]> git.proxmox.com Git - qemu.git/blob - hw/net/rtl8139.c
aio / timers: Switch entire codebase to the new timer API
[qemu.git] / hw / net / rtl8139.c
1 /**
2 * QEMU RTL8139 emulation
3 *
4 * Copyright (c) 2006 Igor Kovalenko
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23
24 * Modifications:
25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
26 *
27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
28 * HW revision ID changes for FreeBSD driver
29 *
30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
31 * Corrected packet transfer reassembly routine for 8139C+ mode
32 * Rearranged debugging print statements
33 * Implemented PCI timer interrupt (disabled by default)
34 * Implemented Tally Counters, increased VM load/save version
35 * Implemented IP/TCP/UDP checksum task offloading
36 *
37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
38 * Fixed MTU=1500 for produced ethernet frames
39 *
40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
41 * segmentation offloading
42 * Removed slirp.h dependency
43 * Added rx/tx buffer reset when enabling rx/tx operation
44 *
45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
46 * when strictly needed (required for for
47 * Darwin)
48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
49 */
50
51 /* For crc32 */
52 #include <zlib.h>
53
54 #include "hw/hw.h"
55 #include "hw/pci/pci.h"
56 #include "sysemu/dma.h"
57 #include "qemu/timer.h"
58 #include "net/net.h"
59 #include "hw/loader.h"
60 #include "sysemu/sysemu.h"
61 #include "qemu/iov.h"
62
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65
66 #define PCI_FREQUENCY 33000000L
67
68 #define SET_MASKED(input, mask, curr) \
69 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73 ( ( input ) & ( size - 1 ) )
74
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
80 #define ETH_MTU 1500
81
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84
85 #if defined (DEBUG_RTL8139)
86 # define DPRINTF(fmt, ...) \
87 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91 return 0;
92 }
93 #endif
94
95 #define TYPE_RTL8139 "rtl8139"
96
97 #define RTL8139(obj) \
98 OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
99
100 /* Symbolic offsets to registers. */
101 enum RTL8139_registers {
102 MAC0 = 0, /* Ethernet hardware address. */
103 MAR0 = 8, /* Multicast filter. */
104 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
105 /* Dump Tally Conter control register(64bit). C+ mode only */
106 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
107 RxBuf = 0x30,
108 ChipCmd = 0x37,
109 RxBufPtr = 0x38,
110 RxBufAddr = 0x3A,
111 IntrMask = 0x3C,
112 IntrStatus = 0x3E,
113 TxConfig = 0x40,
114 RxConfig = 0x44,
115 Timer = 0x48, /* A general-purpose counter. */
116 RxMissed = 0x4C, /* 24 bits valid, write clears. */
117 Cfg9346 = 0x50,
118 Config0 = 0x51,
119 Config1 = 0x52,
120 FlashReg = 0x54,
121 MediaStatus = 0x58,
122 Config3 = 0x59,
123 Config4 = 0x5A, /* absent on RTL-8139A */
124 HltClk = 0x5B,
125 MultiIntr = 0x5C,
126 PCIRevisionID = 0x5E,
127 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
128 BasicModeCtrl = 0x62,
129 BasicModeStatus = 0x64,
130 NWayAdvert = 0x66,
131 NWayLPAR = 0x68,
132 NWayExpansion = 0x6A,
133 /* Undocumented registers, but required for proper operation. */
134 FIFOTMS = 0x70, /* FIFO Control and test. */
135 CSCR = 0x74, /* Chip Status and Configuration Register. */
136 PARA78 = 0x78,
137 PARA7c = 0x7c, /* Magic transceiver parameter register. */
138 Config5 = 0xD8, /* absent on RTL-8139A */
139 /* C+ mode */
140 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
141 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
142 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
143 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
144 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
145 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
146 TxThresh = 0xEC, /* Early Tx threshold */
147 };
148
149 enum ClearBitMasks {
150 MultiIntrClear = 0xF000,
151 ChipCmdClear = 0xE2,
152 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
153 };
154
155 enum ChipCmdBits {
156 CmdReset = 0x10,
157 CmdRxEnb = 0x08,
158 CmdTxEnb = 0x04,
159 RxBufEmpty = 0x01,
160 };
161
162 /* C+ mode */
163 enum CplusCmdBits {
164 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
165 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
166 CPlusRxEnb = 0x0002,
167 CPlusTxEnb = 0x0001,
168 };
169
170 /* Interrupt register bits, using my own meaningful names. */
171 enum IntrStatusBits {
172 PCIErr = 0x8000,
173 PCSTimeout = 0x4000,
174 RxFIFOOver = 0x40,
175 RxUnderrun = 0x20, /* Packet Underrun / Link Change */
176 RxOverflow = 0x10,
177 TxErr = 0x08,
178 TxOK = 0x04,
179 RxErr = 0x02,
180 RxOK = 0x01,
181
182 RxAckBits = RxFIFOOver | RxOverflow | RxOK,
183 };
184
185 enum TxStatusBits {
186 TxHostOwns = 0x2000,
187 TxUnderrun = 0x4000,
188 TxStatOK = 0x8000,
189 TxOutOfWindow = 0x20000000,
190 TxAborted = 0x40000000,
191 TxCarrierLost = 0x80000000,
192 };
193 enum RxStatusBits {
194 RxMulticast = 0x8000,
195 RxPhysical = 0x4000,
196 RxBroadcast = 0x2000,
197 RxBadSymbol = 0x0020,
198 RxRunt = 0x0010,
199 RxTooLong = 0x0008,
200 RxCRCErr = 0x0004,
201 RxBadAlign = 0x0002,
202 RxStatusOK = 0x0001,
203 };
204
205 /* Bits in RxConfig. */
206 enum rx_mode_bits {
207 AcceptErr = 0x20,
208 AcceptRunt = 0x10,
209 AcceptBroadcast = 0x08,
210 AcceptMulticast = 0x04,
211 AcceptMyPhys = 0x02,
212 AcceptAllPhys = 0x01,
213 };
214
215 /* Bits in TxConfig. */
216 enum tx_config_bits {
217
218 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
219 TxIFGShift = 24,
220 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
221 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
222 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
223 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
224
225 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
226 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
227 TxClearAbt = (1 << 0), /* Clear abort (WO) */
228 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
229 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
230
231 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
232 };
233
234
235 /* Transmit Status of All Descriptors (TSAD) Register */
236 enum TSAD_bits {
237 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
238 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
239 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
240 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
241 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
242 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
243 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
244 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
245 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
246 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
247 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
248 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
249 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
250 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
251 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
252 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
253 };
254
255
256 /* Bits in Config1 */
257 enum Config1Bits {
258 Cfg1_PM_Enable = 0x01,
259 Cfg1_VPD_Enable = 0x02,
260 Cfg1_PIO = 0x04,
261 Cfg1_MMIO = 0x08,
262 LWAKE = 0x10, /* not on 8139, 8139A */
263 Cfg1_Driver_Load = 0x20,
264 Cfg1_LED0 = 0x40,
265 Cfg1_LED1 = 0x80,
266 SLEEP = (1 << 1), /* only on 8139, 8139A */
267 PWRDN = (1 << 0), /* only on 8139, 8139A */
268 };
269
270 /* Bits in Config3 */
271 enum Config3Bits {
272 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
273 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
274 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
275 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
276 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
277 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
278 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
279 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
280 };
281
282 /* Bits in Config4 */
283 enum Config4Bits {
284 LWPTN = (1 << 2), /* not on 8139, 8139A */
285 };
286
287 /* Bits in Config5 */
288 enum Config5Bits {
289 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
290 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
291 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
292 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
293 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
294 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
295 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
296 };
297
298 enum RxConfigBits {
299 /* rx fifo threshold */
300 RxCfgFIFOShift = 13,
301 RxCfgFIFONone = (7 << RxCfgFIFOShift),
302
303 /* Max DMA burst */
304 RxCfgDMAShift = 8,
305 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
306
307 /* rx ring buffer length */
308 RxCfgRcv8K = 0,
309 RxCfgRcv16K = (1 << 11),
310 RxCfgRcv32K = (1 << 12),
311 RxCfgRcv64K = (1 << 11) | (1 << 12),
312
313 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
314 RxNoWrap = (1 << 7),
315 };
316
317 /* Twister tuning parameters from RealTek.
318 Completely undocumented, but required to tune bad links on some boards. */
319 /*
320 enum CSCRBits {
321 CSCR_LinkOKBit = 0x0400,
322 CSCR_LinkChangeBit = 0x0800,
323 CSCR_LinkStatusBits = 0x0f000,
324 CSCR_LinkDownOffCmd = 0x003c0,
325 CSCR_LinkDownCmd = 0x0f3c0,
326 */
327 enum CSCRBits {
328 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
329 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
330 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
331 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
332 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
333 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
334 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
335 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
336 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
337 };
338
339 enum Cfg9346Bits {
340 Cfg9346_Normal = 0x00,
341 Cfg9346_Autoload = 0x40,
342 Cfg9346_Programming = 0x80,
343 Cfg9346_ConfigWrite = 0xC0,
344 };
345
346 typedef enum {
347 CH_8139 = 0,
348 CH_8139_K,
349 CH_8139A,
350 CH_8139A_G,
351 CH_8139B,
352 CH_8130,
353 CH_8139C,
354 CH_8100,
355 CH_8100B_8139D,
356 CH_8101,
357 } chip_t;
358
359 enum chip_flags {
360 HasHltClk = (1 << 0),
361 HasLWake = (1 << 1),
362 };
363
364 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
365 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
366 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
367
368 #define RTL8139_PCI_REVID_8139 0x10
369 #define RTL8139_PCI_REVID_8139CPLUS 0x20
370
