]> git.proxmox.com Git - qemu.git/blob - hw/omap.c
Add a TI TSC2102 chip (touchscreen/ADC/audio-CODEC controller).
[qemu.git] / hw / omap.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2007 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21 #include "vl.h"
22 #include "arm_pic.h"
23
24 /* Should signal the TCMI */
25 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
26 {
27 OMAP_16B_REG(addr);
28 return 0;
29 }
30
31 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
32 uint32_t value)
33 {
34 OMAP_16B_REG(addr);
35 }
36
37 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
38 {
39 OMAP_32B_REG(addr);
40 return 0;
41 }
42
43 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
44 uint32_t value)
45 {
46 OMAP_32B_REG(addr);
47 }
48
49 /* Interrupt Handlers */
50 struct omap_intr_handler_s {
51 qemu_irq *pins;
52 qemu_irq *parent_pic;
53 target_phys_addr_t base;
54
55 /* state */
56 uint32_t irqs;
57 uint32_t mask;
58 uint32_t sens_edge;
59 uint32_t fiq;
60 int priority[32];
61 uint32_t new_irq_agr;
62 uint32_t new_fiq_agr;
63 int sir_irq;
64 int sir_fiq;
65 int stats[32];
66 };
67
68 static void omap_inth_update(struct omap_intr_handler_s *s)
69 {
70 uint32_t irq = s->irqs & ~s->mask & ~s->fiq;
71 uint32_t fiq = s->irqs & ~s->mask & s->fiq;
72
73 if (s->new_irq_agr || !irq) {
74 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_IRQ], irq);
75 if (irq)
76 s->new_irq_agr = 0;
77 }
78
79 if (s->new_fiq_agr || !irq) {
80 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_FIQ], fiq);
81 if (fiq)
82 s->new_fiq_agr = 0;
83 }
84 }
85
86 static void omap_inth_sir_update(struct omap_intr_handler_s *s)
87 {
88 int i, intr_irq, intr_fiq, p_irq, p_fiq, p, f;
89 uint32_t level = s->irqs & ~s->mask;
90
91 intr_irq = 0;
92 intr_fiq = 0;
93 p_irq = -1;
94 p_fiq = -1;
95 /* Find the interrupt line with the highest dynamic priority */
96 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) {
97 p = s->priority[i];
98 if (s->fiq & (1 << i)) {
99 if (p > p_fiq) {
100 p_fiq = p;
101 intr_fiq = i;
102 }
103 } else {
104 if (p > p_irq) {
105 p_irq = p;
106 intr_irq = i;
107 }
108 }
109
110 f = ffs(level >> 1);
111 }
112
113 s->sir_irq = intr_irq;
114 s->sir_fiq = intr_fiq;
115 }
116
117 #define INT_FALLING_EDGE 0
118 #define INT_LOW_LEVEL 1
119
120 static void omap_set_intr(void *opaque, int irq, int req)
121 {
122 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
123 uint32_t rise;
124
125 if (req) {
126 rise = ~ih->irqs & (1 << irq);
127 ih->irqs |= rise;
128 ih->stats[irq] += !!rise;
129 } else {
130 rise = ih->sens_edge & ih->irqs & (1 << irq);
131 ih->irqs &= ~rise;
132 }
133
134 if (rise & ~ih->mask) {
135 omap_inth_sir_update(ih);
136
137 omap_inth_update(ih);
138 }
139 }
140
141 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
142 {
143 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
144 int i, offset = addr - s->base;
145
146 switch (offset) {
147 case 0x00: /* ITR */
148 return s->irqs;
149
150 case 0x04: /* MIR */
151 return s->mask;
152
153 case 0x10: /* SIR_IRQ_CODE */
154 i = s->sir_irq;
155 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
156 s->irqs &= ~(1 << i);
157 omap_inth_sir_update(s);
158 omap_inth_update(s);
159 }
160 return i;
161
162 case 0x14: /* SIR_FIQ_CODE */
163 i = s->sir_fiq;
164 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
165 s->irqs &= ~(1 << i);
166 omap_inth_sir_update(s);
167 omap_inth_update(s);
168 }
169 return i;
170
171 case 0x18: /* CONTROL_REG */
172 return 0;
173
174 case 0x1c: /* ILR0 */
175 case 0x20: /* ILR1 */
176 case 0x24: /* ILR2 */
177 case 0x28: /* ILR3 */
178 case 0x2c: /* ILR4 */
179 case 0x30: /* ILR5 */
180 case 0x34: /* ILR6 */
181 case 0x38: /* ILR7 */
182 case 0x3c: /* ILR8 */
183 case 0x40: /* ILR9 */
184 case 0x44: /* ILR10 */
185 case 0x48: /* ILR11 */
186 case 0x4c: /* ILR12 */
187 case 0x50: /* ILR13 */
188 case 0x54: /* ILR14 */
189 case 0x58: /* ILR15 */
190 case 0x5c: /* ILR16 */
191 case 0x60: /* ILR17 */
192 case 0x64: /* ILR18 */
193 case 0x68: /* ILR19 */
194 case 0x6c: /* ILR20 */
195 case 0x70: /* ILR21 */
196 case 0x74: /* ILR22 */
197 case 0x78: /* ILR23 */
198 case 0x7c: /* ILR24 */
199 case 0x80: /* ILR25 */
200 case 0x84: /* ILR26 */
201 case 0x88: /* ILR27 */
202 case 0x8c: /* ILR28 */
203 case 0x90: /* ILR29 */
204 case 0x94: /* ILR30 */
205 case 0x98: /* ILR31 */
206 i = (offset - 0x1c) >> 2;
207 return (s->priority[i] << 2) |
208 (((s->sens_edge >> i) & 1) << 1) |
209 ((s->fiq >> i) & 1);
210
211 case 0x9c: /* ISR */
212 return 0x00000000;
213
214 default:
215 OMAP_BAD_REG(addr);
216 break;
217 }
218 return 0;
219 }
220
221 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
222 uint32_t value)
223 {
224 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
225 int i, offset = addr - s->base;
226
227 switch (offset) {
228 case 0x00: /* ITR */
229 s->irqs &= value;
230 omap_inth_sir_update(s);
231 omap_inth_update(s);
232 return;
233
234 case 0x04: /* MIR */
235 s->mask = value;
236 omap_inth_sir_update(s);
237 omap_inth_update(s);
238 return;
239
240 case 0x10: /* SIR_IRQ_CODE */
241 case 0x14: /* SIR_FIQ_CODE */
242 OMAP_RO_REG(addr);
243 break;
244
245 case 0x18: /* CONTROL_REG */
246 if (value & 2)
247 s->new_fiq_agr = ~0;
248 if (value & 1)
249 s->new_irq_agr = ~0;
250 omap_inth_update(s);
251 return;
252
253 case 0x1c: /* ILR0 */
254 case 0x20: /* ILR1 */
255 case 0x24: /* ILR2 */
256 case 0x28: /* ILR3 */
257 case 0x2c: /* ILR4 */
258 case 0x30: /* ILR5 */
259 case 0x34: /* ILR6 */
260 case 0x38: /* ILR7 */
261 case 0x3c: /* ILR8 */
262 case 0x40: /* ILR9 */
263 case 0x44: /* ILR10 */
264 case 0x48: /* ILR11 */
265 case 0x4c: /* ILR12 */
266 case 0x50: /* ILR13 */
267 case 0x54: /* ILR14 */
268 case 0x58: /* ILR15 */
269 case 0x5c: /* ILR16 */
270 case 0x60: /* ILR17 */
271 case 0x64: /* ILR18 */
272 case 0x68: /* ILR19 */
273 case 0x6c: /* ILR20 */
274 case 0x70: /* ILR21 */
275 case 0x74: /* ILR22 */
276 case 0x78: /* ILR23 */
277 case 0x7c: /* ILR24 */
278 case 0x80: /* ILR25 */
279 case 0x84: /* ILR26 */
280 case 0x88: /* ILR27 */
281 case 0x8c: /* ILR28 */
282 case 0x90: /* ILR29 */
283 case 0x94: /* ILR30 */
284 case 0x98: /* ILR31 */
285 i = (offset - 0x1c) >> 2;
286 s->priority[i] = (value >> 2) & 0x1f;
287 s->sens_edge &= ~(1 << i);
288 s->sens_edge |= ((value >> 1) & 1) << i;
289 s->fiq &= ~(1 << i);
290 s->fiq |= (value & 1) << i;
291 return;
292
293 case 0x9c: /* ISR */
294 for (i = 0; i < 32; i ++)
295 if (value & (1 << i)) {
296 omap_set_intr(s, i, 1);
297 return;
298 }
299 return;
300
301 default:
302 OMAP_BAD_REG(addr);
303 }
304 }
305
306 static CPUReadMemoryFunc *omap_inth_readfn[] = {
307 omap_badwidth_read32,
308 omap_badwidth_read32,
309 omap_inth_read,
310 };
311
312 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
313 omap_inth_write,
314 omap_inth_write,
315 omap_inth_write,
316 };
317
318 static void omap_inth_reset(struct omap_intr_handler_s *s)
319 {
320 s->irqs = 0x00000000;
321 s->mask = 0xffffffff;
322 s->sens_edge = 0x00000000;
323 s->fiq = 0x00000000;
324 memset(s->priority, 0, sizeof(s->priority));
325 s->new_irq_agr = ~0;
326 s->new_fiq_agr = ~0;
327 s->sir_irq = 0;
328 s->sir_fiq = 0;
329
330 omap_inth_update(s);
331 }
332
333 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
