_interface {
114 i2c_bus *bus;
115 i2c_state state;
116 int last_data;
117 int last_clock;
118 uint8_t buffer;
119 int current_addr;
120 } i2c_interface;
121
122 static void i2c_enter_stop(i2c_interface *i2c)
123 {
124 if (i2c->current_addr >= 0)
125 i2c_end_transfer(i2c->bus);
126 i2c->current_addr = -1;
127 i2c->state = STOPPED;
128 }
129
130 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
131 {
132 if (!i2c)
133 return;
134
135 switch (i2c->state) {
136 case STOPPED:
137 if (data == 0 && i2c->last_data == 1 && clock == 1)
138 i2c->state = INITIALIZING;
139 break;
140
141 case INITIALIZING:
142 if (clock == 0 && i2c->last_clock == 1 && data == 0)
143 i2c->state = SENDING_BIT7;
144 else
145 i2c_enter_stop(i2c);
146 break;
147
148 case SENDING_BIT7 ... SENDING_BIT0:
149 if (clock == 0 && i2c->last_clock == 1) {
150 i2c->buffer = (i2c->buffer << 1) | data;
151 i2c->state++; /* will end up in WAITING_FOR_ACK */
152 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153 i2c_enter_stop(i2c);
154 break;
155
156 case WAITING_FOR_ACK:
157 if (clock == 0 && i2c->last_clock == 1) {
158 if (i2c->current_addr < 0) {
159 i2c->current_addr = i2c->buffer;
160 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
161 i2c->buffer & 1);
162 } else
163 i2c_send(i2c->bus, i2c->buffer);
164 if (i2c->current_addr & 1) {
165 i2c->state = RECEIVING_BIT7;
166 i2c->buffer = i2c_recv(i2c->bus);
167 } else
168 i2c->state = SENDING_BIT7;
169 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
170 i2c_enter_stop(i2c);
171 break;
172
173 case RECEIVING_BIT7 ... RECEIVING_BIT0:
174 if (clock == 0 && i2c->last_clock == 1) {
175 i2c->state++; /* will end up in SENDING_ACK */
176 i2c->buffer <<= 1;
177 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
178 i2c_enter_stop(i2c);
179 break;
180
181 case SENDING_ACK:
182 if (clock == 0 && i2c->last_clock == 1) {
183 i2c->state = RECEIVING_BIT7;
184 if (data == 0)
185 i2c->buffer = i2c_recv(i2c->bus);
186 else
187 i2c_nack(i2c->bus);
188 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
189 i2c_enter_stop(i2c);
190 break;
191 }
192
193 i2c->last_data = data;
194 i2c->last_clock = clock;
195 }
196
197 static int i2c_get_data(i2c_interface *i2c)
198 {
199 if (!i2c)
200 return 0;
201
202 switch (i2c->state) {
203 case RECEIVING_BIT7 ... RECEIVING_BIT0:
204 return (i2c->buffer >> 7);
205
206 case WAITING_FOR_ACK:
207 default:
208 return 0;
209 }
210 }
211
212 static i2c_interface *mixer_i2c;
213
214 #ifdef HAS_AUDIO
215
216 /* Audio register offsets */
217 #define MP_AUDIO_PLAYBACK_MODE 0x00
218 #define MP_AUDIO_CLOCK_DIV 0x18
219 #define MP_AUDIO_IRQ_STATUS 0x20
220 #define MP_AUDIO_IRQ_ENABLE 0x24
221 #define MP_AUDIO_TX_START_LO 0x28
222 #define MP_AUDIO_TX_THRESHOLD 0x2C
223 #define MP_AUDIO_TX_STATUS 0x38
224 #define MP_AUDIO_TX_START_HI 0x40
225
226 /* Status register and IRQ enable bits */
227 #define MP_AUDIO_TX_HALF (1 << 6)
228 #define MP_AUDIO_TX_FULL (1 << 7)
229
230 /* Playback mode bits */
231 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
232 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
233 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
234 #define MP_AUDIO_MONO (1 << 14)
235
236 /* Wolfson 8750 I2C address */
237 #define MP_WM_ADDR 0x34
238
239 const char audio_name[] = "mv88w8618";
240
241 typedef struct musicpal_audio_state {
242 uint32_t base;
243 qemu_irq irq;
244 uint32_t playback_mode;
245 uint32_t status;
246 uint32_t irq_enable;
247 unsigned long phys_buf;
248 int8_t *target_buffer;
249 unsigned int threshold;
250 unsigned int play_pos;
251 unsigned int last_free;
252 uint32_t clock_div;
253 i2c_slave *wm;
254 } musicpal_audio_state;
255
256 static void audio_callback(void *opaque, int free_out, int free_in)
257 {
258 musicpal_audio_state *s = opaque;
259 int16_t *codec_buffer;
260 int8_t *mem_buffer;
261 int pos, block_size;
262
263 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
264 return;
265
266 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
267 free_out <<= 1;
268
269 if (!(s->playback_mode & MP_AUDIO_MONO))
270 free_out <<= 1;
271
272 block_size = s->threshold/2;
273 if (free_out - s->last_free < block_size)
274 return;
275
276 mem_buffer = s->target_buffer + s->play_pos;
277 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
278 if (s->playback_mode & MP_AUDIO_MONO) {
279 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
280 for (pos = 0; pos < block_size; pos += 2) {
281 *codec_buffer++ = *(int16_t *)mem_buffer;