371 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
372
373 /* Size is 64 * 16bit words */
374 #define EEPROM_9346_ADDR_BITS 6
375 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
376 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
377
378 enum Chip9346Operation
379 {
380 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
381 Chip9346_op_read = 0x80, /* 10 AAAAAA */
382 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
383 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
384 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
385 Chip9346_op_write_all = 0x10, /* 00 01zzzz */
386 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
387 };
388
389 enum Chip9346Mode
390 {
391 Chip9346_none = 0,
392 Chip9346_enter_command_mode,
393 Chip9346_read_command,
394 Chip9346_data_read, /* from output register */
395 Chip9346_data_write, /* to input register, then to contents at specified address */
396 Chip9346_data_write_all, /* to input register, then filling contents */
397 };
398
399 typedef struct EEprom9346
400 {
401 uint16_t contents[EEPROM_9346_SIZE];
402 int mode;
403 uint32_t tick;
404 uint8_t address;
405 uint16_t input;
406 uint16_t output;
407
408 uint8_t eecs;
409 uint8_t eesk;
410 uint8_t eedi;
411 uint8_t eedo;
412 } EEprom9346;
413
414 typedef struct RTL8139TallyCounters
415 {
416 /* Tally counters */
417 uint64_t TxOk;
418 uint64_t RxOk;
419 uint64_t TxERR;
420 uint32_t RxERR;
421 uint16_t MissPkt;
422 uint16_t FAE;
423 uint32_t Tx1Col;
424 uint32_t TxMCol;
425 uint64_t RxOkPhy;
426 uint64_t RxOkBrd;
427 uint32_t RxOkMul;
428 uint16_t TxAbt;
429 uint16_t TxUndrn;
430 } RTL8139TallyCounters;
431
432 /* Clears all tally counters */
433 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
434
435 typedef struct RTL8139State {
436 /*< private >*/
437 PCIDevice parent_obj;
438 /*< public >*/
439
440 uint8_t phys[8]; /* mac address */
441 uint8_t mult[8]; /* multicast mask array */
442
443 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
444 uint32_t TxAddr[4]; /* TxAddr0 */
445 uint32_t RxBuf; /* Receive buffer */
446 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
447 uint32_t RxBufPtr;
448 uint32_t RxBufAddr;
449
450 uint16_t IntrStatus;
451 uint16_t IntrMask;
452
453 uint32_t TxConfig;
454 uint32_t RxConfig;
455 uint32_t RxMissed;
456
457 uint16_t CSCR;
458
459 uint8_t Cfg9346;
460 uint8_t Config0;
461 uint8_t Config1;
462 uint8_t Config3;
463 uint8_t Config4;
464 uint8_t Config5;
465
466 uint8_t clock_enabled;
467 uint8_t bChipCmdState;
468
469 uint16_t MultiIntr;
470
471 uint16_t BasicModeCtrl;
472 uint16_t BasicModeStatus;
473 uint16_t NWayAdvert;
474 uint16_t NWayLPAR;
475 uint16_t NWayExpansion;
476
477 uint16_t CpCmd;
478 uint8_t TxThresh;
479
480 NICState *nic;
481 NICConf conf;
482
483 /* C ring mode */
484 uint32_t currTxDesc;
485
486 /* C+ mode */
487 uint32_t cplus_enabled;
488
489 uint32_t currCPlusRxDesc;
490 uint32_t currCPlusTxDesc;
491
492 uint32_t RxRingAddrLO;
493 uint32_t RxRingAddrHI;
494
495 EEprom9346 eeprom;
496
497 uint32_t TCTR;
498 uint32_t TimerInt;
499 int64_t TCTR_base;
500
501 /* Tally counters */
502 RTL8139TallyCounters tally_counters;
503
504 /* Non-persistent data */
505 uint8_t *cplus_txbuffer;
506 int cplus_txbuffer_len;
507 int cplus_txbuffer_offset;
508
509 /* PCI interrupt timer */
510 QEMUTimer *timer;
511 int64_t TimerExpire;
512
513 MemoryRegion bar_io;
514 MemoryRegion bar_mem;
515
516 /* Support migration to/from old versions */
517 int rtl8139_mmio_io_addr_dummy;
518 } RTL8139State;
519
520 /* Writes tally counters to memory via DMA */
521 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
522
523 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
524
525 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
526 {
527 DPRINTF("eeprom command 0x%02x\n", command);
528
529 switch (command & Chip9346_op_mask)
530 {
531 case Chip9346_op_read:
532 {
533 eeprom->address = command & EEPROM_9346_ADDR_MASK;
534 eeprom->output = eeprom->contents[eeprom->address];
535 eeprom->eedo = 0;
536 eeprom->tick = 0;
537 eeprom->mode = Chip9346_data_read;
538 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
539 eeprom->address, eeprom->output);
540 }
541 break;
542
543 case Chip9346_op_write:
544 {
545 eeprom->address = command & EEPROM_9346_ADDR_MASK;
546 eeprom->input = 0;
547 eeprom->tick = 0;
548 eeprom->mode = Chip9346_none; /* Chip9346_data_write */
549 DPRINTF("eeprom begin write to address 0x%02x\n",
550 eeprom->address);
551 }
552 break;
553 default:
554 eeprom->mode = Chip9346_none;
555 switch (command & Chip9346_op_ext_mask)
556 {
557 case Chip9346_op_write_enable:
558 DPRINTF("eeprom write enabled\n");
559 break;
560 case Chip9346_op_write_all:
561 DPRINTF("eeprom begin write all\n");
562 break;
563 case Chip9346_op_write_disable:
564 DPRINTF("eeprom write disabled\n");
565 break;
566 }
567 break;
568 }
569 }
570
571 static void prom9346_shift_clock(EEprom9346 *eeprom)
572 {
573 int bit = eeprom->eedi?1:0;
574
575 ++ eeprom->tick;
576
577 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
578 eeprom->eedo);
579
580 switch (eeprom->mode)
581 {
582 case Chip9346_enter_command_mode:
583 if (bit)
584 {
585 eeprom->mode = Chip9346_read_command;
586 eeprom->tick = 0;
587 eeprom->input = 0;
588 DPRINTF("eeprom: +++ synchronized, begin command read\n");
589 }
590 break;
591
592 case Chip9346_read_command:
593 eeprom->input = (eeprom->input << 1) | (bit & 1);
594 if (eeprom->tick == 8)
595 {
596 prom9346_decode_command(eeprom, eeprom->input & 0xff);
597 }
598 break;
599
600 case Chip9346_data_read:
601 eeprom->eedo = (eeprom->output & 0x8000)?1:0;
602 eeprom->output <<= 1;
603 if (eeprom->tick == 16)
604 {
605 #if 1
606 // the FreeBSD drivers (rl and re) don't explicitly toggle
607 // CS between reads (or does setting Cfg9346 to 0 count too?),
608 // so we need to enter wait-for-command state here
609 eeprom->mode = Chip9346_enter_command_mode;
610 eeprom->input = 0;
611 eeprom->tick = 0;
612
613 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
614 #else
615 // original behaviour
616 ++eeprom->address;
617 eeprom->address &= EEPROM_9346_ADDR_MASK;
618 eeprom->output = eeprom->contents[eeprom->address];
619 eeprom->tick = 0;
620
621 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
622 eeprom->address, eeprom->output);
623 #endif
624 }
625 break;
626
627 case Chip9346_data_write:
628 eeprom->input = (eeprom->input << 1) | (bit & 1);
629 if (eeprom->tick == 16)
630 {
631 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
632 eeprom->address, eeprom->input);
633
634 eeprom->contents[eeprom->address] = eeprom->input;
635 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
636 eeprom->tick = 0;
637 eeprom->input = 0;
638 }
639 break;
640
641 case Chip9346_data_write_all:
642 eeprom->input = (eeprom->input << 1) | (bit & 1);
643 if (eeprom->tick == 16)
644 {
645 int i;
646 for (i = 0; i < EEPROM_9346_SIZE; i++)
647 {
648 eeprom->contents[i] = eeprom->input;
649 }
650 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
651
652 eeprom->mode = Chip9346_enter_command_mode;
653 eeprom->tick = 0;
654 eeprom->input = 0;
655 }
656 break;
657
658 default:
659 break;
660 }
661 }
662
663 static int prom9346_get_wire(RTL8139State *s)
664 {
665 EEprom9346 *eeprom = &s->eeprom;
666 if (!eeprom->eecs)
667 return 0;
668
669 return eeprom->eedo;
670 }
671
672 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */
673 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
674 {
675 EEprom9346 *eeprom = &s->eeprom;
676 uint8_t old_eecs = eeprom->eecs;
677 uint8_t old_eesk = eeprom->eesk;
678
679 eeprom->eecs = eecs;
680 eeprom->eesk = eesk;
681 eeprom->eedi = eedi;
682
683 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
684 eeprom->eesk, eeprom->eedi, eeprom->eedo);
685
686 if (!old_eecs && eecs)
687 {
688 /* Synchronize start */
689 eeprom->tick = 0;
690 eeprom->input = 0;
691 eeprom->output = 0;
692 eeprom->mode = Chip9346_enter_command_mode;
693
694 DPRINTF("=== eeprom: begin access, enter command mode\n");
695 }
696
697 if (!eecs)
698 {
699 DPRINTF("=== eeprom: end access\n");
700 return;
701 }
702
703 if (!old_eesk && eesk)
704 {
705 /* SK front rules */
706 prom9346_shift_clock(eeprom);
707 }
708 }
709
710 static void rtl8139_update_irq(RTL8139State *s)
711 {
712 PCIDevice *d = PCI_DEVICE(s);
713 int isr;
714 isr = (s->IntrStatus & s->IntrMask) & 0xffff;
715
716 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
717 s->IntrMask);
718
719 qemu_set_irq(d->irq[0], (isr != 0));
720 }
721
722 static int rtl8139_RxWrap(RTL8139State *s)
723 {
724 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
725 return (s->RxConfig & (1 << 7));
726 }
727
728 static int rtl8139_receiver_enabled(RTL8139State *s)
729 {
730 return s->bChipCmdState & CmdRxEnb;
731 }
732
733 static int rtl8139_transmitter_enabled(RTL8139State *s)
734 {
735 return s->bChipCmdState & CmdTxEnb;
736 }
737
738 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
739 {
740 return s->CpCmd & CPlusRxEnb;
741 }
742
743 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
744 {
745 return s->CpCmd & CPlusTxEnb;
746 }
747
748 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
749 {
750 PCIDevice *d = PCI_DEVICE(s);
751
752 if (s->RxBufAddr + size > s->RxBufferSize)
753 {
754 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
755
756 /* write packet data */
757 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
758 {
759 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
760
761 if (size > wrapped)
762 {
763 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
764 buf, size-wrapped);
765 }
766
767 /* reset buffer pointer */
768 s->RxBufAddr = 0;
769
770 pci_dma_write(d, s->RxBuf + s->RxBufAddr,
771 buf + (size-wrapped), wrapped);
772
773 s->RxBufAddr = wrapped;
774
775 return;
776 }
777 }
778
779 /* non-wrapping path or overwrapping enabled */
780 pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
781
782 s->RxBufAddr += size;
783 }
784
785 #define MIN_BUF_SIZE 60
786 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
787 {
788 return low | ((uint64_t)high << 32);
789 }
790
791 /* Workaround for buggy guest driver such as linux who allocates rx
792 * rings after the receiver were enabled. */
793 static bool rtl8139_cp_rx_valid(RTL8139State *s)
794 {
795 return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
796 }
797
798 static int rtl8139_can_receive(NetClientState *nc)
799 {
800 RTL8139State *s = qemu_get_nic_opaque(nc);
801 int avail;
802
803 /* Receive (drop) packets if card is disabled. */
804 if (!s->clock_enabled)
805 return 1;
806 if (!rtl8139_receiver_enabled(s))
807 return 1;
808
809 if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
810 /* ??? Flow control not implemented in c+ mode.