334 unsigned long size, qemu_irq parent[2], omap_clk clk)
335 {
336 int iomemtype;
337 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
338 qemu_mallocz(sizeof(struct omap_intr_handler_s));
339
340 s->parent_pic = parent;
341 s->base = base;
342 s->pins = qemu_allocate_irqs(omap_set_intr, s, 32);
343 omap_inth_reset(s);
344
345 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
346 omap_inth_writefn, s);
347 cpu_register_physical_memory(s->base, size, iomemtype);
348
349 return s;
350 }
351
352 /* OMAP1 DMA module */
353 typedef enum {
354 constant = 0,
355 post_incremented,
356 single_index,
357 double_index,
358 } omap_dma_addressing_t;
359
360 struct omap_dma_channel_s {
361 int burst[2];
362 int pack[2];
363 enum omap_dma_port port[2];
364 target_phys_addr_t addr[2];
365 omap_dma_addressing_t mode[2];
366 int data_type;
367 int end_prog;
368 int repeat;
369 int auto_init;
370 int priority;
371 int fs;
372 int sync;
373 int running;
374 int interrupts;
375 int status;
376 int signalled;
377 int post_sync;
378 int transfer;
379 uint16_t elements;
380 uint16_t frames;
381 uint16_t frame_index;
382 uint16_t element_index;
383 uint16_t cpc;
384
385 struct omap_dma_reg_set_s {
386 target_phys_addr_t src, dest;
387 int frame;
388 int element;
389 int frame_delta[2];
390 int elem_delta[2];
391 int frames;
392 int elements;
393 } active_set;
394 };
395
396 struct omap_dma_s {
397 qemu_irq *ih;
398 QEMUTimer *tm;
399 struct omap_mpu_state_s *mpu;
400 target_phys_addr_t base;
401 omap_clk clk;
402 int64_t delay;
403 uint32_t drq;
404
405 uint16_t gcr;
406 int run_count;
407
408 int chans;
409 struct omap_dma_channel_s ch[16];
410 struct omap_dma_lcd_channel_s lcd_ch;
411 };
412
413 static void omap_dma_interrupts_update(struct omap_dma_s *s)
414 {
415 /* First three interrupts are shared between two channels each. */
416 qemu_set_irq(s->ih[OMAP_INT_DMA_CH0_6],
417 (s->ch[0].status | s->ch[6].status) & 0x3f);
418 qemu_set_irq(s->ih[OMAP_INT_DMA_CH1_7],
419 (s->ch[1].status | s->ch[7].status) & 0x3f);
420 qemu_set_irq(s->ih[OMAP_INT_DMA_CH2_8],
421 (s->ch[2].status | s->ch[8].status) & 0x3f);
422 qemu_set_irq(s->ih[OMAP_INT_DMA_CH3],
423 (s->ch[3].status) & 0x3f);
424 qemu_set_irq(s->ih[OMAP_INT_DMA_CH4],
425 (s->ch[4].status) & 0x3f);
426 qemu_set_irq(s->ih[OMAP_INT_DMA_CH5],
427 (s->ch[5].status) & 0x3f);
428 }
429
430 static void omap_dma_channel_load(struct omap_dma_s *s, int ch)
431 {
432 struct omap_dma_reg_set_s *a = &s->ch[ch].active_set;
433 int i;
434
435 /*
436 * TODO: verify address ranges and alignment
437 * TODO: port endianness
438 */
439
440 a->src = s->ch[ch].addr[0];
441 a->dest = s->ch[ch].addr[1];
442 a->frames = s->ch[ch].frames;
443 a->elements = s->ch[ch].elements;
444 a->frame = 0;
445 a->element = 0;
446
447 if (unlikely(!s->ch[ch].elements || !s->ch[ch].frames)) {
448 printf("%s: bad DMA request\n", __FUNCTION__);
449 return;
450 }
451
452 for (i = 0; i < 2; i ++)
453 switch (s->ch[ch].mode[i]) {
454 case constant:
455 a->elem_delta[i] = 0;
456 a->frame_delta[i] = 0;
457 break;
458 case post_incremented:
459 a->elem_delta[i] = s->ch[ch].data_type;
460 a->frame_delta[i] = 0;
461 break;
462 case single_index:
463 a->elem_delta[i] = s->ch[ch].data_type +
464 s->ch[ch].element_index - 1;
465 if (s->ch[ch].element_index > 0x7fff)
466 a->elem_delta[i] -= 0x10000;
467 a->frame_delta[i] = 0;
468 break;
469 case double_index:
470 a->elem_delta[i] = s->ch[ch].data_type +
471 s->ch[ch].element_index - 1;
472 if (s->ch[ch].element_index > 0x7fff)
473 a->elem_delta[i] -= 0x10000;
474 a->frame_delta[i] = s->ch[ch].frame_index -
475 s->ch[ch].element_index;
476 if (s->ch[ch].frame_index > 0x7fff)
477 a->frame_delta[i] -= 0x10000;
478 break;
479 default:
480 break;
481 }
482 }
483
484 static inline void omap_dma_request_run(struct omap_dma_s *s,
485 int channel, int request)
486 {
487 next_channel:
488 if (request > 0)
489 for (; channel < 9; channel ++)
490 if (s->ch[channel].sync == request && s->ch[channel].running)
491 break;
492 if (channel >= 9)
493 return;
494
495 if (s->ch[channel].transfer) {
496 if (request > 0) {
497 s->ch[channel ++].post_sync = request;
498 goto next_channel;
499 }
500 s->ch[channel].status |= 0x02; /* Synchronisation drop */
501 omap_dma_interrupts_update(s);
502 return;
503 }
504
505 if (!s->ch[channel].signalled)
506 s->run_count ++;
507 s->ch[channel].signalled = 1;
508
509 if (request > 0)
510 s->ch[channel].status |= 0x40; /* External request */
511
512 if (s->delay && !qemu_timer_pending(s->tm))
513 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
514
515 if (request > 0) {
516 channel ++;
517 goto next_channel;
518 }
519 }
520
521 static inline void omap_dma_request_stop(struct omap_dma_s *s, int channel)
522 {
523 if (s->ch[channel].signalled)
524 s->run_count --;
525 s->ch[channel].signalled = 0;
526
527 if (!s->run_count)
528 qemu_del_timer(s->tm);
529 }
530
531 static void omap_dma_channel_run(struct omap_dma_s *s)
532 {
533 int ch;
534 uint16_t status;
535 uint8_t value[4];
536 struct omap_dma_port_if_s *src_p, *dest_p;
537 struct omap_dma_reg_set_s *a;
538
539 for (ch = 0; ch < 9; ch ++) {
540 a = &s->ch[ch].active_set;
541
542 src_p = &s->mpu->port[s->ch[ch].port[0]];
543 dest_p = &s->mpu->port[s->ch[ch].port[1]];
544 if (s->ch[ch].signalled && (!src_p->addr_valid(s->mpu, a->src) ||
545 !dest_p->addr_valid(s->mpu, a->dest))) {
546 #if 0
547 /* Bus time-out */
548 if (s->ch[ch].interrupts & 0x01)
549 s->ch[ch].status |= 0x01;
550 omap_dma_request_stop(s, ch);
551 continue;
552 #endif
553 printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, ch);
554 }
555
556 status = s->ch[ch].status;
557 while (status == s->ch[ch].status && s->ch[ch].signalled) {
558 /* Transfer a single element */
559 s->ch[ch].transfer = 1;
560 cpu_physical_memory_read(a->src, value, s->ch[ch].data_type);
561 cpu_physical_memory_write(a->dest, value, s->ch[ch].data_type);
562 s->ch[ch].transfer = 0;
563
564 a->src += a->elem_delta[0];
565 a->dest += a->elem_delta[1];
566 a->element ++;
567
568 /* Check interrupt conditions */
569 if (a->element == a->elements) {
570 a->element = 0;
571 a->src += a->frame_delta[0];
572 a->dest += a->frame_delta[1];
573 a->frame ++;
574
575 if (a->frame == a->frames) {
576 if (!s->ch[ch].repeat || !s->ch[ch].auto_init)
577 s->ch[ch].running = 0;
578
579 if (s->ch[ch].auto_init &&
580 (s->ch[ch].repeat ||
581 s->ch[ch].end_prog))
582 omap_dma_channel_load(s, ch);
583
584 if (s->ch[ch].interrupts & 0x20)
585 s->ch[ch].status |= 0x20;
586
587 if (!s->ch[ch].sync)
588 omap_dma_request_stop(s, ch);
589 }
590
591 if (s->ch[ch].interrupts & 0x08)
592 s->ch[ch].status |= 0x08;
593
594 if (s->ch[ch].sync && s->ch[ch].fs &&
595 !(s->drq & (1 << s->ch[ch].sync))) {
596 s->ch[ch].status &= ~0x40;
597 omap_dma_request_stop(s, ch);
598 }
599 }
600
601 if (a->element == 1 && a->frame == a->frames - 1)
602 if (s->ch[ch].interrupts & 0x10)
603 s->ch[ch].status |= 0x10;
604
605 if (a->element == (a->elements >> 1))
606 if (s->ch[ch].interrupts & 0x04)
607 s->ch[ch].status |= 0x04;
608
609 if (s->ch[ch].sync && !s->ch[ch].fs &&
610 !(s->drq & (1 << s->ch[ch].sync))) {
611 s->ch[ch].status &= ~0x40;
612 omap_dma_request_stop(s, ch);
613 }
614
615 /*
616 * Process requests made while the element was
617 * being transferred.