282 *codec_buffer++ = *(int16_t *)mem_buffer;
283 mem_buffer += 2;
284 }
285 } else
286 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
287 (uint32_t *)mem_buffer, block_size);
288 } else {
289 if (s->playback_mode & MP_AUDIO_MONO) {
290 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
291 for (pos = 0; pos < block_size; pos++) {
292 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
293 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
294 }
295 } else {
296 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
297 for (pos = 0; pos < block_size; pos += 2) {
298 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
300 }
301 }
302 }
303 wm8750_dac_commit(s->wm);
304
305 s->last_free = free_out - block_size;
306
307 if (s->play_pos == 0) {
308 s->status |= MP_AUDIO_TX_HALF;
309 s->play_pos = block_size;
310 } else {
311 s->status |= MP_AUDIO_TX_FULL;
312 s->play_pos = 0;
313 }
314
315 if (s->status & s->irq_enable)
316 qemu_irq_raise(s->irq);
317 }
318
319 static void musicpal_audio_clock_update(musicpal_audio_state *s)
320 {
321 int rate;
322
323 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
324 rate = 24576000 / 64; /* 24.576MHz */
325 else
326 rate = 11289600 / 64; /* 11.2896MHz */
327
328 rate /= ((s->clock_div >> 8) & 0xff) + 1;
329
330 wm8750_set_bclk_in(s->wm, rate);
331 }
332
333 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
334 {
335 musicpal_audio_state *s = opaque;
336
337 offset -= s->base;
338 switch (offset) {
339 case MP_AUDIO_PLAYBACK_MODE:
340 return s->playback_mode;
341
342 case MP_AUDIO_CLOCK_DIV:
343 return s->clock_div;
344
345 case MP_AUDIO_IRQ_STATUS:
346 return s->status;
347
348 case MP_AUDIO_IRQ_ENABLE:
349 return s->irq_enable;
350
351 case MP_AUDIO_TX_STATUS:
352 return s->play_pos >> 2;
353
354 default:
355 return 0;
356 }
357 }
358
359 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
360 uint32_t value)
361 {
362 musicpal_audio_state *s = opaque;
363
364 offset -= s->base;
365 switch (offset) {
366 case MP_AUDIO_PLAYBACK_MODE:
367 if (value & MP_AUDIO_PLAYBACK_EN &&
368 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
369 s->status = 0;
370 s->last_free = 0;
371 s->play_pos = 0;
372 }
373 s->playback_mode = value;
374 musicpal_audio_clock_update(s);
375 break;
376
377 case MP_AUDIO_CLOCK_DIV:
378 s->clock_div = value;
379 s->last_free = 0;
380 s->play_pos = 0;
381 musicpal_audio_clock_update(s);
382 break;
383
384 case MP_AUDIO_IRQ_STATUS:
385 s->status &= ~value;
386 break;
387
388 case MP_AUDIO_IRQ_ENABLE:
389 s->irq_enable = value;
390 if (s->status & s->irq_enable)
391 qemu_irq_raise(s->irq);
392 break;
393
394 case MP_AUDIO_TX_START_LO:
395 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
396 s->target_buffer = target2host_addr(s->phys_buf);
397 s->play_pos = 0;
398 s->last_free = 0;
399 break;
400
401 case MP_AUDIO_TX_THRESHOLD:
402 s->threshold = (value + 1) * 4;
403 break;
404
405 case MP_AUDIO_TX_START_HI:
406 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
407 s->target_buffer = target2host_addr(s->phys_buf);
408 s->play_pos = 0;
409 s->last_free = 0;
410 break;
411 }
412 }
413
414 static void musicpal_audio_reset(void *opaque)
415 {
416 musicpal_audio_state *s = opaque;
417
418 s->playback_mode = 0;
419 s->status = 0;
420 s->irq_enable = 0;
421 }
422
423 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
424 musicpal_audio_read,
425 musicpal_audio_read,
426 musicpal_audio_read
427 };
428
429 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
430 musicpal_audio_write,
431 musicpal_audio_write,
432 musicpal_audio_write
433 };
434
435 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
436 {
437 AudioState *audio;
438 musicpal_audio_state *s;
439 i2c_interface *i2c;
440 int iomemtype;
441
442 audio = AUD_init();
443 if (!audio) {
444 AUD_log(audio_name, "No audio state\n");
445 return NULL;
446 }
447
448 s = qemu_mallocz(sizeof(musicpal_audio_state));
449 if (!s)
450 return NULL;
451 s->base = base;
452 s->irq = irq;
453
454 i2c = qemu_mallocz(sizeof(i2c_interface));
455 if (!i2c)
456 return NULL;
457 i2c->bus = i2c_init_bus();
458 i2c->current_addr = -1;
459
460 s->wm = wm8750_init(i2c->bus, audio);
461 if (!s->wm)
462 return NULL;
463 i2c_set_slave_address(s->wm, MP_WM_ADDR);
464 wm8750_data_req_set(s->wm, audio_callback, s);
465
466 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
467 musicpal_audio_writefn, s);
468 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
469
470 qemu_register_reset(musicpal_audio_reset, s);
471
472 return i2c;