811 This is a hack to work around slirp deficiencies anyway. */
812 return 1;
813 } else {
814 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
815 s->RxBufferSize);
816 return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
817 }
818 }
819
820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
821 {
822 RTL8139State *s = qemu_get_nic_opaque(nc);
823 PCIDevice *d = PCI_DEVICE(s);
824 /* size is the length of the buffer passed to the driver */
825 int size = size_;
826 const uint8_t *dot1q_buf = NULL;
827
828 uint32_t packet_header = 0;
829
830 uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
831 static const uint8_t broadcast_macaddr[6] =
832 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
833
834 DPRINTF(">>> received len=%d\n", size);
835
836 /* test if board clock is stopped */
837 if (!s->clock_enabled)
838 {
839 DPRINTF("stopped ==========================\n");
840 return -1;
841 }
842
843 /* first check if receiver is enabled */
844
845 if (!rtl8139_receiver_enabled(s))
846 {
847 DPRINTF("receiver disabled ================\n");
848 return -1;
849 }
850
851 /* XXX: check this */
852 if (s->RxConfig & AcceptAllPhys) {
853 /* promiscuous: receive all */
854 DPRINTF(">>> packet received in promiscuous mode\n");
855
856 } else {
857 if (!memcmp(buf, broadcast_macaddr, 6)) {
858 /* broadcast address */
859 if (!(s->RxConfig & AcceptBroadcast))
860 {
861 DPRINTF(">>> broadcast packet rejected\n");
862
863 /* update tally counter */
864 ++s->tally_counters.RxERR;
865
866 return size;
867 }
868
869 packet_header |= RxBroadcast;
870
871 DPRINTF(">>> broadcast packet received\n");
872
873 /* update tally counter */
874 ++s->tally_counters.RxOkBrd;
875
876 } else if (buf[0] & 0x01) {
877 /* multicast */
878 if (!(s->RxConfig & AcceptMulticast))
879 {
880 DPRINTF(">>> multicast packet rejected\n");
881
882 /* update tally counter */
883 ++s->tally_counters.RxERR;
884
885 return size;
886 }
887
888 int mcast_idx = compute_mcast_idx(buf);
889
890 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
891 {
892 DPRINTF(">>> multicast address mismatch\n");
893
894 /* update tally counter */
895 ++s->tally_counters.RxERR;
896
897 return size;
898 }
899
900 packet_header |= RxMulticast;
901
902 DPRINTF(">>> multicast packet received\n");
903
904 /* update tally counter */
905 ++s->tally_counters.RxOkMul;
906
907 } else if (s->phys[0] == buf[0] &&
908 s->phys[1] == buf[1] &&
909 s->phys[2] == buf[2] &&
910 s->phys[3] == buf[3] &&
911 s->phys[4] == buf[4] &&
912 s->phys[5] == buf[5]) {
913 /* match */
914 if (!(s->RxConfig & AcceptMyPhys))
915 {
916 DPRINTF(">>> rejecting physical address matching packet\n");
917
918 /* update tally counter */
919 ++s->tally_counters.RxERR;
920
921 return size;
922 }
923
924 packet_header |= RxPhysical;
925
926 DPRINTF(">>> physical address matching packet received\n");
927
928 /* update tally counter */
929 ++s->tally_counters.RxOkPhy;
930
931 } else {
932
933 DPRINTF(">>> unknown packet\n");
934
935 /* update tally counter */
936 ++s->tally_counters.RxERR;
937
938 return size;
939 }
940 }
941
942 /* if too small buffer, then expand it
943 * Include some tailroom in case a vlan tag is later removed. */
944 if (size < MIN_BUF_SIZE + VLAN_HLEN) {
945 memcpy(buf1, buf, size);
946 memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
947 buf = buf1;
948 if (size < MIN_BUF_SIZE) {
949 size = MIN_BUF_SIZE;
950 }
951 }
952
953 if (rtl8139_cp_receiver_enabled(s))
954 {
955 if (!rtl8139_cp_rx_valid(s)) {
956 return size;
957 }
958
959 DPRINTF("in C+ Rx mode ================\n");
960
961 /* begin C+ receiver mode */
962
963 /* w0 ownership flag */
964 #define CP_RX_OWN (1<<31)
965 /* w0 end of ring flag */
966 #define CP_RX_EOR (1<<30)
967 /* w0 bits 0...12 : buffer size */
968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
969 /* w1 tag available flag */
970 #define CP_RX_TAVA (1<<16)
971 /* w1 bits 0...15 : VLAN tag */
972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
973 /* w2 low 32bit of Rx buffer ptr */
974 /* w3 high 32bit of Rx buffer ptr */
975
976 int descriptor = s->currCPlusRxDesc;
977 dma_addr_t cplus_rx_ring_desc;
978
979 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
980 cplus_rx_ring_desc += 16 * descriptor;
981
982 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
983 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
984 s->RxRingAddrLO, cplus_rx_ring_desc);
985
986 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
987
988 pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
989 rxdw0 = le32_to_cpu(val);
990 pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
991 rxdw1 = le32_to_cpu(val);
992 pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
993 rxbufLO = le32_to_cpu(val);
994 pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
995 rxbufHI = le32_to_cpu(val);
996
997 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
998 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
999
1000 if (!(rxdw0 & CP_RX_OWN))
1001 {
1002 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1003 descriptor);
1004
1005 s->IntrStatus |= RxOverflow;
1006 ++s->RxMissed;
1007
1008 /* update tally counter */
1009 ++s->tally_counters.RxERR;
1010 ++s->tally_counters.MissPkt;
1011
1012 rtl8139_update_irq(s);
1013 return size_;
1014 }
1015
1016 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1017
1018 /* write VLAN info to descriptor variables. */
1019 if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1020 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1021 dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1022 size -= VLAN_HLEN;
1023 /* if too small buffer, use the tailroom added duing expansion */
1024 if (size < MIN_BUF_SIZE) {
1025 size = MIN_BUF_SIZE;
1026 }
1027
1028 rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1029 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1030 rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1031 &dot1q_buf[ETHER_TYPE_LEN]);
1032
1033 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1034 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1035 } else {
1036 /* reset VLAN tag flag */
1037 rxdw1 &= ~CP_RX_TAVA;
1038 }
1039
1040 /* TODO: scatter the packet over available receive ring descriptors space */
1041
1042 if (size+4 > rx_space)
1043 {
1044 DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1045 descriptor, rx_space, size);
1046
1047 s->IntrStatus |= RxOverflow;
1048 ++s->RxMissed;
1049
1050 /* update tally counter */
1051 ++s->tally_counters.RxERR;
1052 ++s->tally_counters.MissPkt;
1053
1054 rtl8139_update_irq(s);
1055 return size_;
1056 }
1057
1058 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1059
1060 /* receive/copy to target memory */
1061 if (dot1q_buf) {
1062 pci_dma_write(d, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1063 pci_dma_write(d, rx_addr + 2 * ETHER_ADDR_LEN,
1064 buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1065 size - 2 * ETHER_ADDR_LEN);
1066 } else {
1067 pci_dma_write(d, rx_addr, buf, size);
1068 }
1069
1070 if (s->CpCmd & CPlusRxChkSum)
1071 {
1072 /* do some packet checksumming */
1073 }
1074
1075 /* write checksum */
1076 val = cpu_to_le32(crc32(0, buf, size_));
1077 pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1078
1079 /* first segment of received packet flag */
1080 #define CP_RX_STATUS_FS (1<<29)
1081 /* last segment of received packet flag */
1082 #define CP_RX_STATUS_LS (1<<28)
1083 /* multicast packet flag */
1084 #define CP_RX_STATUS_MAR (1<<26)
1085 /* physical-matching packet flag */
1086 #define CP_RX_STATUS_PAM (1<<25)
1087 /* broadcast packet flag */
1088 #define CP_RX_STATUS_BAR (1<<24)
1089 /* runt packet flag */
1090 #define CP_RX_STATUS_RUNT (1<<19)
1091 /* crc error flag */
1092 #define CP_RX_STATUS_CRC (1<<18)
1093 /* IP checksum error flag */
1094 #define CP_RX_STATUS_IPF (1<<15)
1095 /* UDP checksum error flag */
1096 #define CP_RX_STATUS_UDPF (1<<14)
1097 /* TCP checksum error flag */
1098 #define CP_RX_STATUS_TCPF (1<<13)
1099
1100 /* transfer ownership to target */
1101 rxdw0 &= ~CP_RX_OWN;
1102
1103 /* set first segment bit */
1104 rxdw0 |= CP_RX_STATUS_FS;
1105
1106 /* set last segment bit */
1107 rxdw0 |= CP_RX_STATUS_LS;
1108
1109 /* set received packet type flags */
1110 if (packet_header & RxBroadcast)
1111 rxdw0 |= CP_RX_STATUS_BAR;
1112 if (packet_header & RxMulticast)
1113 rxdw0 |= CP_RX_STATUS_MAR;
1114 if (packet_header & RxPhysical)
1115 rxdw0 |= CP_RX_STATUS_PAM;
1116
1117 /* set received size */
1118 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1119 rxdw0 |= (size+4);
1120
1121 /* update ring data */
1122 val = cpu_to_le32(rxdw0);
1123 pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1124 val = cpu_to_le32(rxdw1);
1125 pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1126
1127 /* update tally counter */
1128 ++s->tally_counters.RxOk;
1129
1130 /* seek to next Rx descriptor */
1131 if (rxdw0 & CP_RX_EOR)
1132 {
1133 s->currCPlusRxDesc = 0;
1134 }
1135 else
1136 {
1137 ++s->currCPlusRxDesc;
1138 }
1139
1140 DPRINTF("done C+ Rx mode ----------------\n");
1141
1142 }
1143 else
1144 {
1145 DPRINTF("in ring Rx mode ================\n");
1146
1147 /* begin ring receiver mode */
1148 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1149
1150 /* if receiver buffer is empty then avail == 0 */
1151
1152 if (avail != 0 && size + 8 >= avail)
1153 {
1154 DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1155 "read 0x%04x === available 0x%04x need 0x%04x\n",
1156 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1157
1158 s->IntrStatus |= RxOverflow;
1159 ++s->RxMissed;
1160 rtl8139_update_irq(s);
1161 return size_;
1162 }
1163
1164 packet_header |= RxStatusOK;
1165
1166 packet_header |= (((size+4) << 16) & 0xffff0000);
1167
1168 /* write header */
1169 uint32_t val = cpu_to_le32(packet_header);
1170
1171 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1172
1173 rtl8139_write_buffer(s, buf, size);
1174
1175 /* write checksum */
1176 val = cpu_to_le32(crc32(0, buf, size));
1177 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1178
1179 /* correct buffer write pointer */
1180 s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1181
1182 /* now we can signal we have received something */
1183
1184 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1185 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1186 }
1187
1188 s->IntrStatus |= RxOK;
1189
1190 if (do_interrupt)
1191 {
1192 rtl8139_update_irq(s);
1193 }
1194
1195 return size_;
1196 }
1197
1198 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1199 {
1200 return rtl8139_do_receive(nc, buf, size, 1);
1201 }
1202
1203 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1204 {
1205 s->RxBufferSize = bufferSize;
1206 s->RxBufPtr = 0;
1207 s->RxBufAddr = 0;
1208 }
1209
1210 static void rtl8139_reset(DeviceState *d)
1211 {
1212 RTL8139State *s = RTL8139(d);
1213 int i;
1214
1215 /* restore MAC address */
1216 memcpy(s->phys, s->conf.macaddr.a, 6);
1217
1218 /* reset interrupt mask */
1219 s->IntrStatus = 0;
1220 s->IntrMask = 0;
1221
1222 rtl8139_update_irq(s);
1223
1224 /* mark all status registers as owned by host */
1225 for (i = 0; i < 4; ++i)
1226 {
1227 s->TxStatus[i] = TxHostOwns;
1228 }
1229
1230 s->currTxDesc = 0;
1231 s->currCPlusRxDesc = 0;
1232 s->currCPlusTxDesc = 0;
1233
1234 s->RxRingAddrLO = 0;
1235 s->RxRingAddrHI = 0;
1236
1237 s->RxBuf = 0;
1238
1239 rtl8139_reset_rxring(s, 8192);
1240
1241 /* ACK the reset */
1242 s->TxConfig = 0;
1243
1244 #if 0
1245 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
1246 s->clock_enabled = 0;
1247 #else
1248 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1249 s->clock_enabled = 1;
1250 #endif
1251
1252 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1253
1254 /* set initial state data */
1255 s->Config0 = 0x0; /* No boot ROM */
1256 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1257 s->Config3 = 0x1; /* fast back-to-back compatible */
1258 s->Config5 = 0x0;
1259
1260 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1261
1262 s->CpCmd = 0x0; /* reset C+ mode */
1263 s->cplus_enabled = 0;
1264
1265
1266 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1267 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1268 s->BasicModeCtrl = 0x1000; // autonegotiation
1269
1270 s->BasicModeStatus = 0x7809;
1271 //s->BasicModeStatus |= 0x0040; /* UTP medium */