618 */
619 if (s->ch[ch].post_sync) {
620 omap_dma_request_run(s, 0, s->ch[ch].post_sync);
621 s->ch[ch].post_sync = 0;
622 }
623
624 #if 0
625 break;
626 #endif
627 }
628
629 s->ch[ch].cpc = a->dest & 0x0000ffff;
630 }
631
632 omap_dma_interrupts_update(s);
633 if (s->run_count && s->delay)
634 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
635 }
636
637 static int omap_dma_ch_reg_read(struct omap_dma_s *s,
638 int ch, int reg, uint16_t *value) {
639 switch (reg) {
640 case 0x00: /* SYS_DMA_CSDP_CH0 */
641 *value = (s->ch[ch].burst[1] << 14) |
642 (s->ch[ch].pack[1] << 13) |
643 (s->ch[ch].port[1] << 9) |
644 (s->ch[ch].burst[0] << 7) |
645 (s->ch[ch].pack[0] << 6) |
646 (s->ch[ch].port[0] << 2) |
647 (s->ch[ch].data_type >> 1);
648 break;
649
650 case 0x02: /* SYS_DMA_CCR_CH0 */
651 *value = (s->ch[ch].mode[1] << 14) |
652 (s->ch[ch].mode[0] << 12) |
653 (s->ch[ch].end_prog << 11) |
654 (s->ch[ch].repeat << 9) |
655 (s->ch[ch].auto_init << 8) |
656 (s->ch[ch].running << 7) |
657 (s->ch[ch].priority << 6) |
658 (s->ch[ch].fs << 5) | s->ch[ch].sync;
659 break;
660
661 case 0x04: /* SYS_DMA_CICR_CH0 */
662 *value = s->ch[ch].interrupts;
663 break;
664
665 case 0x06: /* SYS_DMA_CSR_CH0 */
666 /* FIXME: shared CSR for channels sharing the interrupts */
667 *value = s->ch[ch].status;
668 s->ch[ch].status &= 0x40;
669 omap_dma_interrupts_update(s);
670 break;
671
672 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
673 *value = s->ch[ch].addr[0] & 0x0000ffff;
674 break;
675
676 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
677 *value = s->ch[ch].addr[0] >> 16;
678 break;
679
680 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
681 *value = s->ch[ch].addr[1] & 0x0000ffff;
682 break;
683
684 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
685 *value = s->ch[ch].addr[1] >> 16;
686 break;
687
688 case 0x10: /* SYS_DMA_CEN_CH0 */
689 *value = s->ch[ch].elements;
690 break;
691
692 case 0x12: /* SYS_DMA_CFN_CH0 */
693 *value = s->ch[ch].frames;
694 break;
695
696 case 0x14: /* SYS_DMA_CFI_CH0 */
697 *value = s->ch[ch].frame_index;
698 break;
699
700 case 0x16: /* SYS_DMA_CEI_CH0 */
701 *value = s->ch[ch].element_index;
702 break;
703
704 case 0x18: /* SYS_DMA_CPC_CH0 */
705 *value = s->ch[ch].cpc;
706 break;
707
708 default:
709 return 1;
710 }
711 return 0;
712 }
713
714 static int omap_dma_ch_reg_write(struct omap_dma_s *s,
715 int ch, int reg, uint16_t value) {
716 switch (reg) {
717 case 0x00: /* SYS_DMA_CSDP_CH0 */
718 s->ch[ch].burst[1] = (value & 0xc000) >> 14;
719 s->ch[ch].pack[1] = (value & 0x2000) >> 13;
720 s->ch[ch].port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
721 s->ch[ch].burst[0] = (value & 0x0180) >> 7;
722 s->ch[ch].pack[0] = (value & 0x0040) >> 6;
723 s->ch[ch].port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
724 s->ch[ch].data_type = (1 << (value & 3));
725 if (s->ch[ch].port[0] >= omap_dma_port_last)
726 printf("%s: invalid DMA port %i\n", __FUNCTION__,
727 s->ch[ch].port[0]);
728 if (s->ch[ch].port[1] >= omap_dma_port_last)
729 printf("%s: invalid DMA port %i\n", __FUNCTION__,
730 s->ch[ch].port[1]);
731 if ((value & 3) == 3)
732 printf("%s: bad data_type for DMA channel %i\n", __FUNCTION__, ch);
733 break;
734
735 case 0x02: /* SYS_DMA_CCR_CH0 */
736 s->ch[ch].mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
737 s->ch[ch].mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
738 s->ch[ch].end_prog = (value & 0x0800) >> 11;
739 s->ch[ch].repeat = (value & 0x0200) >> 9;
740 s->ch[ch].auto_init = (value & 0x0100) >> 8;
741 s->ch[ch].priority = (value & 0x0040) >> 6;
742 s->ch[ch].fs = (value & 0x0020) >> 5;
743 s->ch[ch].sync = value & 0x001f;
744 if (value & 0x0080) {
745 if (s->ch[ch].running) {
746 if (!s->ch[ch].signalled &&
747 s->ch[ch].auto_init && s->ch[ch].end_prog)
748 omap_dma_channel_load(s, ch);
749 } else {
750 s->ch[ch].running = 1;
751 omap_dma_channel_load(s, ch);
752 }
753 if (!s->ch[ch].sync || (s->drq & (1 << s->ch[ch].sync)))
754 omap_dma_request_run(s, ch, 0);
755 } else {
756 s->ch[ch].running = 0;
757 omap_dma_request_stop(s, ch);
758 }
759 break;
760
761 case 0x04: /* SYS_DMA_CICR_CH0 */
762 s->ch[ch].interrupts = value & 0x003f;
763 break;
764
765 case 0x06: /* SYS_DMA_CSR_CH0 */
766 return 1;
767
768 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
769 s->ch[ch].addr[0] &= 0xffff0000;
770 s->ch[ch].addr[0] |= value;
771 break;
772
773 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
774 s->ch[ch].addr[0] &= 0x0000ffff;
775 s->ch[ch].addr[0] |= value << 16;
776 break;
777
778 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
779 s->ch[ch].addr[1] &= 0xffff0000;
780 s->ch[ch].addr[1] |= value;
781 break;
782
783 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
784 s->ch[ch].addr[1] &= 0x0000ffff;
785 s->ch[ch].addr[1] |= value << 16;
786 break;
787
788 case 0x10: /* SYS_DMA_CEN_CH0 */
789 s->ch[ch].elements = value & 0xffff;
790 break;
791
792 case 0x12: /* SYS_DMA_CFN_CH0 */
793 s->ch[ch].frames = value & 0xffff;
794 break;
795
796 case 0x14: /* SYS_DMA_CFI_CH0 */
797 s->ch[ch].frame_index = value & 0xffff;
798 break;
799
800 case 0x16: /* SYS_DMA_CEI_CH0 */
801 s->ch[ch].element_index = value & 0xffff;
802 break;
803
804 case 0x18: /* SYS_DMA_CPC_CH0 */
805 return 1;
806
807 default:
808 OMAP_BAD_REG((unsigned long) reg);
809 }
810 return 0;
811 }
812
813 static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
814 {
815 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
816 int i, reg, ch, offset = addr - s->base;
817 uint16_t ret;
818
819 switch (offset) {
820 case 0x000 ... 0x2fe:
821 reg = offset & 0x3f;
822 ch = (offset >> 6) & 0x0f;
823 if (omap_dma_ch_reg_read(s, ch, reg, &ret))
824 break;
825 return ret;
826
827 case 0x300: /* SYS_DMA_LCD_CTRL */
828 i = s->lcd_ch.condition;
829 s->lcd_ch.condition = 0;
830 qemu_irq_lower(s->lcd_ch.irq);
831 return ((s->lcd_ch.src == imif) << 6) | (i << 3) |
832 (s->lcd_ch.interrupts << 1) | s->lcd_ch.dual;
833
834 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
835 return s->lcd_ch.src_f1_top & 0xffff;
836
837 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
838 return s->lcd_ch.src_f1_top >> 16;
839
840 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
841 return s->lcd_ch.src_f1_bottom & 0xffff;
842
843 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
844 return s->lcd_ch.src_f1_bottom >> 16;
845
846 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
847 return s->lcd_ch.src_f2_top & 0xffff;
848
849 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
850 return s->lcd_ch.src_f2_top >> 16;
851
852 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
853 return s->lcd_ch.src_f2_bottom & 0xffff;
854
855 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
856 return s->lcd_ch.src_f2_bottom >> 16;
857
858 case 0x400: /* SYS_DMA_GCR */
859 return s->gcr;
860 }
861
862 OMAP_BAD_REG(addr);
863 return 0;
864 }
865
866 static void omap_dma_write(void *opaque, target_phys_addr_t addr,
867 uint32_t value)
868 {
869 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
870 int reg, ch, offset = addr - s->base;
871
872 switch (offset) {
873 case 0x000 ... 0x2fe:
874 reg = offset & 0x3f;
875 ch = (offset >> 6) & 0x0f;
876 if (omap_dma_ch_reg_write(s, ch, reg, value))
877 OMAP_RO_REG(addr);
878 break;
879
880 case 0x300: /* SYS_DMA_LCD_CTRL */
881 s->lcd_ch.src = (value & 0x40) ? imif : emiff;
882 s->lcd_ch.condition = 0;
883 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
884 s->lcd_ch.interrupts = (value >> 1) & 1;
885 s->lcd_ch.dual = value & 1;
886 break;
887
888 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
889 s->lcd_ch.src_f1_top &= 0xffff0000;
890 s->lcd_ch.src_f1_top |= 0x0000ffff & value;
891 break;
892
893 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
894 s->lcd_ch.src_f1_top &= 0x0000ffff;
895 s->lcd_ch.src_f1_top |= value << 16;
896 break;
897
898 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
899 s->lcd_ch.src_f1_bottom &= 0xffff0000;
900 s->lcd_ch.src_f1_bottom |= 0x0000ffff & value;
901 break;
902
903 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
904 s->lcd_ch.src_f1_bottom &= 0x0000ffff;
905 s->lcd_ch.src_f1_bottom |= value << 16;
906 break;
907
908 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
909 s->lcd_ch.src_f2_top &= 0xffff0000;
910 s->lcd_ch.src_f2_top |= 0x0000ffff & value;
911 break;
912
913 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