473 }
474 #else /* !HAS_AUDIO */
475 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
476 {
477 return NULL;
478 }
479 #endif /* !HAS_AUDIO */
480
481 /* Ethernet register offsets */
482 #define MP_ETH_SMIR 0x010
483 #define MP_ETH_PCXR 0x408
484 #define MP_ETH_SDCMR 0x448
485 #define MP_ETH_ICR 0x450
486 #define MP_ETH_IMR 0x458
487 #define MP_ETH_FRDP0 0x480
488 #define MP_ETH_FRDP1 0x484
489 #define MP_ETH_FRDP2 0x488
490 #define MP_ETH_FRDP3 0x48C
491 #define MP_ETH_CRDP0 0x4A0
492 #define MP_ETH_CRDP1 0x4A4
493 #define MP_ETH_CRDP2 0x4A8
494 #define MP_ETH_CRDP3 0x4AC
495 #define MP_ETH_CTDP0 0x4E0
496 #define MP_ETH_CTDP1 0x4E4
497 #define MP_ETH_CTDP2 0x4E8
498 #define MP_ETH_CTDP3 0x4EC
499
500 /* MII PHY access */
501 #define MP_ETH_SMIR_DATA 0x0000FFFF
502 #define MP_ETH_SMIR_ADDR 0x03FF0000
503 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
504 #define MP_ETH_SMIR_RDVALID (1 << 27)
505
506 /* PHY registers */
507 #define MP_ETH_PHY1_BMSR 0x00210000
508 #define MP_ETH_PHY1_PHYSID1 0x00410000
509 #define MP_ETH_PHY1_PHYSID2 0x00610000
510
511 #define MP_PHY_BMSR_LINK 0x0004
512 #define MP_PHY_BMSR_AUTONEG 0x0008
513
514 #define MP_PHY_88E3015 0x01410E20
515
516 /* TX descriptor status */
517 #define MP_ETH_TX_OWN (1 << 31)
518
519 /* RX descriptor status */
520 #define MP_ETH_RX_OWN (1 << 31)
521
522 /* Interrupt cause/mask bits */
523 #define MP_ETH_IRQ_RX_BIT 0
524 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
525 #define MP_ETH_IRQ_TXHI_BIT 2
526 #define MP_ETH_IRQ_TXLO_BIT 3
527
528 /* Port config bits */
529 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
530
531 /* SDMA command bits */
532 #define MP_ETH_CMD_TXHI (1 << 23)
533 #define MP_ETH_CMD_TXLO (1 << 22)
534
535 typedef struct mv88w8618_tx_desc {
536 uint32_t cmdstat;
537 uint16_t res;
538 uint16_t bytes;
539 uint32_t buffer;
540 uint32_t next;
541 } mv88w8618_tx_desc;
542
543 typedef struct mv88w8618_rx_desc {
544 uint32_t cmdstat;
545 uint16_t bytes;
546 uint16_t buffer_size;
547 uint32_t buffer;
548 uint32_t next;
549 } mv88w8618_rx_desc;
550
551 typedef struct mv88w8618_eth_state {
552 uint32_t base;
553 qemu_irq irq;
554 uint32_t smir;
555 uint32_t icr;
556 uint32_t imr;
557 int vlan_header;
558 mv88w8618_tx_desc *tx_queue[2];
559 mv88w8618_rx_desc *rx_queue[4];
560 mv88w8618_rx_desc *frx_queue[4];
561 mv88w8618_rx_desc *cur_rx[4];
562 VLANClientState *vc;
563 } mv88w8618_eth_state;
564
565 static int eth_can_receive(void *opaque)
566 {
567 return 1;
568 }
569
570 static void eth_receive(void *opaque, const uint8_t *buf, int size)
571 {
572 mv88w8618_eth_state *s = opaque;
573 mv88w8618_rx_desc *desc;
574 int i;
575
576 for (i = 0; i < 4; i++) {
577 desc = s->cur_rx[i];
578 if (!desc)
579 continue;
580 do {
581 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
582 le16_to_cpu(desc->buffer_size) >= size) {
583 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
584 s->vlan_header),
585 buf, size);
586 desc->bytes = cpu_to_le16(size + s->vlan_header);
587 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
588 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
589
590 s->icr |= MP_ETH_IRQ_RX;
591 if (s->icr & s->imr)
592 qemu_irq_raise(s->irq);
593 return;
594 }
595 desc = target2host_addr(le32_to_cpu(desc->next));
596 } while (desc != s->rx_queue[i]);
597 }
598 }
599
600 static void eth_send(mv88w8618_eth_state *s, int queue_index)
601 {
602 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
603
604 do {
605 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
606 qemu_send_packet(s->vc,
607 target2host_addr(le32_to_cpu(desc->buffer)),
608 le16_to_cpu(desc->bytes));
609 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
610 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
611 }
612 desc = target2host_addr(le32_to_cpu(desc->next));
613 } while (desc != s->tx_queue[queue_index]);
614 }
615
616 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
617 {
618 mv88w8618_eth_state *s = opaque;
619
620 offset -= s->base;
621 switch (offset) {
622 case MP_ETH_SMIR:
623 if (s->smir & MP_ETH_SMIR_OPCODE) {
624 switch (s->smir & MP_ETH_SMIR_ADDR) {
625 case MP_ETH_PHY1_BMSR:
626 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
627 MP_ETH_SMIR_RDVALID;
628 case MP_ETH_PHY1_PHYSID1:
629 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
630 case MP_ETH_PHY1_PHYSID2:
631 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
632 default:
633 return MP_ETH_SMIR_RDVALID;
634 }
635 }
636 return 0;
637
638 case MP_ETH_ICR:
639 return s->icr;
640
641 case MP_ETH_IMR:
642 return s->imr;
643
644 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
645 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
646
647 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
648 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
649
650 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
651 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
652
653 default:
654 return 0;
655 }
656 }
657
658 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
659 uint32_t value)
660 {
661 mv88w8618_eth_state *s = opaque;
662
663 offset -= s->base;
664 switch (offset) {
665 case MP_ETH_SMIR:
666 s->smir = value;
667 break;
668
669 case MP_ETH_PCXR:
670 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
671 break;
672
673 case MP_ETH_SDCMR:
674 if (value & MP_ETH_CMD_TXHI)
675 eth_send(s, 1);
676 if (value & MP_ETH_CMD_TXLO)
677 eth_send(s, 0);
678 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
679 qemu_irq_raise(s->irq);
680 break;
681
682 case MP_ETH_ICR:
683 s->icr &= value;
684 break;
685
686 case MP_ETH_IMR:
687 s->imr = value;
688 if (s->icr & s->imr)
689 qemu_irq_raise(s->irq);
690 break;
691
692 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
693 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
694 break;
695
696 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
697 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
698 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
699 break;
700
701 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
702 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
703 break;
704 }
705 }
706
707 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
708 mv88w8618_eth_read,
709 mv88w8618_eth_read,
710 mv88w8618_eth_read
711 };
712
713 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
714 mv88w8618_eth_write,
715 mv88w8618_eth_write,
716 mv88w8618_eth_write
717 };
718
719 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
720 {
721 mv88w8618_eth_state *s;
722 int iomemtype;
723
724 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
725 if (!s)
726 return;
727 s->base = base;
728 s->irq = irq;
729 s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
730 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
731 mv88w8618_eth_writefn, s);
732 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
733 }
734
735 /* LCD register offsets */
736 #define MP_LCD_IRQCTRL 0x180
737 #define MP_LCD_IRQSTAT 0x184
738 #define MP_LCD_SPICTRL 0x1ac
739 #define MP_LCD_INST 0x1bc
740 #define MP_LCD_DATA 0x1c0
741
742 /* Mode magics */
743 #define MP_LCD_SPI_DATA 0x00100011
744 #define MP_LCD_SPI_CMD 0x00104011
745 #define MP_LCD_SPI_INVALID 0x00000000
746
747 /* Commmands */
748 #define MP_LCD_INST_SETPAGE0 0xB0
749 /* ... */
750 #define MP_LCD_INST_SETPAGE7 0xB7
751
752 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
753
754 typedef struct musicpal_lcd_state {
755 uint32_t base;
756 uint32_t mode;
757 uint32_t irqctrl;
758 int page;
759 int page_off;
760 DisplayState *ds;
761 uint8_t video_ram[128*64/8];
762 } musicpal_lcd_state;
763
764 static uint32_t lcd_brightness;
765
766 static uint8_t scale_lcd_color(uint8_t col)
767 {
768 int tmp = col;
769
770 switch (lcd_brightness) {
771 case 0x00000007: /* 0 */
772 return 0;
773
774 case 0x00020000: /* 1 */
775 return (tmp * 1) / 7;
776
777 case 0x00020001: /* 2 */
778 return (tmp * 2) / 7;
779
780 case 0x00040000: /* 3 */
781 return (tmp * 3) / 7;
782
783 case 0x00010006: /* 4 */
784 return (tmp * 4) / 7;
785
786 case 0x00020005: /* 5 */
787 return (tmp * 5) / 7;
788
789 case 0x00040003: /* 6 */
790 return (tmp * 6) / 7;
791
792 case 0x00030004: /* 7 */
793 default:
794 return col;
795 }
796 }
797
798 #define SET_LCD_PIXEL(depth, type) \
799 static inline void glue(set_lcd_pixel, depth) \
800 (musicpal_lcd_state *s, int x, int y, type col) \
801 { \
802 int dx, dy; \
803 type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
804 \
805 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
806 for (dx = 0; dx < 3; dx++, pixel++) \
807 *pixel = col; \
808 }
809 SET_LCD_PIXEL(8, uint8_t)
810 SET_LCD_PIXEL(16, uint16_t)
811 SET_LCD_PIXEL(32, uint32_t)
812
813 #include "pixel_ops.h"
814
815 static void lcd_refresh(void *opaque)
816 {
817 musicpal_lcd_state *s = opaque;
818 int x, y, col;
819
820 switch (s->ds->depth) {
821 case 0:
822 return;
823 #define LCD_REFRESH(depth, func) \
824 case depth: \
825 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