1272 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1273 /* preserve link state */
1274 s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1275
1276 s->NWayAdvert = 0x05e1; /* all modes, full duplex */
1277 s->NWayLPAR = 0x05e1; /* all modes, full duplex */
1278 s->NWayExpansion = 0x0001; /* autonegotiation supported */
1279
1280 /* also reset timer and disable timer interrupt */
1281 s->TCTR = 0;
1282 s->TimerInt = 0;
1283 s->TCTR_base = 0;
1284
1285 /* reset tally counters */
1286 RTL8139TallyCounters_clear(&s->tally_counters);
1287 }
1288
1289 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1290 {
1291 counters->TxOk = 0;
1292 counters->RxOk = 0;
1293 counters->TxERR = 0;
1294 counters->RxERR = 0;
1295 counters->MissPkt = 0;
1296 counters->FAE = 0;
1297 counters->Tx1Col = 0;
1298 counters->TxMCol = 0;
1299 counters->RxOkPhy = 0;
1300 counters->RxOkBrd = 0;
1301 counters->RxOkMul = 0;
1302 counters->TxAbt = 0;
1303 counters->TxUndrn = 0;
1304 }
1305
1306 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1307 {
1308 PCIDevice *d = PCI_DEVICE(s);
1309 RTL8139TallyCounters *tally_counters = &s->tally_counters;
1310 uint16_t val16;
1311 uint32_t val32;
1312 uint64_t val64;
1313
1314 val64 = cpu_to_le64(tally_counters->TxOk);
1315 pci_dma_write(d, tc_addr + 0, (uint8_t *)&val64, 8);
1316
1317 val64 = cpu_to_le64(tally_counters->RxOk);
1318 pci_dma_write(d, tc_addr + 8, (uint8_t *)&val64, 8);
1319
1320 val64 = cpu_to_le64(tally_counters->TxERR);
1321 pci_dma_write(d, tc_addr + 16, (uint8_t *)&val64, 8);
1322
1323 val32 = cpu_to_le32(tally_counters->RxERR);
1324 pci_dma_write(d, tc_addr + 24, (uint8_t *)&val32, 4);
1325
1326 val16 = cpu_to_le16(tally_counters->MissPkt);
1327 pci_dma_write(d, tc_addr + 28, (uint8_t *)&val16, 2);
1328
1329 val16 = cpu_to_le16(tally_counters->FAE);
1330 pci_dma_write(d, tc_addr + 30, (uint8_t *)&val16, 2);
1331
1332 val32 = cpu_to_le32(tally_counters->Tx1Col);
1333 pci_dma_write(d, tc_addr + 32, (uint8_t *)&val32, 4);
1334
1335 val32 = cpu_to_le32(tally_counters->TxMCol);
1336 pci_dma_write(d, tc_addr + 36, (uint8_t *)&val32, 4);
1337
1338 val64 = cpu_to_le64(tally_counters->RxOkPhy);
1339 pci_dma_write(d, tc_addr + 40, (uint8_t *)&val64, 8);
1340
1341 val64 = cpu_to_le64(tally_counters->RxOkBrd);
1342 pci_dma_write(d, tc_addr + 48, (uint8_t *)&val64, 8);
1343
1344 val32 = cpu_to_le32(tally_counters->RxOkMul);
1345 pci_dma_write(d, tc_addr + 56, (uint8_t *)&val32, 4);
1346
1347 val16 = cpu_to_le16(tally_counters->TxAbt);
1348 pci_dma_write(d, tc_addr + 60, (uint8_t *)&val16, 2);
1349
1350 val16 = cpu_to_le16(tally_counters->TxUndrn);
1351 pci_dma_write(d, tc_addr + 62, (uint8_t *)&val16, 2);
1352 }
1353
1354 /* Loads values of tally counters from VM state file */
1355
1356 static const VMStateDescription vmstate_tally_counters = {
1357 .name = "tally_counters",
1358 .version_id = 1,
1359 .minimum_version_id = 1,
1360 .minimum_version_id_old = 1,
1361 .fields = (VMStateField []) {
1362 VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1363 VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1364 VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1365 VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1366 VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1367 VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1368 VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1369 VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1370 VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1371 VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1372 VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1373 VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1374 VMSTATE_END_OF_LIST()
1375 }
1376 };
1377
1378 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1379 {
1380 DeviceState *d = DEVICE(s);
1381
1382 val &= 0xff;
1383
1384 DPRINTF("ChipCmd write val=0x%08x\n", val);
1385
1386 if (val & CmdReset)
1387 {
1388 DPRINTF("ChipCmd reset\n");
1389 rtl8139_reset(d);
1390 }
1391 if (val & CmdRxEnb)
1392 {
1393 DPRINTF("ChipCmd enable receiver\n");
1394
1395 s->currCPlusRxDesc = 0;
1396 }
1397 if (val & CmdTxEnb)
1398 {
1399 DPRINTF("ChipCmd enable transmitter\n");
1400
1401 s->currCPlusTxDesc = 0;
1402 }
1403
1404 /* mask unwritable bits */
1405 val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1406
1407 /* Deassert reset pin before next read */
1408 val &= ~CmdReset;
1409
1410 s->bChipCmdState = val;
1411 }
1412
1413 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1414 {
1415 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1416
1417 if (unread != 0)
1418 {
1419 DPRINTF("receiver buffer data available 0x%04x\n", unread);
1420 return 0;
1421 }
1422
1423 DPRINTF("receiver buffer is empty\n");
1424
1425 return 1;
1426 }
1427
1428 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1429 {
1430 uint32_t ret = s->bChipCmdState;
1431
1432 if (rtl8139_RxBufferEmpty(s))
1433 ret |= RxBufEmpty;
1434
1435 DPRINTF("ChipCmd read val=0x%04x\n", ret);
1436
1437 return ret;
1438 }
1439
1440 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1441 {
1442 val &= 0xffff;
1443
1444 DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1445
1446 s->cplus_enabled = 1;
1447
1448 /* mask unwritable bits */
1449 val = SET_MASKED(val, 0xff84, s->CpCmd);
1450
1451 s->CpCmd = val;
1452 }
1453
1454 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1455 {
1456 uint32_t ret = s->CpCmd;
1457
1458 DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1459
1460 return ret;
1461 }
1462
1463 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1464 {
1465 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1466 }
1467
1468 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1469 {
1470 uint32_t ret = 0;
1471
1472 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1473
1474 return ret;
1475 }
1476
1477 static int rtl8139_config_writable(RTL8139State *s)
1478 {
1479 if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1480 {
1481 return 1;
1482 }
1483
1484 DPRINTF("Configuration registers are write-protected\n");
1485
1486 return 0;
1487 }
1488
1489 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1490 {
1491 val &= 0xffff;
1492
1493 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1494
1495 /* mask unwritable bits */
1496 uint32_t mask = 0x4cff;
1497
1498 if (1 || !rtl8139_config_writable(s))
1499 {
1500 /* Speed setting and autonegotiation enable bits are read-only */
1501 mask |= 0x3000;
1502 /* Duplex mode setting is read-only */
1503 mask |= 0x0100;
1504 }
1505
1506 val = SET_MASKED(val, mask, s->BasicModeCtrl);
1507
1508 s->BasicModeCtrl = val;
1509 }
1510
1511 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1512 {
1513 uint32_t ret = s->BasicModeCtrl;
1514
1515 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1516
1517 return ret;
1518 }
1519
1520 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1521 {
1522 val &= 0xffff;
1523
1524 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1525
1526 /* mask unwritable bits */
1527 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1528
1529 s->BasicModeStatus = val;
1530 }
1531
1532 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1533 {
1534 uint32_t ret = s->BasicModeStatus;
1535
1536 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1537
1538 return ret;
1539 }
1540
1541 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1542 {
1543 DeviceState *d = DEVICE(s);
1544
1545 val &= 0xff;
1546
1547 DPRINTF("Cfg9346 write val=0x%02x\n", val);
1548
1549 /* mask unwritable bits */
1550 val = SET_MASKED(val, 0x31, s->Cfg9346);
1551
1552 uint32_t opmode = val & 0xc0;
1553 uint32_t eeprom_val = val & 0xf;
1554
1555 if (opmode == 0x80) {
1556 /* eeprom access */
1557 int eecs = (eeprom_val & 0x08)?1:0;
1558 int eesk = (eeprom_val & 0x04)?1:0;
1559 int eedi = (eeprom_val & 0x02)?1:0;
1560 prom9346_set_wire(s, eecs, eesk, eedi);
1561 } else if (opmode == 0x40) {
1562 /* Reset. */
1563 val = 0;
1564 rtl8139_reset(d);
1565 }
1566
1567 s->Cfg9346 = val;
1568 }
1569
1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1571 {
1572 uint32_t ret = s->Cfg9346;
1573
1574 uint32_t opmode = ret & 0xc0;
1575
1576 if (opmode == 0x80)
1577 {
1578 /* eeprom access */
1579 int eedo = prom9346_get_wire(s);
1580 if (eedo)
1581 {
1582 ret |= 0x01;
1583 }
1584 else
1585 {
1586 ret &= ~0x01;
1587 }
1588 }
1589
1590 DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1591
1592 return ret;
1593 }
1594
1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1596 {
1597 val &= 0xff;
1598
1599 DPRINTF("Config0 write val=0x%02x\n", val);
1600
1601 if (!rtl8139_config_writable(s)) {
1602 return;
1603 }
1604
1605 /* mask unwritable bits */
1606 val = SET_MASKED(val, 0xf8, s->Config0);
1607
1608 s->Config0 = val;
1609 }
1610
1611 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1612 {
1613 uint32_t ret = s->Config0;
1614
1615 DPRINTF("Config0 read val=0x%02x\n", ret);
1616
1617 return ret;
1618 }
1619
1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1621 {
1622 val &= 0xff;
1623
1624 DPRINTF("Config1 write val=0x%02x\n", val);
1625
1626 if (!rtl8139_config_writable(s)) {
1627 return;
1628 }
1629
1630 /* mask unwritable bits */
1631 val = SET_MASKED(val, 0xC, s->Config1);
1632
1633 s->Config1 = val;
1634 }
1635
1636 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1637 {
1638 uint32_t ret = s->Config1;
1639
1640 DPRINTF("Config1 read val=0x%02x\n", ret);
1641
1642 return ret;
1643 }
1644
1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1646 {
1647 val &= 0xff;
1648
1649 DPRINTF("Config3 write val=0x%02x\n", val);
1650
1651 if (!rtl8139_config_writable(s)) {
1652 return;
1653 }
1654
1655 /* mask unwritable bits */
1656 val = SET_MASKED(val, 0x8F, s->Config3);
1657
1658 s->Config3 = val;
1659 }
1660
1661 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1662 {
1663 uint32_t ret = s->Config3;
1664
1665 DPRINTF("Config3 read val=0x%02x\n", ret);
1666
1667 return ret;
1668 }
1669
1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1671 {
1672 val &= 0xff;
1673
1674 DPRINTF("Config4 write val=0x%02x\n", val);
1675
1676 if (!rtl8139_config_writable(s)) {
1677 return;
1678 }
1679
1680 /* mask unwritable bits */
1681 val = SET_MASKED(val, 0x0a, s->Config4);
1682
1683 s->Config4 = val;
1684 }
1685
1686 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1687 {
1688 uint32_t ret = s->Config4;
1689
1690 DPRINTF("Config4 read val=0x%02x\n", ret);
1691
1692 return ret;
1693 }
1694
1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1696 {
1697 val &= 0xff;
1698
1699 DPRINTF("Config5 write val=0x%02x\n", val);
1700
1701 /* mask unwritable bits */
1702 val = SET_MASKED(val, 0x80, s->Config5);
1703
1704 s->Config5 = val;
1705 }
1706
1707 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1708 {
1709 uint32_t ret = s->Config5;
1710
1711 DPRINTF("Config5 read val=0x%02x\n", ret);
1712
1713 return ret;
1714 }
1715
1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1717 {
1718 if (!rtl8139_transmitter_enabled(s))
1719 {
1720 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1721 return;
1722 }
1723
1724 DPRINTF("TxConfig write val=0x%08x\n", val);
1725
1726 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1727
1728 s->TxConfig = val;
1729 }
1730
1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1732 {
1733 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1734
1735 uint32_t tc = s->TxConfig;
1736 tc &= 0xFFFFFF00;
1737 tc |= (val & 0x000000FF);
1738 rtl8139_TxConfig_write(s, tc);
1739 }
1740
1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1742 {
1743 uint32_t ret = s->TxConfig;
1744
1745 DPRINTF("TxConfig read val=0x%04x\n", ret);
1746
1747 return ret;
1748 }
1749
1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1751 {
1752 DPRINTF("RxConfig write val=0x%08x\n", val);
1753
1754 /* mask unwritable bits */
1755 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1756
1757 s->RxConfig = val;
1758
1759 /* reset buffer size and read/write pointers */
1760 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1761
1762 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1763 }
1764
1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1766 {
1767 uint32_t ret = s->RxConfig;
1768
1769 DPRINTF("RxConfig read val=0x%08x\n", ret);
1770
1771 return ret;
1772 }
1773