914 s->lcd_ch.src_f2_top &= 0x0000ffff;
915 s->lcd_ch.src_f2_top |= value << 16;
916 break;
917
918 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
919 s->lcd_ch.src_f2_bottom &= 0xffff0000;
920 s->lcd_ch.src_f2_bottom |= 0x0000ffff & value;
921 break;
922
923 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
924 s->lcd_ch.src_f2_bottom &= 0x0000ffff;
925 s->lcd_ch.src_f2_bottom |= value << 16;
926 break;
927
928 case 0x400: /* SYS_DMA_GCR */
929 s->gcr = value & 0x000c;
930 break;
931
932 default:
933 OMAP_BAD_REG(addr);
934 }
935 }
936
937 static CPUReadMemoryFunc *omap_dma_readfn[] = {
938 omap_badwidth_read16,
939 omap_dma_read,
940 omap_badwidth_read16,
941 };
942
943 static CPUWriteMemoryFunc *omap_dma_writefn[] = {
944 omap_badwidth_write16,
945 omap_dma_write,
946 omap_badwidth_write16,
947 };
948
949 static void omap_dma_request(void *opaque, int drq, int req)
950 {
951 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
952 /* The request pins are level triggered. */
953 if (req) {
954 if (~s->drq & (1 << drq)) {
955 s->drq |= 1 << drq;
956 omap_dma_request_run(s, 0, drq);
957 }
958 } else
959 s->drq &= ~(1 << drq);
960 }
961
962 static void omap_dma_clk_update(void *opaque, int line, int on)
963 {
964 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
965
966 if (on) {
967 s->delay = ticks_per_sec >> 5;
968 if (s->run_count)
969 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
970 } else {
971 s->delay = 0;
972 qemu_del_timer(s->tm);
973 }
974 }
975
976 static void omap_dma_reset(struct omap_dma_s *s)
977 {
978 int i;
979
980 qemu_del_timer(s->tm);
981 s->gcr = 0x0004;
982 s->drq = 0x00000000;
983 s->run_count = 0;
984 s->lcd_ch.src = emiff;
985 s->lcd_ch.condition = 0;
986 s->lcd_ch.interrupts = 0;
987 s->lcd_ch.dual = 0;
988 memset(s->ch, 0, sizeof(s->ch));
989 for (i = 0; i < s->chans; i ++)
990 s->ch[i].interrupts = 0x0003;
991 }
992
993 struct omap_dma_s *omap_dma_init(target_phys_addr_t base,
994 qemu_irq pic[], struct omap_mpu_state_s *mpu, omap_clk clk)
995 {
996 int iomemtype;
997 struct omap_dma_s *s = (struct omap_dma_s *)
998 qemu_mallocz(sizeof(struct omap_dma_s));
999
1000 s->ih = pic;
1001 s->base = base;
1002 s->chans = 9;
1003 s->mpu = mpu;
1004 s->clk = clk;
1005 s->lcd_ch.irq = pic[OMAP_INT_DMA_LCD];
1006 s->lcd_ch.mpu = mpu;
1007 s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s);
1008 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1009 mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1010 omap_dma_reset(s);
1011 omap_dma_clk_update(s, 0, 1);
1012
1013 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1014 omap_dma_writefn, s);
1015 cpu_register_physical_memory(s->base, 0x800, iomemtype);
1016
1017 return s;
1018 }
1019
1020 /* DMA ports */
1021 int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
1022 target_phys_addr_t addr)
1023 {
1024 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
1025 }
1026
1027 int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
1028 target_phys_addr_t addr)
1029 {
1030 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
1031 }
1032
1033 int omap_validate_imif_addr(struct omap_mpu_state_s *s,
1034 target_phys_addr_t addr)
1035 {
1036 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
1037 }
1038
1039 int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
1040 target_phys_addr_t addr)
1041 {
1042 return addr >= 0xfffb0000 && addr < 0xffff0000;
1043 }
1044
1045 int omap_validate_local_addr(struct omap_mpu_state_s *s,
1046 target_phys_addr_t addr)
1047 {
1048 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
1049 }
1050
1051 int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
1052 target_phys_addr_t addr)
1053 {
1054 return addr >= 0xe1010000 && addr < 0xe1020004;
1055 }
1056
1057 /* MPU OS timers */
1058 struct omap_mpu_timer_s {
1059 qemu_irq irq;
1060 omap_clk clk;
1061 target_phys_addr_t base;
1062 uint32_t val;
1063 int64_t time;
1064 QEMUTimer *timer;
1065 int64_t rate;
1066 int it_ena;
1067
1068 int enable;
1069 int ptv;
1070 int ar;
1071 int st;
1072 uint32_t reset_val;
1073 };
1074
1075 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
1076 {
1077 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
1078
1079 if (timer->st && timer->enable && timer->rate)
1080 return timer->val - muldiv64(distance >> (timer->ptv + 1),
1081 timer->rate, ticks_per_sec);
1082 else
1083 return timer->val;
1084 }
1085
1086 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
1087 {
1088 timer->val = omap_timer_read(timer);
1089 timer->time = qemu_get_clock(vm_clock);
1090 }
1091
1092 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
1093 {
1094 int64_t expires;
1095
1096 if (timer->enable && timer->st && timer->rate) {
1097 timer->val = timer->reset_val; /* Should skip this on clk enable */
1098 expires = timer->time + muldiv64(timer->val << (timer->ptv + 1),
1099 ticks_per_sec, timer->rate);
1100 qemu_mod_timer(timer->timer, expires);
1101 } else
1102 qemu_del_timer(timer->timer);
1103 }
1104
1105 static void omap_timer_tick(void *opaque)
1106 {
1107 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1108 omap_timer_sync(timer);
1109
1110 if (!timer->ar) {
1111 timer->val = 0;
1112 timer->st = 0;
1113 }
1114
1115 if (timer->it_ena)
1116 qemu_irq_raise(timer->irq);
1117 omap_timer_update(timer);
1118 }
1119
1120 static void omap_timer_clk_update(void *opaque, int line, int on)
1121 {
1122 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1123
1124 omap_timer_sync(timer);
1125 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
1126 omap_timer_update(timer);
1127 }
1128
1129 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
1130 {
1131 omap_clk_adduser(timer->clk,
1132 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
1133 timer->rate = omap_clk_getrate(timer->clk);
1134 }
1135
1136 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
1137 {
1138 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1139 int offset = addr - s->base;
1140
1141 switch (offset) {
1142 case 0x00: /* CNTL_TIMER */
1143 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
1144
1145 case 0x04: /* LOAD_TIM */
1146 break;
1147
1148 case 0x08: /* READ_TIM */
1149 return omap_timer_read(s);
1150 }
1151
1152 OMAP_BAD_REG(addr);
1153 return 0;
1154 }
1155
1156 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
1157 uint32_t value)
1158 {
1159 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1160 int offset = addr - s->base;
1161
1162 switch (offset) {
1163 case 0x00: /* CNTL_TIMER */
1164 omap_timer_sync(s);
1165 s->enable = (value >> 5) & 1;
1166 s->ptv = (value >> 2) & 7;
1167 s->ar = (value >> 1) & 1;
1168 s->st = value & 1;
1169 omap_timer_update(s);
1170 return;
1171
1172 case 0x04: /* LOAD_TIM */
1173 s->reset_val = value;
1174 return;
1175
1176 case 0x08: /* READ_TIM */
1177 OMAP_RO_REG(addr);
1178 break;
1179
1180 default:
1181 OMAP_BAD_REG(addr);
1182 }
1183 }
1184
1185 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
1186 omap_badwidth_read32,
1187 omap_badwidth_read32,
1188 omap_mpu_timer_read,
1189 };
1190
1191 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
1192 omap_badwidth_write32,
1193 omap_badwidth_write32,
1194 omap_mpu_timer_write,
1195 };
1196
1197 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
1198 {
1199 qemu_del_timer(s->timer);
1200 s->enable = 0;
1201 s->reset_val = 31337;
1202 s->val = 0;
1203 s->ptv = 0;
1204 s->ar = 0;
1205 s->st = 0;
1206 s->it_ena = 1;
1207 }
1208
1209 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
1210 qemu_irq irq, omap_clk clk)
1211 {
1212 int iomemtype;
1213 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
1214 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
1215
1216 s->irq = irq;
1217 s->clk = clk;
1218 s->base = base;
1219 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
1220 omap_mpu_timer_reset(s);
1221 omap_timer_clk_setup(s);
1222
1223 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
1224 omap_mpu_timer_writefn, s);
1225 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1226
1227 return s;
1228 }
1229
1230 /* Watchdog timer */
1231 struct omap_watchdog_timer_s {
1232 struct omap_mpu_timer_s timer;
1233 uint8_t last_wr;
1234 int mode;
1235 int free;
1236 int reset;
1237 };
1238
1239 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
1240 {
1241 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1242 int offset = addr - s->timer.base;
1243
1244 switch (offset) {
1245 case 0x00: /* CNTL_TIMER */