826 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
827 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
828 for (x = 0; x < 128; x++) \
829 for (y = 0; y < 64; y++) \
830 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
831 glue(set_lcd_pixel, depth)(s, x, y, col); \
832 else \
833 glue(set_lcd_pixel, depth)(s, x, y, 0); \
834 break;
835 LCD_REFRESH(8, rgb_to_pixel8)
836 LCD_REFRESH(16, rgb_to_pixel16)
837 LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
838 default:
839 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
840 s->ds->depth);
841 }
842
843 dpy_update(s->ds, 0, 0, 128*3, 64*3);
844 }
845
846 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
847 {
848 musicpal_lcd_state *s = opaque;
849
850 offset -= s->base;
851 switch (offset) {
852 case MP_LCD_IRQCTRL:
853 return s->irqctrl;
854
855 default:
856 return 0;
857 }
858 }
859
860 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
861 uint32_t value)
862 {
863 musicpal_lcd_state *s = opaque;
864
865 offset -= s->base;
866 switch (offset) {
867 case MP_LCD_IRQCTRL:
868 s->irqctrl = value;
869 break;
870
871 case MP_LCD_SPICTRL:
872 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
873 s->mode = value;
874 else
875 s->mode = MP_LCD_SPI_INVALID;
876 break;
877
878 case MP_LCD_INST:
879 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
880 s->page = value - MP_LCD_INST_SETPAGE0;
881 s->page_off = 0;
882 }
883 break;
884
885 case MP_LCD_DATA:
886 if (s->mode == MP_LCD_SPI_CMD) {
887 if (value >= MP_LCD_INST_SETPAGE0 &&
888 value <= MP_LCD_INST_SETPAGE7) {
889 s->page = value - MP_LCD_INST_SETPAGE0;
890 s->page_off = 0;
891 }
892 } else if (s->mode == MP_LCD_SPI_DATA) {
893 s->video_ram[s->page*128 + s->page_off] = value;
894 s->page_off = (s->page_off + 1) & 127;
895 }
896 break;
897 }
898 }
899
900 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
901 musicpal_lcd_read,
902 musicpal_lcd_read,
903 musicpal_lcd_read
904 };
905
906 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
907 musicpal_lcd_write,
908 musicpal_lcd_write,
909 musicpal_lcd_write
910 };
911
912 static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
913 {
914 musicpal_lcd_state *s;
915 int iomemtype;
916
917 s = qemu_mallocz(sizeof(musicpal_lcd_state));
918 if (!s)
919 return;
920 s->base = base;
921 s->ds = ds;
922 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
923 musicpal_lcd_writefn, s);
924 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
925
926 graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
927 dpy_resize(ds, 128*3, 64*3);
928 }
929
930 /* PIC register offsets */
931 #define MP_PIC_STATUS 0x00
932 #define MP_PIC_ENABLE_SET 0x08
933 #define MP_PIC_ENABLE_CLR 0x0C
934
935 typedef struct mv88w8618_pic_state
936 {
937 uint32_t base;
938 uint32_t level;
939 uint32_t enabled;
940 qemu_irq parent_irq;
941 } mv88w8618_pic_state;
942
943 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
944 {
945 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
946 }
947
948 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
949 {
950 mv88w8618_pic_state *s = opaque;
951
952 if (level)
953 s->level |= 1 << irq;
954 else
955 s->level &= ~(1 << irq);
956 mv88w8618_pic_update(s);
957 }
958
959 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
960 {
961 mv88w8618_pic_state *s = opaque;
962
963 offset -= s->base;
964 switch (offset) {
965 case MP_PIC_STATUS:
966 return s->level & s->enabled;
967
968 default:
969 return 0;
970 }
971 }
972
973 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
974 uint32_t value)
975 {
976 mv88w8618_pic_state *s = opaque;
977
978 offset -= s->base;
979 switch (offset) {
980 case MP_PIC_ENABLE_SET:
981 s->enabled |= value;
982 break;
983
984 case MP_PIC_ENABLE_CLR:
985 s->enabled &= ~value;
986 s->level &= ~value;
987 break;
988 }
989 mv88w8618_pic_update(s);
990 }
991
992 static void mv88w8618_pic_reset(void *opaque)
993 {
994 mv88w8618_pic_state *s = opaque;
995
996 s->level = 0;
997 s->enabled = 0;
998 }
999
1000 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1001 mv88w8618_pic_read,
1002 mv88w8618_pic_read,
1003 mv88w8618_pic_read
1004 };
1005
1006 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1007 mv88w8618_pic_write,
1008 mv88w8618_pic_write,
1009 mv88w8618_pic_write
1010 };
1011
1012 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1013 {
1014 mv88w8618_pic_state *s;
1015 int iomemtype;
1016 qemu_irq *qi;
1017
1018 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1019 if (!s)