1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1775 int do_interrupt, const uint8_t *dot1q_buf)
1776 {
1777 struct iovec *iov = NULL;
1778
1779 if (!size)
1780 {
1781 DPRINTF("+++ empty ethernet frame\n");
1782 return;
1783 }
1784
1785 if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1786 iov = (struct iovec[3]) {
1787 { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1788 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1789 { .iov_base = buf + ETHER_ADDR_LEN * 2,
1790 .iov_len = size - ETHER_ADDR_LEN * 2 },
1791 };
1792 }
1793
1794 if (TxLoopBack == (s->TxConfig & TxLoopBack))
1795 {
1796 size_t buf2_size;
1797 uint8_t *buf2;
1798
1799 if (iov) {
1800 buf2_size = iov_size(iov, 3);
1801 buf2 = g_malloc(buf2_size);
1802 iov_to_buf(iov, 3, 0, buf2, buf2_size);
1803 buf = buf2;
1804 }
1805
1806 DPRINTF("+++ transmit loopback mode\n");
1807 rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1808
1809 if (iov) {
1810 g_free(buf2);
1811 }
1812 }
1813 else
1814 {
1815 if (iov) {
1816 qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1817 } else {
1818 qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1819 }
1820 }
1821 }
1822
1823 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1824 {
1825 if (!rtl8139_transmitter_enabled(s))
1826 {
1827 DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1828 "disabled\n", descriptor);
1829 return 0;
1830 }
1831
1832 if (s->TxStatus[descriptor] & TxHostOwns)
1833 {
1834 DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1835 "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1836 return 0;
1837 }
1838
1839 DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1840
1841 PCIDevice *d = PCI_DEVICE(s);
1842 int txsize = s->TxStatus[descriptor] & 0x1fff;
1843 uint8_t txbuffer[0x2000];
1844
1845 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1846 txsize, s->TxAddr[descriptor]);
1847
1848 pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1849
1850 /* Mark descriptor as transferred */
1851 s->TxStatus[descriptor] |= TxHostOwns;
1852 s->TxStatus[descriptor] |= TxStatOK;
1853
1854 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1855
1856 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1857 descriptor);
1858
1859 /* update interrupt */
1860 s->IntrStatus |= TxOK;
1861 rtl8139_update_irq(s);
1862
1863 return 1;
1864 }
1865
1866 /* structures and macros for task offloading */
1867 typedef struct ip_header
1868 {
1869 uint8_t ip_ver_len; /* version and header length */
1870 uint8_t ip_tos; /* type of service */
1871 uint16_t ip_len; /* total length */
1872 uint16_t ip_id; /* identification */
1873 uint16_t ip_off; /* fragment offset field */
1874 uint8_t ip_ttl; /* time to live */
1875 uint8_t ip_p; /* protocol */
1876 uint16_t ip_sum; /* checksum */
1877 uint32_t ip_src,ip_dst; /* source and dest address */
1878 } ip_header;
1879
1880 #define IP_HEADER_VERSION_4 4
1881 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1882 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1883
1884 typedef struct tcp_header
1885 {
1886 uint16_t th_sport; /* source port */
1887 uint16_t th_dport; /* destination port */
1888 uint32_t th_seq; /* sequence number */
1889 uint32_t th_ack; /* acknowledgement number */
1890 uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1891 uint16_t th_win; /* window */
1892 uint16_t th_sum; /* checksum */
1893 uint16_t th_urp; /* urgent pointer */
1894 } tcp_header;
1895
1896 typedef struct udp_header
1897 {
1898 uint16_t uh_sport; /* source port */
1899 uint16_t uh_dport; /* destination port */
1900 uint16_t uh_ulen; /* udp length */
1901 uint16_t uh_sum; /* udp checksum */
1902 } udp_header;
1903
1904 typedef struct ip_pseudo_header
1905 {
1906 uint32_t ip_src;
1907 uint32_t ip_dst;
1908 uint8_t zeros;
1909 uint8_t ip_proto;
1910 uint16_t ip_payload;
1911 } ip_pseudo_header;
1912
1913 #define IP_PROTO_TCP 6
1914 #define IP_PROTO_UDP 17
1915
1916 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1917 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1918 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1919
1920 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1921
1922 #define TCP_FLAG_FIN 0x01
1923 #define TCP_FLAG_PUSH 0x08
1924
1925 /* produces ones' complement sum of data */
1926 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1927 {
1928 uint32_t result = 0;
1929
1930 for (; len > 1; data+=2, len-=2)
1931 {
1932 result += *(uint16_t*)data;
1933 }
1934
1935 /* add the remainder byte */
1936 if (len)
1937 {
1938 uint8_t odd[2] = {*data, 0};
1939 result += *(uint16_t*)odd;
1940 }
1941
1942 while (result>>16)
1943 result = (result & 0xffff) + (result >> 16);
1944
1945 return result;
1946 }
1947
1948 static uint16_t ip_checksum(void *data, size_t len)
1949 {
1950 return ~ones_complement_sum((uint8_t*)data, len);
1951 }
1952
1953 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1954 {
1955 if (!rtl8139_transmitter_enabled(s))
1956 {
1957 DPRINTF("+++ C+ mode: transmitter disabled\n");
1958 return 0;
1959 }
1960
1961 if (!rtl8139_cp_transmitter_enabled(s))
1962 {
1963 DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1964 return 0 ;
1965 }
1966
1967 PCIDevice *d = PCI_DEVICE(s);
1968 int descriptor = s->currCPlusTxDesc;
1969
1970 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1971
1972 /* Normal priority ring */
1973 cplus_tx_ring_desc += 16 * descriptor;
1974
1975 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1976 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1977 s->TxAddr[0], cplus_tx_ring_desc);
1978
1979 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1980
1981 pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
1982 txdw0 = le32_to_cpu(val);
1983 pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
1984 txdw1 = le32_to_cpu(val);
1985 pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
1986 txbufLO = le32_to_cpu(val);
1987 pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1988 txbufHI = le32_to_cpu(val);
1989
1990 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1991 txdw0, txdw1, txbufLO, txbufHI);
1992
1993 /* w0 ownership flag */
1994 #define CP_TX_OWN (1<<31)
1995 /* w0 end of ring flag */
1996 #define CP_TX_EOR (1<<30)
1997 /* first segment of received packet flag */
1998 #define CP_TX_FS (1<<29)
1999 /* last segment of received packet flag */
2000 #define CP_TX_LS (1<<28)
2001 /* large send packet flag */
2002 #define CP_TX_LGSEN (1<<27)
2003 /* large send MSS mask, bits 16...25 */
2004 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2005
2006 /* IP checksum offload flag */
2007 #define CP_TX_IPCS (1<<18)
2008 /* UDP checksum offload flag */
2009 #define CP_TX_UDPCS (1<<17)
2010 /* TCP checksum offload flag */
2011 #define CP_TX_TCPCS (1<<16)
2012
2013 /* w0 bits 0...15 : buffer size */
2014 #define CP_TX_BUFFER_SIZE (1<<16)
2015 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2016 /* w1 add tag flag */
2017 #define CP_TX_TAGC (1<<17)
2018 /* w1 bits 0...15 : VLAN tag (big endian) */
2019 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2020 /* w2 low 32bit of Rx buffer ptr */
2021 /* w3 high 32bit of Rx buffer ptr */
2022
2023 /* set after transmission */
2024 /* FIFO underrun flag */
2025 #define CP_TX_STATUS_UNF (1<<25)
2026 /* transmit error summary flag, valid if set any of three below */
2027 #define CP_TX_STATUS_TES (1<<23)
2028 /* out-of-window collision flag */
2029 #define CP_TX_STATUS_OWC (1<<22)
2030 /* link failure flag */
2031 #define CP_TX_STATUS_LNKF (1<<21)
2032 /* excessive collisions flag */
2033 #define CP_TX_STATUS_EXC (1<<20)
2034
2035 if (!(txdw0 & CP_TX_OWN))
2036 {
2037 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2038 return 0 ;
2039 }
2040
2041 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2042
2043 if (txdw0 & CP_TX_FS)
2044 {
2045 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2046 "descriptor\n", descriptor);
2047
2048 /* reset internal buffer offset */
2049 s->cplus_txbuffer_offset = 0;
2050 }
2051
2052 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2053 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2054
2055 /* make sure we have enough space to assemble the packet */
2056 if (!s->cplus_txbuffer)
2057 {
2058 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2059 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2060 s->cplus_txbuffer_offset = 0;
2061
2062 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2063 s->cplus_txbuffer_len);
2064 }
2065
2066 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2067 {
2068 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2069 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2070 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2071 "length to %d\n", txsize);
2072 }
2073
2074 if (!s->cplus_txbuffer)
2075 {
2076 /* out of memory */
2077
2078 DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2079 s->cplus_txbuffer_len);
2080
2081 /* update tally counter */
2082 ++s->tally_counters.TxERR;
2083 ++s->tally_counters.TxAbt;
2084
2085 return 0;
2086 }
2087
2088 /* append more data to the packet */
2089
2090 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2091 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2092 s->cplus_txbuffer_offset);
2093
2094 pci_dma_read(d, tx_addr,
2095 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2096 s->cplus_txbuffer_offset += txsize;
2097
2098 /* seek to next Rx descriptor */
2099 if (txdw0 & CP_TX_EOR)
2100 {
2101 s->currCPlusTxDesc = 0;
2102 }
2103 else
2104 {
2105 ++s->currCPlusTxDesc;
2106 if (s->currCPlusTxDesc >= 64)
2107 s->currCPlusTxDesc = 0;
2108 }
2109
2110 /* transfer ownership to target */
2111 txdw0 &= ~CP_RX_OWN;
2112
2113 /* reset error indicator bits */
2114 txdw0 &= ~CP_TX_STATUS_UNF;
2115 txdw0 &= ~CP_TX_STATUS_TES;
2116 txdw0 &= ~CP_TX_STATUS_OWC;
2117 txdw0 &= ~CP_TX_STATUS_LNKF;
2118 txdw0 &= ~CP_TX_STATUS_EXC;
2119
2120 /* update ring data */
2121 val = cpu_to_le32(txdw0);
2122 pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2123
2124 /* Now decide if descriptor being processed is holding the last segment of packet */
2125 if (txdw0 & CP_TX_LS)
2126 {
2127 uint8_t dot1q_buffer_space[VLAN_HLEN];
2128 uint16_t *dot1q_buffer;
2129
2130 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2131 descriptor);
2132
2133 /* can transfer fully assembled packet */
2134
2135 uint8_t *saved_buffer = s->cplus_txbuffer;
2136 int saved_size = s->cplus_txbuffer_offset;
2137 int saved_buffer_len = s->cplus_txbuffer_len;
2138
2139 /* create vlan tag */
2140 if (txdw1 & CP_TX_TAGC) {
2141 /* the vlan tag is in BE byte order in the descriptor
2142 * BE + le_to_cpu() + ~swap()~ = cpu */
2143 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2144 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2145
2146 dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2147 dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2148 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2149 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2150 } else {
2151 dot1q_buffer = NULL;
2152 }
2153
2154 /* reset the card space to protect from recursive call */
2155 s->cplus_txbuffer = NULL;
2156 s->cplus_txbuffer_offset = 0;
2157 s->cplus_txbuffer_len = 0;
2158
2159 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2160 {
2161 DPRINTF("+++ C+ mode offloaded task checksum\n");
2162
2163 /* ip packet header */
2164 ip_header *ip = NULL;
2165 int hlen = 0;
2166 uint8_t ip_protocol = 0;
2167 uint16_t ip_data_len = 0;
2168
2169 uint8_t *eth_payload_data = NULL;
2170 size_t eth_payload_len = 0;
2171
2172 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2173 if (proto == ETH_P_IP)
2174 {
2175 DPRINTF("+++ C+ mode has IP packet\n");
2176
2177 /* not aligned */
2178 eth_payload_data = saved_buffer + ETH_HLEN;
2179 eth_payload_len = saved_size - ETH_HLEN;
2180
2181 ip = (ip_header*)eth_payload_data;
2182
2183 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2184 DPRINTF("+++ C+ mode packet has bad IP version %d "
2185 "expected %d\n", IP_HEADER_VERSION(ip),
2186 IP_HEADER_VERSION_4);
2187 ip = NULL;
2188 } else {
2189 hlen = IP_HEADER_LENGTH(ip);
2190 ip_protocol = ip->ip_p;
2191 ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2192 }
2193 }
2194
2195 if (ip)
2196 {
2197 if (txdw0 & CP_TX_IPCS)
2198 {
2199 DPRINTF("+++ C+ mode need IP checksum\n");
2200
2201 if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2202 /* bad packet header len */