1246 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
1247 (s->timer.st << 7) | (s->free << 1);
1248
1249 case 0x04: /* READ_TIMER */
1250 return omap_timer_read(&s->timer);
1251
1252 case 0x08: /* TIMER_MODE */
1253 return s->mode << 15;
1254 }
1255
1256 OMAP_BAD_REG(addr);
1257 return 0;
1258 }
1259
1260 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
1261 uint32_t value)
1262 {
1263 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1264 int offset = addr - s->timer.base;
1265
1266 switch (offset) {
1267 case 0x00: /* CNTL_TIMER */
1268 omap_timer_sync(&s->timer);
1269 s->timer.ptv = (value >> 9) & 7;
1270 s->timer.ar = (value >> 8) & 1;
1271 s->timer.st = (value >> 7) & 1;
1272 s->free = (value >> 1) & 1;
1273 omap_timer_update(&s->timer);
1274 break;
1275
1276 case 0x04: /* LOAD_TIMER */
1277 s->timer.reset_val = value & 0xffff;
1278 break;
1279
1280 case 0x08: /* TIMER_MODE */
1281 if (!s->mode && ((value >> 15) & 1))
1282 omap_clk_get(s->timer.clk);
1283 s->mode |= (value >> 15) & 1;
1284 if (s->last_wr == 0xf5) {
1285 if ((value & 0xff) == 0xa0) {
1286 s->mode = 0;
1287 omap_clk_put(s->timer.clk);
1288 } else {
1289 /* XXX: on T|E hardware somehow this has no effect,
1290 * on Zire 71 it works as specified. */
1291 s->reset = 1;
1292 qemu_system_reset_request();
1293 }
1294 }
1295 s->last_wr = value & 0xff;
1296 break;
1297
1298 default:
1299 OMAP_BAD_REG(addr);
1300 }
1301 }
1302
1303 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
1304 omap_badwidth_read16,
1305 omap_wd_timer_read,
1306 omap_badwidth_read16,
1307 };
1308
1309 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
1310 omap_badwidth_write16,
1311 omap_wd_timer_write,
1312 omap_badwidth_write16,
1313 };
1314
1315 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
1316 {
1317 qemu_del_timer(s->timer.timer);
1318 if (!s->mode)
1319 omap_clk_get(s->timer.clk);
1320 s->mode = 1;
1321 s->free = 1;
1322 s->reset = 0;
1323 s->timer.enable = 1;
1324 s->timer.it_ena = 1;
1325 s->timer.reset_val = 0xffff;
1326 s->timer.val = 0;
1327 s->timer.st = 0;
1328 s->timer.ptv = 0;
1329 s->timer.ar = 0;
1330 omap_timer_update(&s->timer);
1331 }
1332
1333 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
1334 qemu_irq irq, omap_clk clk)
1335 {
1336 int iomemtype;
1337 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
1338 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
1339
1340 s->timer.irq = irq;
1341 s->timer.clk = clk;
1342 s->timer.base = base;
1343 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1344 omap_wd_timer_reset(s);
1345 omap_timer_clk_setup(&s->timer);
1346
1347 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
1348 omap_wd_timer_writefn, s);
1349 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
1350
1351 return s;
1352 }
1353
1354 /* 32-kHz timer */
1355 struct omap_32khz_timer_s {
1356 struct omap_mpu_timer_s timer;
1357 };
1358
1359 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
1360 {
1361 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1362 int offset = addr - s->timer.base;
1363
1364 switch (offset) {
1365 case 0x00: /* TVR */
1366 return s->timer.reset_val;
1367
1368 case 0x04: /* TCR */
1369 return omap_timer_read(&s->timer);
1370
1371 case 0x08: /* CR */
1372 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
1373
1374 default:
1375 break;
1376 }
1377 OMAP_BAD_REG(addr);
1378 return 0;
1379 }
1380
1381 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1382 uint32_t value)
1383 {
1384 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1385 int offset = addr - s->timer.base;
1386
1387 switch (offset) {
1388 case 0x00: /* TVR */
1389 s->timer.reset_val = value & 0x00ffffff;
1390 break;
1391
1392 case 0x04: /* TCR */
1393 OMAP_RO_REG(addr);
1394 break;
1395
1396 case 0x08: /* CR */
1397 s->timer.ar = (value >> 3) & 1;
1398 s->timer.it_ena = (value >> 2) & 1;
1399 if (s->timer.st != (value & 1) || (value & 2)) {
1400 omap_timer_sync(&s->timer);
1401 s->timer.enable = value & 1;
1402 s->timer.st = value & 1;
1403 omap_timer_update(&s->timer);
1404 }
1405 break;
1406
1407 default:
1408 OMAP_BAD_REG(addr);
1409 }
1410 }
1411
1412 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1413 omap_badwidth_read32,
1414 omap_badwidth_read32,
1415 omap_os_timer_read,
1416 };
1417
1418 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1419 omap_badwidth_write32,
1420 omap_badwidth_write32,
1421 omap_os_timer_write,
1422 };
1423
1424 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1425 {
1426 qemu_del_timer(s->timer.timer);
1427 s->timer.enable = 0;
1428 s->timer.it_ena = 0;
1429 s->timer.reset_val = 0x00ffffff;
1430 s->timer.val = 0;
1431 s->timer.st = 0;
1432 s->timer.ptv = 0;
1433 s->timer.ar = 1;
1434 }
1435
1436 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1437 qemu_irq irq, omap_clk clk)
1438 {
1439 int iomemtype;
1440 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1441 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1442
1443 s->timer.irq = irq;
1444 s->timer.clk = clk;
1445 s->timer.base = base;
1446 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1447 omap_os_timer_reset(s);
1448 omap_timer_clk_setup(&s->timer);
1449
1450 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1451 omap_os_timer_writefn, s);
1452 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1453
1454 return s;
1455 }
1456
1457 /* Ultra Low-Power Device Module */
1458 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1459 {
1460 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1461 int offset = addr - s->ulpd_pm_base;
1462 uint16_t ret;
1463
1464 switch (offset) {
1465 case 0x14: /* IT_STATUS */
1466 ret = s->ulpd_pm_regs[offset >> 2];
1467 s->ulpd_pm_regs[offset >> 2] = 0;
1468 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1469 return ret;
1470
1471 case 0x18: /* Reserved */
1472 case 0x1c: /* Reserved */
1473 case 0x20: /* Reserved */
1474 case 0x28: /* Reserved */
1475 case 0x2c: /* Reserved */
1476 OMAP_BAD_REG(addr);
1477 case 0x00: /* COUNTER_32_LSB */
1478 case 0x04: /* COUNTER_32_MSB */
1479 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1480 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1481 case 0x10: /* GAUGING_CTRL */
1482 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1483 case 0x30: /* CLOCK_CTRL */
1484 case 0x34: /* SOFT_REQ */
1485 case 0x38: /* COUNTER_32_FIQ */
1486 case 0x3c: /* DPLL_CTRL */
1487 case 0x40: /* STATUS_REQ */
1488 /* XXX: check clk::usecount state for every clock */
1489 case 0x48: /* LOCL_TIME */
1490 case 0x4c: /* APLL_CTRL */
1491 case 0x50: /* POWER_CTRL */
1492 return s->ulpd_pm_regs[offset >> 2];
1493 }
1494
1495 OMAP_BAD_REG(addr);
1496 return 0;
1497 }
1498
1499 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1500 uint16_t diff, uint16_t value)
1501 {
1502 if (diff & (1 << 4)) /* USB_MCLK_EN */
1503 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1504 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1505 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1506 }
1507
1508 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1509 uint16_t diff, uint16_t value)
1510 {
1511 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1512 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1513 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1514 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1515 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1516 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1517 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1518 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1519 }
1520
1521 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1522 uint32_t value)
1523 {
1524 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1525 int offset = addr - s->ulpd_pm_base;
1526 int64_t now, ticks;
1527 int div, mult;
1528 static const int bypass_div[4] = { 1, 2, 4, 4 };
1529 uint16_t diff;
1530
1531 switch (offset) {
1532 case 0x00: /* COUNTER_32_LSB */
1533 case 0x04: /* COUNTER_32_MSB */
1534 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1535 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1536 case 0x14: /* IT_STATUS */
1537 case 0x40: /* STATUS_REQ */
1538 OMAP_RO_REG(addr);
1539 break;
1540
1541 case 0x10: /* GAUGING_CTRL */
1542 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1543 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1544 now = qemu_get_clock(vm_clock);
1545
1546 if (value & 1)