1020 return NULL;
1021 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1022 s->base = base;
1023 s->parent_irq = parent_irq;
1024 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1025 mv88w8618_pic_writefn, s);
1026 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1027
1028 qemu_register_reset(mv88w8618_pic_reset, s);
1029
1030 return qi;
1031 }
1032
1033 /* PIT register offsets */
1034 #define MP_PIT_TIMER1_LENGTH 0x00
1035 /* ... */
1036 #define MP_PIT_TIMER4_LENGTH 0x0C
1037 #define MP_PIT_CONTROL 0x10
1038 #define MP_PIT_TIMER1_VALUE 0x14
1039 /* ... */
1040 #define MP_PIT_TIMER4_VALUE 0x20
1041 #define MP_BOARD_RESET 0x34
1042
1043 /* Magic board reset value (probably some watchdog behind it) */
1044 #define MP_BOARD_RESET_MAGIC 0x10000
1045
1046 typedef struct mv88w8618_timer_state {
1047 ptimer_state *timer;
1048 uint32_t limit;
1049 int freq;
1050 qemu_irq irq;
1051 } mv88w8618_timer_state;
1052
1053 typedef struct mv88w8618_pit_state {
1054 void *timer[4];
1055 uint32_t control;
1056 uint32_t base;
1057 } mv88w8618_pit_state;
1058
1059 static void mv88w8618_timer_tick(void *opaque)
1060 {
1061 mv88w8618_timer_state *s = opaque;
1062
1063 qemu_irq_raise(s->irq);
1064 }
1065
1066 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1067 {
1068 mv88w8618_timer_state *s;
1069 QEMUBH *bh;
1070
1071 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1072 s->irq = irq;
1073 s->freq = freq;
1074
1075 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1076 s->timer = ptimer_init(bh);
1077
1078 return s;
1079 }
1080
1081 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1082 {
1083 mv88w8618_pit_state *s = opaque;
1084 mv88w8618_timer_state *t;
1085
1086 offset -= s->base;
1087 switch (offset) {
1088 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1089 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1090 return ptimer_get_count(t->timer);
1091
1092 default:
1093 return 0;
1094 }
1095 }
1096
1097 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1098 uint32_t value)
1099 {
1100 mv88w8618_pit_state *s = opaque;
1101 mv88w8618_timer_state *t;
1102 int i;
1103
1104 offset -= s->base;
1105 switch (offset) {
1106 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1107 t = s->timer[offset >> 2];
1108 t->limit = value;
1109 ptimer_set_limit(t->timer, t->limit, 1);
1110 break;
1111
1112 case MP_PIT_CONTROL:
1113 for (i = 0; i < 4; i++) {
1114 if (value & 0xf) {
1115 t = s->timer[i];
1116 ptimer_set_limit(t->timer, t->limit, 0);
1117 ptimer_set_freq(t->timer, t->freq);
1118 ptimer_run(t->timer, 0);
1119 }
1120 value >>= 4;
1121 }
1122 break;
1123
1124 case MP_BOARD_RESET:
1125 if (value == MP_BOARD_RESET_MAGIC)
1126 qemu_system_reset_request();
1127 break;
1128 }
1129 }
1130
1131 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1132 mv88w8618_pit_read,
1133 mv88w8618_pit_read,
1134 mv88w8618_pit_read
1135 };
1136
1137 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1138 mv88w8618_pit_write,
1139 mv88w8618_pit_write,
1140 mv88w8618_pit_write
1141 };
1142
1143 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1144 {
1145 int iomemtype;
1146 mv88w8618_pit_state *s;
1147
1148 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1149 if (!s)
1150 return;
1151
1152 s->base = base;
1153 /* Letting them all run at 1 MHz is likely just a pragmatic
1154 * simplification. */
1155 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1156 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1157 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1158 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1159
1160 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1161 mv88w8618_pit_writefn, s);
1162 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1163 }
1164
1165 /* Flash config register offsets */
1166 #define MP_FLASHCFG_CFGR0 0x04
1167
1168 typedef struct mv88w8618_flashcfg_state {
1169 uint32_t base;
1170 uint32_t cfgr0;
1171 } mv88w8618_flashcfg_state;
1172
1173 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1174 target_phys_addr_t offset)
1175 {
1176 mv88w8618_flashcfg_state *s = opaque;
1177
1178 offset -= s->base;
1179 switch (offset) {
1180 case MP_FLASHCFG_CFGR0:
1181 return s->cfgr0;
1182
1183 default:
1184 return 0;
1185 }
1186 }
1187
1188 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1189 uint32_t value)
1190 {
1191 mv88w8618_flashcfg_state *s = opaque;
1192
1193 offset -= s->base;
1194 switch (offset) {
1195 case MP_FLASHCFG_CFGR0:
1196 s->cfgr0 = value;
1197 break;
1198 }