2203 /* or packet too short */
2204 }
2205 else
2206 {
2207 ip->ip_sum = 0;
2208 ip->ip_sum = ip_checksum(ip, hlen);
2209 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2210 hlen, ip->ip_sum);
2211 }
2212 }
2213
2214 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2215 {
2216 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2217
2218 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2219 "frame data %d specified MSS=%d\n", ETH_MTU,
2220 ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2221
2222 int tcp_send_offset = 0;
2223 int send_count = 0;
2224
2225 /* maximum IP header length is 60 bytes */
2226 uint8_t saved_ip_header[60];
2227
2228 /* save IP header template; data area is used in tcp checksum calculation */
2229 memcpy(saved_ip_header, eth_payload_data, hlen);
2230
2231 /* a placeholder for checksum calculation routine in tcp case */
2232 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2233 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2234
2235 /* pointer to TCP header */
2236 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2237
2238 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2239
2240 /* ETH_MTU = ip header len + tcp header len + payload */
2241 int tcp_data_len = ip_data_len - tcp_hlen;
2242 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2243
2244 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2245 "data len %d TCP chunk size %d\n", ip_data_len,
2246 tcp_hlen, tcp_data_len, tcp_chunk_size);
2247
2248 /* note the cycle below overwrites IP header data,
2249 but restores it from saved_ip_header before sending packet */
2250
2251 int is_last_frame = 0;
2252
2253 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2254 {
2255 uint16_t chunk_size = tcp_chunk_size;
2256
2257 /* check if this is the last frame */
2258 if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2259 {
2260 is_last_frame = 1;
2261 chunk_size = tcp_data_len - tcp_send_offset;
2262 }
2263
2264 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2265 be32_to_cpu(p_tcp_hdr->th_seq));
2266
2267 /* add 4 TCP pseudoheader fields */
2268 /* copy IP source and destination fields */
2269 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2270
2271 DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2272 "packet with %d bytes data\n", tcp_hlen +
2273 chunk_size);
2274
2275 if (tcp_send_offset)
2276 {
2277 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2278 }
2279
2280 /* keep PUSH and FIN flags only for the last frame */
2281 if (!is_last_frame)
2282 {
2283 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2284 }
2285
2286 /* recalculate TCP checksum */
2287 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2288 p_tcpip_hdr->zeros = 0;
2289 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2290 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2291
2292 p_tcp_hdr->th_sum = 0;
2293
2294 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2295 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2296 tcp_checksum);
2297
2298 p_tcp_hdr->th_sum = tcp_checksum;
2299
2300 /* restore IP header */
2301 memcpy(eth_payload_data, saved_ip_header, hlen);
2302
2303 /* set IP data length and recalculate IP checksum */
2304 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2305
2306 /* increment IP id for subsequent frames */
2307 ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2308
2309 ip->ip_sum = 0;
2310 ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2311 DPRINTF("+++ C+ mode TSO IP header len=%d "
2312 "checksum=%04x\n", hlen, ip->ip_sum);
2313
2314 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2315 DPRINTF("+++ C+ mode TSO transferring packet size "
2316 "%d\n", tso_send_size);
2317 rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2318 0, (uint8_t *) dot1q_buffer);
2319
2320 /* add transferred count to TCP sequence number */
2321 p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2322 ++send_count;
2323 }
2324
2325 /* Stop sending this frame */
2326 saved_size = 0;
2327 }
2328 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2329 {
2330 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2331
2332 /* maximum IP header length is 60 bytes */
2333 uint8_t saved_ip_header[60];
2334 memcpy(saved_ip_header, eth_payload_data, hlen);
2335
2336 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2337 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2338
2339 /* add 4 TCP pseudoheader fields */
2340 /* copy IP source and destination fields */
2341 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2342
2343 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2344 {
2345 DPRINTF("+++ C+ mode calculating TCP checksum for "
2346 "packet with %d bytes data\n", ip_data_len);
2347
2348 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2349 p_tcpip_hdr->zeros = 0;
2350 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2351 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2352
2353 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2354
2355 p_tcp_hdr->th_sum = 0;
2356
2357 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2358 DPRINTF("+++ C+ mode TCP checksum %04x\n",
2359 tcp_checksum);
2360
2361 p_tcp_hdr->th_sum = tcp_checksum;
2362 }
2363 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2364 {
2365 DPRINTF("+++ C+ mode calculating UDP checksum for "
2366 "packet with %d bytes data\n", ip_data_len);
2367
2368 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2369 p_udpip_hdr->zeros = 0;
2370 p_udpip_hdr->ip_proto = IP_PROTO_UDP;
2371 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2372
2373 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2374
2375 p_udp_hdr->uh_sum = 0;
2376
2377 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2378 DPRINTF("+++ C+ mode UDP checksum %04x\n",
2379 udp_checksum);
2380
2381 p_udp_hdr->uh_sum = udp_checksum;
2382 }
2383
2384 /* restore IP header */
2385 memcpy(eth_payload_data, saved_ip_header, hlen);
2386 }
2387 }
2388 }
2389
2390 /* update tally counter */
2391 ++s->tally_counters.TxOk;
2392
2393 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2394
2395 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2396 (uint8_t *) dot1q_buffer);
2397
2398 /* restore card space if there was no recursion and reset offset */
2399 if (!s->cplus_txbuffer)
2400 {
2401 s->cplus_txbuffer = saved_buffer;
2402 s->cplus_txbuffer_len = saved_buffer_len;
2403 s->cplus_txbuffer_offset = 0;
2404 }
2405 else
2406 {
2407 g_free(saved_buffer);
2408 }
2409 }
2410 else
2411 {
2412 DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2413 }
2414
2415 return 1;
2416 }
2417
2418 static void rtl8139_cplus_transmit(RTL8139State *s)
2419 {
2420 int txcount = 0;
2421
2422 while (rtl8139_cplus_transmit_one(s))
2423 {
2424 ++txcount;
2425 }
2426
2427 /* Mark transfer completed */
2428 if (!txcount)
2429 {
2430 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2431 s->currCPlusTxDesc);
2432 }
2433 else
2434 {
2435 /* update interrupt status */
2436 s->IntrStatus |= TxOK;
2437 rtl8139_update_irq(s);
2438 }
2439 }
2440
2441 static void rtl8139_transmit(RTL8139State *s)
2442 {
2443 int descriptor = s->currTxDesc, txcount = 0;
2444
2445 /*while*/
2446 if (rtl8139_transmit_one(s, descriptor))
2447 {
2448 ++s->currTxDesc;
2449 s->currTxDesc %= 4;
2450 ++txcount;
2451 }
2452
2453 /* Mark transfer completed */
2454 if (!txcount)
2455 {
2456 DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2457 s->currTxDesc);
2458 }
2459 }
2460
2461 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2462 {
2463
2464 int descriptor = txRegOffset/4;
2465
2466 /* handle C+ transmit mode register configuration */
2467
2468 if (s->cplus_enabled)
2469 {
2470 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2471 "descriptor=%d\n", txRegOffset, val, descriptor);
2472
2473 /* handle Dump Tally Counters command */
2474 s->TxStatus[descriptor] = val;
2475
2476 if (descriptor == 0 && (val & 0x8))
2477 {
2478 hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2479
2480 /* dump tally counters to specified memory location */
2481 RTL8139TallyCounters_dma_write(s, tc_addr);
2482
2483 /* mark dump completed */
2484 s->TxStatus[0] &= ~0x8;
2485 }
2486
2487 return;
2488 }
2489
2490 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2491 txRegOffset, val, descriptor);
2492
2493 /* mask only reserved bits */
2494 val &= ~0xff00c000; /* these bits are reset on write */
2495 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2496
2497 s->TxStatus[descriptor] = val;
2498
2499 /* attempt to start transmission */
2500 rtl8139_transmit(s);
2501 }
2502
2503 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2504 uint32_t base, uint8_t addr,
2505 int size)
2506 {
2507 uint32_t reg = (addr - base) / 4;
2508 uint32_t offset = addr & 0x3;
2509 uint32_t ret = 0;
2510
2511 if (addr & (size - 1)) {
2512 DPRINTF("not implemented read for TxStatus/TxAddr "
2513 "addr=0x%x size=0x%x\n", addr, size);
2514 return ret;
2515 }
2516
2517 switch (size) {
2518 case 1: /* fall through */
2519 case 2: /* fall through */
2520 case 4:
2521 ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2522 DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2523 reg, addr, size, ret);
2524 break;
2525 default:
2526 DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2527 break;
2528 }
2529
2530 return ret;
2531 }
2532
2533 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2534 {
2535 uint16_t ret = 0;
2536
2537 /* Simulate TSAD, it is read only anyway */
2538
2539 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
2540 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
2541 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
2542 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
2543
2544 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2545 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2546 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2547 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2548
2549 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2550 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2551 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2552 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2553
2554 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2555 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2556 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2557 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2558
2559
2560 DPRINTF("TSAD read val=0x%04x\n", ret);
2561
2562 return ret;
2563 }
2564
2565 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2566 {
2567 uint16_t ret = s->CSCR;
2568
2569 DPRINTF("CSCR read val=0x%04x\n", ret);
2570
2571 return ret;
2572 }
2573
2574 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2575 {
2576 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2577
2578 s->TxAddr[txAddrOffset/4] = val;
2579 }
2580
2581 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2582 {
2583 uint32_t ret = s->TxAddr[txAddrOffset/4];
2584
2585 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2586
2587 return ret;
2588 }
2589
2590 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2591 {
2592 DPRINTF("RxBufPtr write val=0x%04x\n", val);
2593
2594 /* this value is off by 16 */
2595 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2596
2597 /* more buffer space may be available so try to receive */
2598 qemu_flush_queued_packets(qemu_get_queue(s->nic));
2599
2600 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2601 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2602 }
2603
2604 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2605 {
2606 /* this value is off by 16 */
2607 uint32_t ret = s->RxBufPtr - 0x10;
2608
2609 DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2610
2611 return ret;
2612 }
2613
2614 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2615 {
2616 /* this value is NOT off by 16 */
2617 uint32_t ret = s->RxBufAddr;
2618
2619 DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2620
2621 return ret;
2622 }
2623
2624 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2625 {
2626 DPRINTF("RxBuf write val=0x%08x\n", val);
2627
2628 s->RxBuf = val;
2629
2630 /* may need to reset rxring here */
2631 }
2632
2633 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2634 {
2635 uint32_t ret = s->RxBuf;
2636
2637 DPRINTF("RxBuf read val=0x%08x\n", ret);