1547 s->ulpd_gauge_start = now;
1548 else {
1549 now -= s->ulpd_gauge_start;
1550
1551 /* 32-kHz ticks */
1552 ticks = muldiv64(now, 32768, ticks_per_sec);
1553 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1554 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1555 if (ticks >> 32) /* OVERFLOW_32K */
1556 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1557
1558 /* High frequency ticks */
1559 ticks = muldiv64(now, 12000000, ticks_per_sec);
1560 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1561 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1562 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1563 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1564
1565 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1566 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1567 }
1568 }
1569 s->ulpd_pm_regs[offset >> 2] = value;
1570 break;
1571
1572 case 0x18: /* Reserved */
1573 case 0x1c: /* Reserved */
1574 case 0x20: /* Reserved */
1575 case 0x28: /* Reserved */
1576 case 0x2c: /* Reserved */
1577 OMAP_BAD_REG(addr);
1578 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1579 case 0x38: /* COUNTER_32_FIQ */
1580 case 0x48: /* LOCL_TIME */
1581 case 0x50: /* POWER_CTRL */
1582 s->ulpd_pm_regs[offset >> 2] = value;
1583 break;
1584
1585 case 0x30: /* CLOCK_CTRL */
1586 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1587 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1588 omap_ulpd_clk_update(s, diff, value);
1589 break;
1590
1591 case 0x34: /* SOFT_REQ */
1592 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1593 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1594 omap_ulpd_req_update(s, diff, value);
1595 break;
1596
1597 case 0x3c: /* DPLL_CTRL */
1598 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1599 * omitted altogether, probably a typo. */
1600 /* This register has identical semantics with DPLL(1:3) control
1601 * registers, see omap_dpll_write() */
1602 diff = s->ulpd_pm_regs[offset >> 2] & value;
1603 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1604 if (diff & (0x3ff << 2)) {
1605 if (value & (1 << 4)) { /* PLL_ENABLE */
1606 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1607 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1608 } else {
1609 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1610 mult = 1;
1611 }
1612 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1613 }
1614
1615 /* Enter the desired mode. */
1616 s->ulpd_pm_regs[offset >> 2] =
1617 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1618 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1619
1620 /* Act as if the lock is restored. */
1621 s->ulpd_pm_regs[offset >> 2] |= 2;
1622 break;
1623
1624 case 0x4c: /* APLL_CTRL */
1625 diff = s->ulpd_pm_regs[offset >> 2] & value;
1626 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1627 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1628 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1629 (value & (1 << 0)) ? "apll" : "dpll4"));
1630 break;
1631
1632 default:
1633 OMAP_BAD_REG(addr);
1634 }
1635 }
1636
1637 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1638 omap_badwidth_read16,
1639 omap_ulpd_pm_read,
1640 omap_badwidth_read16,
1641 };
1642
1643 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1644 omap_badwidth_write16,
1645 omap_ulpd_pm_write,
1646 omap_badwidth_write16,
1647 };
1648
1649 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1650 {
1651 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1652 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1653 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1654 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1655 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1656 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1657 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1658 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1659 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1660 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1661 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1662 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1663 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1664 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1665 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1666 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1667 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1668 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1669 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1670 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1671 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1672 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1673 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1674 }
1675
1676 static void omap_ulpd_pm_init(target_phys_addr_t base,
1677 struct omap_mpu_state_s *mpu)
1678 {
1679 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1680 omap_ulpd_pm_writefn, mpu);
1681
1682 mpu->ulpd_pm_base = base;
1683 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1684 omap_ulpd_pm_reset(mpu);
1685 }
1686
1687 /* OMAP Pin Configuration */
1688 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1689 {
1690 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1691 int offset = addr - s->pin_cfg_base;
1692
1693 switch (offset) {
1694 case 0x00: /* FUNC_MUX_CTRL_0 */
1695 case 0x04: /* FUNC_MUX_CTRL_1 */
1696 case 0x08: /* FUNC_MUX_CTRL_2 */
1697 return s->func_mux_ctrl[offset >> 2];
1698
1699 case 0x0c: /* COMP_MODE_CTRL_0 */
1700 return s->comp_mode_ctrl[0];
1701
1702 case 0x10: /* FUNC_MUX_CTRL_3 */
1703 case 0x14: /* FUNC_MUX_CTRL_4 */
1704 case 0x18: /* FUNC_MUX_CTRL_5 */
1705 case 0x1c: /* FUNC_MUX_CTRL_6 */
1706 case 0x20: /* FUNC_MUX_CTRL_7 */
1707 case 0x24: /* FUNC_MUX_CTRL_8 */
1708 case 0x28: /* FUNC_MUX_CTRL_9 */
1709 case 0x2c: /* FUNC_MUX_CTRL_A */
1710 case 0x30: /* FUNC_MUX_CTRL_B */
1711 case 0x34: /* FUNC_MUX_CTRL_C */
1712 case 0x38: /* FUNC_MUX_CTRL_D */
1713 return s->func_mux_ctrl[(offset >> 2) - 1];
1714
1715 case 0x40: /* PULL_DWN_CTRL_0 */
1716 case 0x44: /* PULL_DWN_CTRL_1 */
1717 case 0x48: /* PULL_DWN_CTRL_2 */
1718 case 0x4c: /* PULL_DWN_CTRL_3 */
1719 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1720
1721 case 0x50: /* GATE_INH_CTRL_0 */
1722 return s->gate_inh_ctrl[0];
1723
1724 case 0x60: /* VOLTAGE_CTRL_0 */
1725 return s->voltage_ctrl[0];
1726
1727 case 0x70: /* TEST_DBG_CTRL_0 */
1728 return s->test_dbg_ctrl[0];
1729
1730 case 0x80: /* MOD_CONF_CTRL_0 */
1731 return s->mod_conf_ctrl[0];
1732 }
1733
1734 OMAP_BAD_REG(addr);
1735 return 0;
1736 }
1737
1738 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1739 uint32_t diff, uint32_t value)
1740 {
1741 if (s->compat1509) {
1742 if (diff & (1 << 9)) /* BLUETOOTH */
1743 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1744 (~value >> 9) & 1);
1745 if (diff & (1 << 7)) /* USB.CLKO */
1746 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1747 (value >> 7) & 1);
1748 }
1749 }
1750
1751 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1752 uint32_t diff, uint32_t value)
1753 {
1754 if (s->compat1509) {
1755 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1756 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1757 (value >> 31) & 1);
1758 if (diff & (1 << 1)) /* CLK32K */
1759 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1760 (~value >> 1) & 1);
1761 }
1762 }
1763
1764 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1765 uint32_t diff, uint32_t value)
1766 {
1767 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1768 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1769 omap_findclk(s, ((value >> 31) & 1) ?
1770 "ck_48m" : "armper_ck"));
1771 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1772 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1773 omap_findclk(s, ((value >> 30) & 1) ?
1774 "ck_48m" : "armper_ck"));
1775 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1776 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1777 omap_findclk(s, ((value >> 29) & 1) ?
1778 "ck_48m" : "armper_ck"));
1779 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1780 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1781 omap_findclk(s, ((value >> 23) & 1) ?
1782 "ck_48m" : "armper_ck"));
1783 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1784 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1785 omap_findclk(s, ((value >> 12) & 1) ?