1199 }
1200
1201 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1202 mv88w8618_flashcfg_read,
1203 mv88w8618_flashcfg_read,
1204 mv88w8618_flashcfg_read
1205 };
1206
1207 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1208 mv88w8618_flashcfg_write,
1209 mv88w8618_flashcfg_write,
1210 mv88w8618_flashcfg_write
1211 };
1212
1213 static void mv88w8618_flashcfg_init(uint32_t base)
1214 {
1215 int iomemtype;
1216 mv88w8618_flashcfg_state *s;
1217
1218 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1219 if (!s)
1220 return;
1221
1222 s->base = base;
1223 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1224 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1225 mv88w8618_flashcfg_writefn, s);
1226 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1227 }
1228
1229 /* Various registers in the 0x80000000 domain */
1230 #define MP_BOARD_REVISION 0x2018
1231
1232 #define MP_WLAN_MAGIC1 0xc11c
1233 #define MP_WLAN_MAGIC2 0xc124
1234
1235 #define MP_GPIO_OE_LO 0xd008
1236 #define MP_GPIO_OUT_LO 0xd00c
1237 #define MP_GPIO_IN_LO 0xd010
1238 #define MP_GPIO_ISR_LO 0xd020
1239 #define MP_GPIO_OE_HI 0xd508
1240 #define MP_GPIO_OUT_HI 0xd50c
1241 #define MP_GPIO_IN_HI 0xd510
1242 #define MP_GPIO_ISR_HI 0xd520
1243
1244 /* GPIO bits & masks */
1245 #define MP_GPIO_WHEEL_VOL (1 << 8)
1246 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1247 #define MP_GPIO_WHEEL_NAV (1 << 10)
1248 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1249 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1250 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1251 #define MP_GPIO_BTN_MENU (1 << 20)
1252 #define MP_GPIO_BTN_VOLUME (1 << 21)
1253 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1254 #define MP_GPIO_I2C_DATA_BIT 29
1255 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1256 #define MP_GPIO_I2C_CLOCK_BIT 30
1257
1258 /* LCD brightness bits in GPIO_OE_HI */
1259 #define MP_OE_LCD_BRIGHTNESS 0x0007
1260
1261 static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1262 {
1263 offset -= 0x80000000;
1264 switch (offset) {
1265 case MP_BOARD_REVISION:
1266 return 0x0031;
1267
1268 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1269 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1270
1271 case MP_GPIO_OUT_LO:
1272 return gpio_out_state & 0xFFFF;
1273 case MP_GPIO_OUT_HI:
1274 return gpio_out_state >> 16;
1275
1276 case MP_GPIO_IN_LO:
1277 return gpio_in_state & 0xFFFF;
1278 case MP_GPIO_IN_HI:
1279 /* Update received I2C data */
1280 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1281 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1282 return gpio_in_state >> 16;
1283
1284 case MP_GPIO_ISR_LO:
1285 return gpio_isr & 0xFFFF;
1286 case MP_GPIO_ISR_HI:
1287 return gpio_isr >> 16;
1288
1289 /* Workaround to allow loading the binary-only wlandrv.ko crap
1290 * from the original Freecom firmware. */
1291 case MP_WLAN_MAGIC1:
1292 return ~3;
1293 case MP_WLAN_MAGIC2:
1294 return -1;
1295
1296 default:
1297 return 0;
1298 }
1299 }
1300
1301 static void musicpal_write(void *opaque, target_phys_addr_t offset,
1302 uint32_t value)
1303 {
1304 offset -= 0x80000000;
1305 switch (offset) {
1306 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1307 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1308 (value & MP_OE_LCD_BRIGHTNESS);
1309 break;
1310
1311 case MP_GPIO_OUT_LO:
1312 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1313 break;
1314 case MP_GPIO_OUT_HI:
1315 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1316 lcd_brightness = (lcd_brightness & 0xFFFF) |
1317 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1318 i2c_state_update(mixer_i2c,
1319 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1320 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1321 break;
1322
1323 }
1324 }
1325
1326 /* Keyboard codes & masks */
1327 #define KEY_RELEASED 0x80
1328 #define KEY_CODE 0x7f
1329
1330 #define KEYCODE_TAB 0x0f
1331 #define KEYCODE_ENTER 0x1c
1332 #define KEYCODE_F 0x21
1333 #define KEYCODE_M 0x32
1334
1335 #define KEYCODE_EXTENDED 0xe0
1336 #define KEYCODE_UP 0x48
1337 #define KEYCODE_DOWN 0x50
1338 #define KEYCODE_LEFT 0x4b
1339 #define KEYCODE_RIGHT 0x4d
1340
1341 static void musicpal_key_event(void *opaque, int keycode)
1342 {
1343 qemu_irq irq = opaque;
1344 uint32_t event = 0;
1345 static int kbd_extended;
1346
1347 if (keycode == KEYCODE_EXTENDED) {
1348 kbd_extended = 1;
1349 return;
1350 }
1351
1352 if (kbd_extended)
1353 switch (keycode & KEY_CODE) {