2638
2639 return ret;
2640 }
2641
2642 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2643 {
2644 DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2645
2646 /* mask unwritable bits */
2647 val = SET_MASKED(val, 0x1e00, s->IntrMask);
2648
2649 s->IntrMask = val;
2650
2651 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2652 rtl8139_update_irq(s);
2653
2654 }
2655
2656 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2657 {
2658 uint32_t ret = s->IntrMask;
2659
2660 DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2661
2662 return ret;
2663 }
2664
2665 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2666 {
2667 DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2668
2669 #if 0
2670
2671 /* writing to ISR has no effect */
2672
2673 return;
2674
2675 #else
2676 uint16_t newStatus = s->IntrStatus & ~val;
2677
2678 /* mask unwritable bits */
2679 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2680
2681 /* writing 1 to interrupt status register bit clears it */
2682 s->IntrStatus = 0;
2683 rtl8139_update_irq(s);
2684
2685 s->IntrStatus = newStatus;
2686 /*
2687 * Computing if we miss an interrupt here is not that correct but
2688 * considered that we should have had already an interrupt
2689 * and probably emulated is slower is better to assume this resetting was
2690 * done before testing on previous rtl8139_update_irq lead to IRQ losing
2691 */
2692 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2693 rtl8139_update_irq(s);
2694
2695 #endif
2696 }
2697
2698 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2699 {
2700 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2701
2702 uint32_t ret = s->IntrStatus;
2703
2704 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2705
2706 #if 0
2707
2708 /* reading ISR clears all interrupts */
2709 s->IntrStatus = 0;
2710
2711 rtl8139_update_irq(s);
2712
2713 #endif
2714
2715 return ret;
2716 }
2717
2718 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2719 {
2720 DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2721
2722 /* mask unwritable bits */
2723 val = SET_MASKED(val, 0xf000, s->MultiIntr);
2724
2725 s->MultiIntr = val;
2726 }
2727
2728 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2729 {
2730 uint32_t ret = s->MultiIntr;
2731
2732 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2733
2734 return ret;
2735 }
2736
2737 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2738 {
2739 RTL8139State *s = opaque;
2740
2741 switch (addr)
2742 {
2743 case MAC0 ... MAC0+5:
2744 s->phys[addr - MAC0] = val;
2745 break;
2746 case MAC0+6 ... MAC0+7:
2747 /* reserved */
2748 break;
2749 case MAR0 ... MAR0+7:
2750 s->mult[addr - MAR0] = val;
2751 break;
2752 case ChipCmd:
2753 rtl8139_ChipCmd_write(s, val);
2754 break;
2755 case Cfg9346:
2756 rtl8139_Cfg9346_write(s, val);
2757 break;
2758 case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2759 rtl8139_TxConfig_writeb(s, val);
2760 break;
2761 case Config0:
2762 rtl8139_Config0_write(s, val);
2763 break;
2764 case Config1:
2765 rtl8139_Config1_write(s, val);
2766 break;
2767 case Config3:
2768 rtl8139_Config3_write(s, val);
2769 break;
2770 case Config4:
2771 rtl8139_Config4_write(s, val);
2772 break;
2773 case Config5:
2774 rtl8139_Config5_write(s, val);
2775 break;
2776 case MediaStatus:
2777 /* ignore */
2778 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2779 val);
2780 break;
2781
2782 case HltClk:
2783 DPRINTF("HltClk write val=0x%08x\n", val);
2784 if (val == 'R')
2785 {
2786 s->clock_enabled = 1;
2787 }
2788 else if (val == 'H')
2789 {
2790 s->clock_enabled = 0;
2791 }
2792 break;
2793
2794 case TxThresh:
2795 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2796 s->TxThresh = val;
2797 break;
2798
2799 case TxPoll:
2800 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2801 if (val & (1 << 7))
2802 {
2803 DPRINTF("C+ TxPoll high priority transmission (not "
2804 "implemented)\n");
2805 //rtl8139_cplus_transmit(s);
2806 }
2807 if (val & (1 << 6))
2808 {
2809 DPRINTF("C+ TxPoll normal priority transmission\n");
2810 rtl8139_cplus_transmit(s);
2811 }
2812
2813 break;
2814
2815 default:
2816 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2817 val);
2818 break;
2819 }
2820 }
2821
2822 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2823 {
2824 RTL8139State *s = opaque;
2825
2826 switch (addr)
2827 {
2828 case IntrMask:
2829 rtl8139_IntrMask_write(s, val);
2830 break;
2831
2832 case IntrStatus:
2833 rtl8139_IntrStatus_write(s, val);
2834 break;
2835
2836 case MultiIntr:
2837 rtl8139_MultiIntr_write(s, val);
2838 break;
2839
2840 case RxBufPtr:
2841 rtl8139_RxBufPtr_write(s, val);
2842 break;
2843
2844 case BasicModeCtrl:
2845 rtl8139_BasicModeCtrl_write(s, val);
2846 break;
2847 case BasicModeStatus:
2848 rtl8139_BasicModeStatus_write(s, val);
2849 break;
2850 case NWayAdvert:
2851 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2852 s->NWayAdvert = val;
2853 break;
2854 case NWayLPAR:
2855 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2856 break;
2857 case NWayExpansion:
2858 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2859 s->NWayExpansion = val;
2860 break;
2861
2862 case CpCmd:
2863 rtl8139_CpCmd_write(s, val);
2864 break;
2865
2866 case IntrMitigate:
2867 rtl8139_IntrMitigate_write(s, val);
2868 break;
2869
2870 default:
2871 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2872 addr, val);
2873
2874 rtl8139_io_writeb(opaque, addr, val & 0xff);
2875 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2876 break;
2877 }
2878 }
2879
2880 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2881 {
2882 int64_t pci_time, next_time;
2883 uint32_t low_pci;
2884
2885 DPRINTF("entered rtl8139_set_next_tctr_time\n");
2886
2887 if (s->TimerExpire && current_time >= s->TimerExpire) {
2888 s->IntrStatus |= PCSTimeout;
2889 rtl8139_update_irq(s);
2890 }
2891
2892 /* Set QEMU timer only if needed that is
2893 * - TimerInt <> 0 (we have a timer)
2894 * - mask = 1 (we want an interrupt timer)
2895 * - irq = 0 (irq is not already active)
2896 * If any of above change we need to compute timer again
2897 * Also we must check if timer is passed without QEMU timer
2898 */
2899 s->TimerExpire = 0;
2900 if (!s->TimerInt) {
2901 return;
2902 }
2903
2904 pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2905 get_ticks_per_sec());
2906 low_pci = pci_time & 0xffffffff;
2907 pci_time = pci_time - low_pci + s->TimerInt;
2908 if (low_pci >= s->TimerInt) {
2909 pci_time += 0x100000000LL;
2910 }
2911 next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2912 PCI_FREQUENCY);
2913 s->TimerExpire = next_time;
2914
2915 if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2916 timer_mod(s->timer, next_time);
2917 }
2918 }
2919
2920 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2921 {
2922 RTL8139State *s = opaque;
2923
2924 switch (addr)
2925 {
2926 case RxMissed:
2927 DPRINTF("RxMissed clearing on write\n");
2928 s->RxMissed = 0;
2929 break;
2930
2931 case TxConfig:
2932 rtl8139_TxConfig_write(s, val);
2933 break;
2934
2935 case RxConfig:
2936 rtl8139_RxConfig_write(s, val);
2937 break;
2938
2939 case TxStatus0 ... TxStatus0+4*4-1:
2940 rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2941 break;
2942
2943 case TxAddr0 ... TxAddr0+4*4-1:
2944 rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2945 break;
2946
2947 case RxBuf:
2948 rtl8139_RxBuf_write(s, val);
2949 break;
2950
2951 case RxRingAddrLO:
2952 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2953 s->RxRingAddrLO = val;
2954 break;
2955
2956 case RxRingAddrHI:
2957 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2958 s->RxRingAddrHI = val;
2959 break;
2960
2961 case Timer:
2962 DPRINTF("TCTR Timer reset on write\n");
2963 s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2964 rtl8139_set_next_tctr_time(s, s->TCTR_base);
2965 break;
2966
2967 case FlashReg:
2968 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2969 if (s->TimerInt != val) {
2970 s->TimerInt = val;
2971 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
2972 }
2973 break;
2974
2975 default:
2976 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2977 addr, val);
2978 rtl8139_io_writeb(opaque, addr, val & 0xff);
2979 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2980 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2981 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2982 break;
2983 }
2984 }
2985
2986 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2987 {
2988 RTL8139State *s = opaque;
2989 int ret;
2990
2991 switch (addr)
2992 {
2993 case MAC0 ... MAC0+5:
2994 ret = s->phys[addr - MAC0];
2995 break;
2996 case MAC0+6 ... MAC0+7:
2997 ret = 0;
2998 break;
2999 case MAR0 ... MAR0+7:
3000 ret = s->mult[addr - MAR0];
3001 break;
3002 case TxStatus0 ... TxStatus0+4*4-1:
3003 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3004 addr, 1);
3005 break;
3006 case ChipCmd:
3007 ret = rtl8139_ChipCmd_read(s);
3008 break;
3009 case Cfg9346:
3010 ret = rtl8139_Cfg9346_read(s);
3011 break;
3012 case Config0:
3013 ret = rtl8139_Config0_read(s);
3014 break;
3015 case Config1:
3016 ret = rtl8139_Config1_read(s);
3017 break;
3018 case Config3:
3019 ret = rtl8139_Config3_read(s);
3020 break;
3021 case Config4:
3022 ret = rtl8139_Config4_read(s);
3023 break;
3024 case Config5:
3025 ret = rtl8139_Config5_read(s);
3026 break;
3027
3028 case MediaStatus:
3029 /* The LinkDown bit of MediaStatus is inverse with link status */
3030 ret = 0xd0 | (~s->BasicModeStatus & 0x04);
3031 DPRINTF("MediaStatus read 0x%x\n", ret);
3032 break;
3033
3034 case HltClk:
3035 ret = s->clock_enabled;
3036 DPRINTF("HltClk read 0x%x\n", ret);
3037 break;
3038
3039 case PCIRevisionID:
3040 ret = RTL8139_PCI_REVID;
3041 DPRINTF("PCI Revision ID read 0x%x\n", ret);
3042 break;
3043
3044 case TxThresh:
3045 ret = s->TxThresh;
3046 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3047 break;
3048
3049 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3050 ret = s->TxConfig >> 24;
3051 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3052 break;
3053
3054 default:
3055 DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3056 ret = 0;
3057 break;
3058 }
3059
3060 return ret;
3061 }
3062
3063 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3064 {
3065 RTL8139State *s = opaque;
3066 uint32_t ret;
3067
3068 switch (addr)
3069 {
3070 case TxAddr0 ... TxAddr0+4*4-1:
3071 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3072 break;
3073 case IntrMask:
3074 ret = rtl8139_IntrMask_read(s);
3075 break;
3076
3077 case IntrStatus:
3078 ret = rtl8139_IntrStatus_read(s);
3079 break;
3080
3081 case MultiIntr:
3082 ret = rtl8139_MultiIntr_read(s);
3083 break;
3084
3085 case RxBufPtr:
3086 ret = rtl8139_RxBufPtr_read(s);
3087 break;
3088
3089 case RxBufAddr:
3090 ret = rtl8139_RxBufAddr_read(s);
3091 break;
3092
3093 case BasicModeCtrl:
3094 ret = rtl8139_BasicModeCtrl_read(s);
3095 break;
3096 case BasicModeStatus:
3097 ret = rtl8139_BasicModeStatus_read(s);
3098 break;
3099 case NWayAdvert:
3100 ret = s->NWayAdvert;
3101 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3102 break;
3103 case NWayLPAR:
3104 ret = s->NWayLPAR;
3105 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3106 break;
3107 case NWayExpansion:
3108 ret = s->NWayExpansion;
3109 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3110 break;
3111
3112 case CpCmd:
3113 ret = rtl8139_CpCmd_read(s);
3114 break;
3115
3116 case IntrMitigate:
3117 ret = rtl8139_IntrMitigate_read(s);
3118 break;
3119
3120 case TxSummary:
3121 ret = rtl8139_TSAD_read(s);
3122 break;
3123
3124 case CSCR:
3125 ret = rtl8139_CSCR_read(s);
3126 break;
3127
3128 default:
3129 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3130
3131 ret = rtl8139_io_readb(opaque, addr);
3132 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3133
3134 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3135 break;
3136 }
3137
3138 return ret;
3139 }
3140
3141 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3142 {
3143 RTL8139State *s = opaque;
3144 uint32_t ret;
3145
3146 switch (addr)
3147 {
3148 case RxMissed:
3149 ret = s->RxMissed;
3150
3151 DPRINTF("RxMissed read val=0x%08x\n", ret);
3152 break;
3153
3154 case TxConfig:
3155 ret = rtl8139_TxConfig_read(s);
3156 break;
3157
3158 case RxConfig:
3159 ret = rtl8139_RxConfig_read(s);
3160 break;
3161