1786 "ck_48m" : "armper_ck"));
1787 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1788 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1789 }
1790
1791 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1792 uint32_t value)
1793 {
1794 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1795 int offset = addr - s->pin_cfg_base;
1796 uint32_t diff;
1797
1798 switch (offset) {
1799 case 0x00: /* FUNC_MUX_CTRL_0 */
1800 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1801 s->func_mux_ctrl[offset >> 2] = value;
1802 omap_pin_funcmux0_update(s, diff, value);
1803 return;
1804
1805 case 0x04: /* FUNC_MUX_CTRL_1 */
1806 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1807 s->func_mux_ctrl[offset >> 2] = value;
1808 omap_pin_funcmux1_update(s, diff, value);
1809 return;
1810
1811 case 0x08: /* FUNC_MUX_CTRL_2 */
1812 s->func_mux_ctrl[offset >> 2] = value;
1813 return;
1814
1815 case 0x0c: /* COMP_MODE_CTRL_0 */
1816 s->comp_mode_ctrl[0] = value;
1817 s->compat1509 = (value != 0x0000eaef);
1818 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1819 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1820 return;
1821
1822 case 0x10: /* FUNC_MUX_CTRL_3 */
1823 case 0x14: /* FUNC_MUX_CTRL_4 */
1824 case 0x18: /* FUNC_MUX_CTRL_5 */
1825 case 0x1c: /* FUNC_MUX_CTRL_6 */
1826 case 0x20: /* FUNC_MUX_CTRL_7 */
1827 case 0x24: /* FUNC_MUX_CTRL_8 */
1828 case 0x28: /* FUNC_MUX_CTRL_9 */
1829 case 0x2c: /* FUNC_MUX_CTRL_A */
1830 case 0x30: /* FUNC_MUX_CTRL_B */
1831 case 0x34: /* FUNC_MUX_CTRL_C */
1832 case 0x38: /* FUNC_MUX_CTRL_D */
1833 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1834 return;
1835
1836 case 0x40: /* PULL_DWN_CTRL_0 */
1837 case 0x44: /* PULL_DWN_CTRL_1 */
1838 case 0x48: /* PULL_DWN_CTRL_2 */
1839 case 0x4c: /* PULL_DWN_CTRL_3 */
1840 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1841 return;
1842
1843 case 0x50: /* GATE_INH_CTRL_0 */
1844 s->gate_inh_ctrl[0] = value;
1845 return;
1846
1847 case 0x60: /* VOLTAGE_CTRL_0 */
1848 s->voltage_ctrl[0] = value;
1849 return;
1850
1851 case 0x70: /* TEST_DBG_CTRL_0 */
1852 s->test_dbg_ctrl[0] = value;
1853 return;
1854
1855 case 0x80: /* MOD_CONF_CTRL_0 */
1856 diff = s->mod_conf_ctrl[0] ^ value;
1857 s->mod_conf_ctrl[0] = value;
1858 omap_pin_modconf1_update(s, diff, value);
1859 return;
1860
1861 default:
1862 OMAP_BAD_REG(addr);
1863 }
1864 }
1865
1866 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1867 omap_badwidth_read32,
1868 omap_badwidth_read32,
1869 omap_pin_cfg_read,
1870 };
1871
1872 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1873 omap_badwidth_write32,
1874 omap_badwidth_write32,
1875 omap_pin_cfg_write,
1876 };
1877
1878 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1879 {
1880 /* Start in Compatibility Mode. */
1881 mpu->compat1509 = 1;
1882 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1883 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1884 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1885 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1886 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1887 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1888 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1889 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1890 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1891 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1892 }
1893
1894 static void omap_pin_cfg_init(target_phys_addr_t base,
1895 struct omap_mpu_state_s *mpu)
1896 {
1897 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1898 omap_pin_cfg_writefn, mpu);
1899
1900 mpu->pin_cfg_base = base;
1901 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1902 omap_pin_cfg_reset(mpu);
1903 }
1904
1905 /* Device Identification, Die Identification */
1906 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1907 {
1908 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1909
1910 switch (addr) {
1911 case 0xfffe1800: /* DIE_ID_LSB */
1912 return 0xc9581f0e;
1913 case 0xfffe1804: /* DIE_ID_MSB */
1914 return 0xa8858bfa;
1915
1916 case 0xfffe2000: /* PRODUCT_ID_LSB */
1917 return 0x00aaaafc;
1918 case 0xfffe2004: /* PRODUCT_ID_MSB */
1919 return 0xcafeb574;
1920
1921 case 0xfffed400: /* JTAG_ID_LSB */
1922 switch (s->mpu_model) {
1923 case omap310:
1924 return 0x03310315;
1925 case omap1510:
1926 return 0x03310115;
1927 }
1928 break;
1929
1930 case 0xfffed404: /* JTAG_ID_MSB */
1931 switch (s->mpu_model) {
1932 case omap310:
1933 return 0xfb57402f;
1934 case omap1510:
1935 return 0xfb47002f;
1936 }
1937 break;
1938 }
1939
1940 OMAP_BAD_REG(addr);
1941 return 0;
1942 }
1943
1944 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1945 uint32_t value)
1946 {
1947 OMAP_BAD_REG(addr);
1948 }
1949
1950 static CPUReadMemoryFunc *omap_id_readfn[] = {
1951 omap_badwidth_read32,
1952 omap_badwidth_read32,
1953 omap_id_read,
1954 };
1955
1956 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1957 omap_badwidth_write32,
1958 omap_badwidth_write32,
1959 omap_id_write,
1960 };
1961
1962 static void omap_id_init(struct omap_mpu_state_s *mpu)
1963 {
1964 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1965 omap_id_writefn, mpu);
1966 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1967 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1968 if (!cpu_is_omap15xx(mpu))
1969 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1970 }
1971
1972 /* MPUI Control (Dummy) */
1973 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1974 {
1975 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1976 int offset = addr - s->mpui_base;
1977
1978 switch (offset) {
1979 case 0x00: /* CTRL */
1980 return s->mpui_ctrl;
1981 case 0x04: /* DEBUG_ADDR */
1982 return 0x01ffffff;
1983 case 0x08: /* DEBUG_DATA */
1984 return 0xffffffff;
1985 case 0x0c: /* DEBUG_FLAG */
1986 return 0x00000800;
1987 case 0x10: /* STATUS */
1988 return 0x00000000;
1989
1990 /* Not in OMAP310 */
1991 case 0x14: /* DSP_STATUS */
1992 case 0x18: /* DSP_BOOT_CONFIG */
1993 return 0x00000000;
1994 case 0x1c: /* DSP_MPUI_CONFIG */
1995 return 0x0000ffff;
1996 }
1997
1998 OMAP_BAD_REG(addr);
1999 return 0;
2000 }
2001
2002 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
2003 uint32_t value)
2004 {
2005 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2006 int offset = addr - s->mpui_base;
2007
2008 switch (offset) {
2009 case 0x00: /* CTRL */
2010 s->mpui_ctrl = value & 0x007fffff;
2011 break;
2012
2013 case 0x04: /* DEBUG_ADDR */
2014 case 0x08: /* DEBUG_DATA */
2015 case 0x0c: /* DEBUG_FLAG */
2016 case 0x10: /* STATUS */
2017 /* Not in OMAP310 */
2018 case 0x14: /* DSP_STATUS */
2019 OMAP_RO_REG(addr);
2020 case 0x18: /* DSP_BOOT_CONFIG */
2021 case 0x1c: /* DSP_MPUI_CONFIG */
2022 break;
2023
2024 default:
2025 OMAP_BAD_REG(addr);
2026 }
2027 }
2028
2029 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
2030 omap_badwidth_read32,
2031 omap_badwidth_read32,
2032 omap_mpui_read,
2033 };
2034
2035 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
2036 omap_badwidth_write32,
2037 omap_badwidth_write32,
2038 omap_mpui_write,
2039 };
2040
2041 static void omap_mpui_reset(struct omap_mpu_state_s *s)
2042 {
2043 s->mpui_ctrl = 0x0003ff1b;
2044 }
2045
2046 static void omap_mpui_init(target_phys_addr_t base,
2047 struct omap_mpu_state_s *mpu)
2048 {
2049 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
2050 omap_mpui_writefn, mpu);
2051
2052 mpu->mpui_base = base;
2053 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
2054
2055 omap_mpui_reset(mpu);
2056 }
2057
2058 /* TIPB Bridges */
2059 struct omap_tipb_bridge_s {
2060 target_phys_addr_t base;
2061 qemu_irq abort;
2062
2063 int width_intr;
2064 uint16_t control;
2065 uint16_t alloc;
2066 uint16_t buffer;
2067 uint16_t enh_control;
2068 };
2069
2070 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
2071 {
2072 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2073 int offset = addr - s->base;
2074
2075 switch (offset) {
2076 case 0x00: /* TIPB_CNTL */
2077 return s->control;
2078 case 0x04: /* TIPB_BUS_ALLOC */
2079 return s->alloc;
2080 case 0x08: /* MPU_TIPB_CNTL */
2081 return s->buffer;
2082 case 0x0c: /* ENHANCED_TIPB_CNTL */
2083 return s->enh_control;
2084 case 0x10: /* ADDRESS_DBG */
2085 case 0x14: /* DATA_DEBUG_LOW */
2086 case 0x18: /* DATA_DEBUG_HIGH */
2087 return 0xffff;
2088 case 0x1c: /* DEBUG_CNTR_SIG */
2089 return 0x00f8;
2090 }
2091
2092 OMAP_BAD_REG(addr);
2093 return 0;
2094 }
2095
2096 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
2097 uint32_t value)
2098 {
2099 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2100 int offset = addr - s->base;
2101
2102 switch (offset) {
2103 case 0x00: /* TIPB_CNTL */
2104 s->control = value & 0xffff;
2105 break;
2106
2107 case 0x04: /* TIPB_BUS_ALLOC */
2108 s->alloc = value & 0x003f;
2109 break;
2110
2111 case 0x08: /* MPU_TIPB_CNTL */
2112 s->buffer = value & 0x0003;
2113 break;
2114
2115 case 0x0c: /* ENHANCED_TIPB_CNTL */
2116 s->width_intr = !(value & 2);
2117 s->enh_control = value & 0x000f;
2118 break;
2119
2120 case 0x10: /* ADDRESS_DBG */
2121 case 0x14: /* DATA_DEBUG_LOW */
2122 case 0x18: /* DATA_DEBUG_HIGH */
2123 case 0x1c: /* DEBUG_CNTR_SIG */
2124 OMAP_RO_REG(addr);
2125 break;
2126
2127 default:
2128 OMAP_BAD_REG(addr);
2129 }
2130 }
2131
2132 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
2133 omap_badwidth_read16,
2134 omap_tipb_bridge_read,
2135 omap_tipb_bridge_read,
2136 };
2137
2138 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
2139 omap_badwidth_write16,
2140 omap_tipb_bridge_write,
2141 omap_tipb_bridge_write,
2142 };
2143
2144 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
2145 {
2146 s->control = 0xffff;
2147 s->alloc = 0x0009;
2148 s->buffer = 0x0000;
2149 s->enh_control = 0x000f;
2150 }
2151
2152 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
2153 qemu_irq abort_irq, omap_clk clk)
2154 {
2155 int iomemtype;
2156 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
2157 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
2158
2159 s->abort = abort_irq;
2160 s->base = base;
2161 omap_tipb_bridge_reset(s);
2162
2163 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
2164 omap_tipb_bridge_writefn, s);
2165 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2166
2167 return s;
2168 }
2169
2170 /* Dummy Traffic Controller's Memory Interface */
2171 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
2172 {
2173 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2174 int offset = addr - s->tcmi_base;
2175 uint32_t ret;
2176
2177 switch (offset) {
2178 case 0xfffecc00: /* IMIF_PRIO */
2179 case 0xfffecc04: /* EMIFS_PRIO */
2180 case 0xfffecc08: /* EMIFF_PRIO */
2181 case 0xfffecc0c: /* EMIFS_CONFIG */
2182 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2183 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2184 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2185 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2186 case 0xfffecc24: /* EMIFF_MRS */
2187 case 0xfffecc28: /* TIMEOUT1 */
2188 case 0xfffecc2c: /* TIMEOUT2 */
2189 case 0xfffecc30: /* TIMEOUT3 */