1354 case KEYCODE_UP:
1355 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1356 break;
1357
1358 case KEYCODE_DOWN:
1359 event = MP_GPIO_WHEEL_NAV;
1360 break;
1361
1362 case KEYCODE_LEFT:
1363 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1364 break;
1365
1366 case KEYCODE_RIGHT:
1367 event = MP_GPIO_WHEEL_VOL;
1368 break;
1369 }
1370 else {
1371 switch (keycode & KEY_CODE) {
1372 case KEYCODE_F:
1373 event = MP_GPIO_BTN_FAVORITS;
1374 break;
1375
1376 case KEYCODE_TAB:
1377 event = MP_GPIO_BTN_VOLUME;
1378 break;
1379
1380 case KEYCODE_ENTER:
1381 event = MP_GPIO_BTN_NAVIGATION;
1382 break;
1383
1384 case KEYCODE_M:
1385 event = MP_GPIO_BTN_MENU;
1386 break;
1387 }
1388 /* Do not repeat already pressed buttons */
1389 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1390 event = 0;
1391 }
1392
1393 if (event) {
1394 if (keycode & KEY_RELEASED) {
1395 gpio_in_state |= event;
1396 } else {
1397 gpio_in_state &= ~event;
1398 gpio_isr = event;
1399 qemu_irq_raise(irq);
1400 }
1401 }
1402
1403 kbd_extended = 0;
1404 }
1405
1406 static CPUReadMemoryFunc *musicpal_readfn[] = {
1407 musicpal_read,
1408 musicpal_read,
1409 musicpal_read,
1410 };
1411
1412 static CPUWriteMemoryFunc *musicpal_writefn[] = {
1413 musicpal_write,
1414 musicpal_write,
1415 musicpal_write,
1416 };
1417
1418 static struct arm_boot_info musicpal_binfo = {
1419 .loader_start = 0x0,
1420 .board_id = 0x20e,
1421 };
1422
1423 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1424 const char *boot_device, DisplayState *ds,
1425 const char *kernel_filename, const char *kernel_cmdline,
1426 const char *initrd_filename, const char *cpu_model)
1427 {
1428 CPUState *env;
1429 qemu_irq *pic;
1430 int index;
1431 int iomemtype;
1432 unsigned long flash_size;
1433
1434 if (!cpu_model)
1435 cpu_model = "arm926";
1436
1437 env = cpu_init(cpu_model);
1438 if (!env) {
1439 fprintf(stderr, "Unable to find CPU definition\n");
1440 exit(1);
1441 }
1442 pic = arm_pic_init_cpu(env);
1443
1444 /* For now we use a fixed - the original - RAM size */
1445 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1446 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1447
1448 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1449 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1450
1451 /* Catch various stuff not handled by separate subsystems */
1452 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1453 musicpal_writefn, env);
1454 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1455
1456 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1457 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1458
1459 if (serial_hds[0])
1460 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1461 serial_hds[0], 1);
1462 if (serial_hds[1])
1463 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1464 serial_hds[1], 1);
1465
1466 /* Register flash */
1467 index = drive_get_index(IF_PFLASH, 0, 0);
1468 if (index != -1) {
1469 flash_size = bdrv_getlength(drives_table[index].bdrv);
1470 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1471 flash_size != 32*1024*1024) {
1472 fprintf(stderr, "Invalid flash image size\n");
1473 exit(1);
1474 }
1475
1476 /*
1477 * The original U-Boot accesses the flash at 0xFE000000 instead of
1478 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1479 * image is smaller than 32 MB.
1480 */
1481 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1482 drives_table[index].bdrv, 0x10000,
1483 (flash_size + 0xffff) >> 16,
1484 MP_FLASH_SIZE_MAX / flash_size,
1485 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1486 0x5555, 0x2AAA);
1487 }
1488 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1489
1490 musicpal_lcd_init(ds, MP_LCD_BASE);
1491
1492 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1493
1494 /*
1495 * Wait a bit to catch menu button during U-Boot start-up
1496 * (to trigger emergency update).
1497 */
1498 sleep(1);
1499
1500 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1501
1502 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1503
1504 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1505 musicpal_binfo.kernel_filename = kernel_filename;
1506 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1507 musicpal_binfo.initrd_filename = initrd_filename;
1508 arm_load_kernel(env, &musicpal_binfo);
1509 }
1510
1511 QEMUMachine musicpal_machine = {
1512 "musicpal",
1513 "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1514 musicpal_init,
1515 MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1516 };