3162 case TxStatus0 ... TxStatus0+4*4-1:
3163 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3164 addr, 4);
3165 break;
3166
3167 case TxAddr0 ... TxAddr0+4*4-1:
3168 ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3169 break;
3170
3171 case RxBuf:
3172 ret = rtl8139_RxBuf_read(s);
3173 break;
3174
3175 case RxRingAddrLO:
3176 ret = s->RxRingAddrLO;
3177 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3178 break;
3179
3180 case RxRingAddrHI:
3181 ret = s->RxRingAddrHI;
3182 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3183 break;
3184
3185 case Timer:
3186 ret = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base,
3187 PCI_FREQUENCY, get_ticks_per_sec());
3188 DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3189 break;
3190
3191 case FlashReg:
3192 ret = s->TimerInt;
3193 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3194 break;
3195
3196 default:
3197 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3198
3199 ret = rtl8139_io_readb(opaque, addr);
3200 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3201 ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3202 ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3203
3204 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3205 break;
3206 }
3207
3208 return ret;
3209 }
3210
3211 /* */
3212
3213 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
3214 {
3215 rtl8139_io_writeb(opaque, addr & 0xFF, val);
3216 }
3217
3218 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
3219 {
3220 rtl8139_io_writew(opaque, addr & 0xFF, val);
3221 }
3222
3223 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
3224 {
3225 rtl8139_io_writel(opaque, addr & 0xFF, val);
3226 }
3227
3228 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
3229 {
3230 return rtl8139_io_readb(opaque, addr & 0xFF);
3231 }
3232
3233 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
3234 {
3235 uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3236 return val;
3237 }
3238
3239 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
3240 {
3241 uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3242 return val;
3243 }
3244
3245 static int rtl8139_post_load(void *opaque, int version_id)
3246 {
3247 RTL8139State* s = opaque;
3248 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3249 if (version_id < 4) {
3250 s->cplus_enabled = s->CpCmd != 0;
3251 }
3252
3253 /* nc.link_down can't be migrated, so infer link_down according
3254 * to link status bit in BasicModeStatus */
3255 qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3256
3257 return 0;
3258 }
3259
3260 static bool rtl8139_hotplug_ready_needed(void *opaque)
3261 {
3262 return qdev_machine_modified();
3263 }
3264
3265 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3266 .name = "rtl8139/hotplug_ready",
3267 .version_id = 1,
3268 .minimum_version_id = 1,
3269 .minimum_version_id_old = 1,
3270 .fields = (VMStateField []) {
3271 VMSTATE_END_OF_LIST()
3272 }
3273 };
3274
3275 static void rtl8139_pre_save(void *opaque)
3276 {
3277 RTL8139State* s = opaque;
3278 int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3279
3280 /* set IntrStatus correctly */
3281 rtl8139_set_next_tctr_time(s, current_time);
3282 s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3283 get_ticks_per_sec());
3284 s->rtl8139_mmio_io_addr_dummy = 0;
3285 }
3286
3287 static const VMStateDescription vmstate_rtl8139 = {
3288 .name = "rtl8139",
3289 .version_id = 4,
3290 .minimum_version_id = 3,
3291 .minimum_version_id_old = 3,
3292 .post_load = rtl8139_post_load,
3293 .pre_save = rtl8139_pre_save,
3294 .fields = (VMStateField []) {
3295 VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3296 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3297 VMSTATE_BUFFER(mult, RTL8139State),
3298 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3299 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3300
3301 VMSTATE_UINT32(RxBuf, RTL8139State),
3302 VMSTATE_UINT32(RxBufferSize, RTL8139State),
3303 VMSTATE_UINT32(RxBufPtr, RTL8139State),
3304 VMSTATE_UINT32(RxBufAddr, RTL8139State),
3305
3306 VMSTATE_UINT16(IntrStatus, RTL8139State),
3307 VMSTATE_UINT16(IntrMask, RTL8139State),
3308
3309 VMSTATE_UINT32(TxConfig, RTL8139State),
3310 VMSTATE_UINT32(RxConfig, RTL8139State),
3311 VMSTATE_UINT32(RxMissed, RTL8139State),
3312 VMSTATE_UINT16(CSCR, RTL8139State),
3313
3314 VMSTATE_UINT8(Cfg9346, RTL8139State),
3315 VMSTATE_UINT8(Config0, RTL8139State),
3316 VMSTATE_UINT8(Config1, RTL8139State),
3317 VMSTATE_UINT8(Config3, RTL8139State),
3318 VMSTATE_UINT8(Config4, RTL8139State),
3319 VMSTATE_UINT8(Config5, RTL8139State),
3320
3321 VMSTATE_UINT8(clock_enabled, RTL8139State),
3322 VMSTATE_UINT8(bChipCmdState, RTL8139State),
3323
3324 VMSTATE_UINT16(MultiIntr, RTL8139State),
3325
3326 VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3327 VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3328 VMSTATE_UINT16(NWayAdvert, RTL8139State),
3329 VMSTATE_UINT16(NWayLPAR, RTL8139State),
3330 VMSTATE_UINT16(NWayExpansion, RTL8139State),
3331
3332 VMSTATE_UINT16(CpCmd, RTL8139State),
3333 VMSTATE_UINT8(TxThresh, RTL8139State),
3334
3335 VMSTATE_UNUSED(4),
3336 VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3337 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3338
3339 VMSTATE_UINT32(currTxDesc, RTL8139State),
3340 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3341 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3342 VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3343 VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3344
3345 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3346 VMSTATE_INT32(eeprom.mode, RTL8139State),
3347 VMSTATE_UINT32(eeprom.tick, RTL8139State),
3348 VMSTATE_UINT8(eeprom.address, RTL8139State),
3349 VMSTATE_UINT16(eeprom.input, RTL8139State),
3350 VMSTATE_UINT16(eeprom.output, RTL8139State),
3351
3352 VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3353 VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3354 VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3355 VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3356
3357 VMSTATE_UINT32(TCTR, RTL8139State),
3358 VMSTATE_UINT32(TimerInt, RTL8139State),
3359 VMSTATE_INT64(TCTR_base, RTL8139State),
3360
3361 VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3362 vmstate_tally_counters, RTL8139TallyCounters),
3363
3364 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3365 VMSTATE_END_OF_LIST()
3366 },
3367 .subsections = (VMStateSubsection []) {
3368 {
3369 .vmsd = &vmstate_rtl8139_hotplug_ready,
3370 .needed = rtl8139_hotplug_ready_needed,
3371 }, {
3372 /* empty */
3373 }
3374 }
3375 };
3376
3377 /***********************************************************/
3378 /* PCI RTL8139 definitions */
3379
3380 static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3381 uint64_t val, unsigned size)
3382 {
3383 switch (size) {
3384 case 1:
3385 rtl8139_io_writeb(opaque, addr, val);
3386 break;
3387 case 2:
3388 rtl8139_io_writew(opaque, addr, val);
3389 break;
3390 case 4:
3391 rtl8139_io_writel(opaque, addr, val);
3392 break;
3393 }
3394 }
3395
3396 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3397 unsigned size)
3398 {
3399 switch (size) {
3400 case 1:
3401 return rtl8139_io_readb(opaque, addr);
3402 case 2:
3403 return rtl8139_io_readw(opaque, addr);
3404 case 4:
3405 return rtl8139_io_readl(opaque, addr);
3406 }
3407
3408 return -1;
3409 }
3410
3411 static const MemoryRegionOps rtl8139_io_ops = {
3412 .read = rtl8139_ioport_read,
3413 .write = rtl8139_ioport_write,
3414 .impl = {
3415 .min_access_size = 1,
3416 .max_access_size = 4,
3417 },
3418 .endianness = DEVICE_LITTLE_ENDIAN,
3419 };
3420
3421 static const MemoryRegionOps rtl8139_mmio_ops = {
3422 .old_mmio = {
3423 .read = {
3424 rtl8139_mmio_readb,
3425 rtl8139_mmio_readw,
3426 rtl8139_mmio_readl,
3427 },
3428 .write = {
3429 rtl8139_mmio_writeb,
3430 rtl8139_mmio_writew,
3431 rtl8139_mmio_writel,
3432 },
3433 },
3434 .endianness = DEVICE_LITTLE_ENDIAN,
3435 };
3436
3437 static void rtl8139_timer(void *opaque)
3438 {
3439 RTL8139State *s = opaque;
3440
3441 if (!s->clock_enabled)
3442 {
3443 DPRINTF(">>> timer: clock is not running\n");
3444 return;
3445 }
3446
3447 s->IntrStatus |= PCSTimeout;
3448 rtl8139_update_irq(s);
3449 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3450 }
3451
3452 static void rtl8139_cleanup(NetClientState *nc)
3453 {
3454 RTL8139State *s = qemu_get_nic_opaque(nc);
3455
3456 s->nic = NULL;
3457 }
3458
3459 static void pci_rtl8139_uninit(PCIDevice *dev)
3460 {
3461 RTL8139State *s = RTL8139(dev);
3462
3463 memory_region_destroy(&s->bar_io);
3464 memory_region_destroy(&s->bar_mem);
3465 if (s->cplus_txbuffer) {
3466 g_free(s->cplus_txbuffer);
3467 s->cplus_txbuffer = NULL;
3468 }
3469 timer_del(s->timer);
3470 timer_free(s->timer);
3471 qemu_del_nic(s->nic);
3472 }
3473
3474 static void rtl8139_set_link_status(NetClientState *nc)
3475 {
3476 RTL8139State *s = qemu_get_nic_opaque(nc);
3477
3478 if (nc->link_down) {
3479 s->BasicModeStatus &= ~0x04;
3480 } else {
3481 s->BasicModeStatus |= 0x04;
3482 }
3483
3484 s->IntrStatus |= RxUnderrun;
3485 rtl8139_update_irq(s);
3486 }
3487
3488 static NetClientInfo net_rtl8139_info = {
3489 .type = NET_CLIENT_OPTIONS_KIND_NIC,
3490 .size = sizeof(NICState),
3491 .can_receive = rtl8139_can_receive,
3492 .receive = rtl8139_receive,
3493 .cleanup = rtl8139_cleanup,
3494 .link_status_changed = rtl8139_set_link_status,
3495 };
3496
3497 static int pci_rtl8139_init(PCIDevice *dev)
3498 {
3499 RTL8139State *s = RTL8139(dev);
3500 DeviceState *d = DEVICE(dev);
3501 uint8_t *pci_conf;
3502
3503 pci_conf = dev->config;
3504 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3505 /* TODO: start of capability list, but no capability
3506 * list bit in status register, and offset 0xdc seems unused. */
3507 pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3508
3509 memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3510 "rtl8139", 0x100);
3511 memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
3512 "rtl8139", 0x100);
3513 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3514 pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3515
3516 qemu_macaddr_default_if_unset(&s->conf.macaddr);
3517
3518 /* prepare eeprom */
3519 s->eeprom.contents[0] = 0x8129;
3520 #if 1
3521 /* PCI vendor and device ID should be mirrored here */
3522 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3523 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3524 #endif
3525 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3526 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3527 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3528
3529 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3530 object_get_typename(OBJECT(dev)), d->id, s);
3531 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3532
3533 s->cplus_txbuffer = NULL;
3534 s->cplus_txbuffer_len = 0;
3535 s->cplus_txbuffer_offset = 0;
3536
3537 s->TimerExpire = 0;
3538 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3539 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
3540
3541 add_boot_device_path(s->conf.bootindex, d, "/ethernet-phy@0");
3542
3543 return 0;
3544 }
3545
3546 static Property rtl8139_properties[] = {
3547 DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3548 DEFINE_PROP_END_OF_LIST(),
3549 };
3550
3551 static void rtl8139_class_init(ObjectClass *klass, void *data)
3552 {
3553 DeviceClass *dc = DEVICE_CLASS(klass);
3554 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3555
3556 k->init = pci_rtl8139_init;
3557 k->exit = pci_rtl8139_uninit;
3558 k->romfile = "efi-rtl8139.rom";
3559 k->vendor_id = PCI_VENDOR_ID_REALTEK;
3560 k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3561 k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3562 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3563 dc->reset = rtl8139_reset;
3564 dc->vmsd = &vmstate_rtl8139;
3565 dc->props = rtl8139_properties;
3566 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3567 }
3568
3569 static const TypeInfo rtl8139_info = {
3570 .name = TYPE_RTL8139,
3571 .parent = TYPE_PCI_DEVICE,
3572 .instance_size = sizeof(RTL8139State),
3573 .class_init = rtl8139_class_init,
3574 };
3575
3576 static void rtl8139_register_types(void)
3577 {
3578 type_register_static(&rtl8139_info);
3579 }
3580
3581 type_init(rtl8139_register_types)