2190 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2191 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2192 return s->tcmi_regs[offset >> 2];
2193
2194 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2195 ret = s->tcmi_regs[offset >> 2];
2196 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
2197 /* XXX: We can try using the VGA_DIRTY flag for this */
2198 return ret;
2199 }
2200
2201 OMAP_BAD_REG(addr);
2202 return 0;
2203 }
2204
2205 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
2206 uint32_t value)
2207 {
2208 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2209 int offset = addr - s->tcmi_base;
2210
2211 switch (offset) {
2212 case 0xfffecc00: /* IMIF_PRIO */
2213 case 0xfffecc04: /* EMIFS_PRIO */
2214 case 0xfffecc08: /* EMIFF_PRIO */
2215 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2216 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2217 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2218 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2219 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2220 case 0xfffecc24: /* EMIFF_MRS */
2221 case 0xfffecc28: /* TIMEOUT1 */
2222 case 0xfffecc2c: /* TIMEOUT2 */
2223 case 0xfffecc30: /* TIMEOUT3 */
2224 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2225 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2226 s->tcmi_regs[offset >> 2] = value;
2227 break;
2228 case 0xfffecc0c: /* EMIFS_CONFIG */
2229 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
2230 break;
2231
2232 default:
2233 OMAP_BAD_REG(addr);
2234 }
2235 }
2236
2237 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
2238 omap_badwidth_read32,
2239 omap_badwidth_read32,
2240 omap_tcmi_read,
2241 };
2242
2243 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
2244 omap_badwidth_write32,
2245 omap_badwidth_write32,
2246 omap_tcmi_write,
2247 };
2248
2249 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
2250 {
2251 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
2252 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
2253 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
2254 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
2255 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
2256 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
2257 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
2258 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
2259 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
2260 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
2261 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
2262 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
2263 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
2264 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
2265 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
2266 }
2267
2268 static void omap_tcmi_init(target_phys_addr_t base,
2269 struct omap_mpu_state_s *mpu)
2270 {
2271 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
2272 omap_tcmi_writefn, mpu);
2273
2274 mpu->tcmi_base = base;
2275 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
2276 omap_tcmi_reset(mpu);
2277 }
2278
2279 /* Digital phase-locked loops control */
2280 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
2281 {
2282 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2283 int offset = addr - s->base;
2284
2285 if (offset == 0x00) /* CTL_REG */
2286 return s->mode;
2287
2288 OMAP_BAD_REG(addr);
2289 return 0;
2290 }
2291
2292 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
2293 uint32_t value)
2294 {
2295 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2296 uint16_t diff;
2297 int offset = addr - s->base;
2298 static const int bypass_div[4] = { 1, 2, 4, 4 };
2299 int div, mult;
2300
2301 if (offset == 0x00) { /* CTL_REG */
2302 /* See omap_ulpd_pm_write() too */
2303 diff = s->mode & value;
2304 s->mode = value & 0x2fff;
2305 if (diff & (0x3ff << 2)) {
2306 if (value & (1 << 4)) { /* PLL_ENABLE */
2307 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
2308 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
2309 } else {
2310 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
2311 mult = 1;
2312 }
2313 omap_clk_setrate(s->dpll, div, mult);
2314 }
2315
2316 /* Enter the desired mode. */
2317 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
2318
2319 /* Act as if the lock is restored. */
2320 s->mode |= 2;
2321 } else {
2322 OMAP_BAD_REG(addr);
2323 }
2324 }
2325
2326 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
2327 omap_badwidth_read16,
2328 omap_dpll_read,
2329 omap_badwidth_read16,
2330 };
2331
2332 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
2333 omap_badwidth_write16,
2334 omap_dpll_write,
2335 omap_badwidth_write16,
2336 };
2337
2338 static void omap_dpll_reset(struct dpll_ctl_s *s)
2339 {
2340 s->mode = 0x2002;
2341 omap_clk_setrate(s->dpll, 1, 1);
2342 }
2343
2344 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
2345 omap_clk clk)
2346 {
2347 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
2348 omap_dpll_writefn, s);
2349
2350 s->base = base;
2351 s->dpll = clk;
2352 omap_dpll_reset(s);
2353
2354 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2355 }
2356
2357 /* UARTs */
2358 struct omap_uart_s {
2359 SerialState *serial; /* TODO */
2360 };
2361
2362 static void omap_uart_reset(struct omap_uart_s *s)
2363 {
2364 }
2365
2366 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2367 qemu_irq irq, omap_clk clk, CharDriverState *chr)
2368 {
2369 struct omap_uart_s *s = (struct omap_uart_s *)
2370 qemu_mallocz(sizeof(struct omap_uart_s));
2371 if (chr)
2372 s->serial = serial_mm_init(base, 2, irq, chr, 1);
2373 return s;
2374 }
2375
2376 /* MPU Clock/Reset/Power Mode Control */
2377 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2378 {
2379 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2380 int offset = addr - s->clkm.mpu_base;
2381
2382 switch (offset) {
2383 case 0x00: /* ARM_CKCTL */
2384 return s->clkm.arm_ckctl;
2385
2386 case 0x04: /* ARM_IDLECT1 */
2387 return s->clkm.arm_idlect1;
2388
2389 case 0x08: /* ARM_IDLECT2 */
2390 return s->clkm.arm_idlect2;
2391
2392 case 0x0c: /* ARM_EWUPCT */
2393 return s->clkm.arm_ewupct;
2394
2395 case 0x10: /* ARM_RSTCT1 */
2396 return s->clkm.arm_rstct1;
2397
2398 case 0x14: /* ARM_RSTCT2 */
2399 return s->clkm.arm_rstct2;
2400
2401 case 0x18: /* ARM_SYSST */
2402 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start;
2403
2404 case 0x1c: /* ARM_CKOUT1 */
2405 return s->clkm.arm_ckout1;
2406
2407 case 0x20: /* ARM_CKOUT2 */
2408 break;
2409 }
2410
2411 OMAP_BAD_REG(addr);
2412 return 0;
2413 }
2414
2415 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2416 uint16_t diff, uint16_t value)
2417 {
2418 omap_clk clk;
2419
2420 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2421 if (value & (1 << 14))
2422 /* Reserved */;
2423 else {
2424 clk = omap_findclk(s, "arminth_ck");
2425 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2426 }
2427 }
2428 if (diff & (1 << 12)) { /* ARM_TIMXO */
2429 clk = omap_findclk(s, "armtim_ck");
2430 if (value & (1 << 12))
2431 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2432 else
2433 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2434 }
2435 /* XXX: en_dspck */
2436 if (diff & (3 << 10)) { /* DSPMMUDIV */
2437 clk = omap_findclk(s, "dspmmu_ck");
2438 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2439 }
2440 if (diff & (3 << 8)) { /* TCDIV */
2441 clk = omap_findclk(s, "tc_ck");
2442 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2443 }
2444 if (diff & (3 << 6)) { /* DSPDIV */
2445 clk = omap_findclk(s, "dsp_ck");
2446 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2447 }
2448 if (diff & (3 << 4)) { /* ARMDIV */
2449 clk = omap_findclk(s, "arm_ck");
2450 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2451 }
2452 if (diff & (3 << 2)) { /* LCDDIV */
2453 clk = omap_findclk(s, "lcd_ck");
2454 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2455 }
2456 if (diff & (3 << 0)) { /* PERDIV */
2457 clk = omap_findclk(s, "armper_ck");
2458 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2459 }
2460 }
2461
2462 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2463 uint16_t diff, uint16_t value)
2464 {
2465 omap_clk clk;
2466
2467 if (value & (1 << 11)) /* SETARM_IDLE */
2468 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2469 if (!(value & (1 << 10))) /* WKUP_MODE */
2470 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2471
2472 #define SET_CANIDLE(clock, bit) \
2473 if (diff & (1 << bit)) { \
2474 clk = omap_findclk(s, clock); \
2475 omap_clk_canidle(clk, (value >> bit) & 1); \
2476 }
2477 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2478 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2479 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2480 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2481 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2482 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2483 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2484 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2485 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2486 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2487 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2488 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2489 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2490 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2491 }
2492
2493 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2494 uint16_t diff, uint16_t value)
2495 {
2496 omap_clk clk;
2497
2498 #define SET_ONOFF(clock, bit) \
2499 if (diff & (1 << bit)) { \
2500 clk = omap_findclk(s, clock); \
2501 omap_clk_onoff(clk, (value >> bit) & 1); \
2502 }
2503 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2504 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2505 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2506 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2507 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2508 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2509 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2510 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2511 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2512 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2513 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2514 }
2515
2516 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2517 uint16_t diff, uint16_t value)
2518 {
2519 omap_clk clk;
2520
2521 if (diff & (3 << 4)) { /* TCLKOUT */
2522 clk = omap_findclk(s, "tclk_out");
2523 switch ((value >> 4) & 3) {
2524 case 1:
2525 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2526 omap_clk_onoff(clk, 1);
2527 break;
2528 case 2:
2529 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2530 omap_clk_onoff(clk, 1);
2531 break;
2532 default:
2533 omap_clk_onoff(clk, 0);
2534 }
2535 }
2536 if (diff & (3 << 2)) { /* DCLKOUT */
2537 clk = omap_findclk(s, "dclk_out");
2538 switch ((value >> 2) & 3) {
2539 case 0:
2540 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2541 break;
2542 case 1:
2543 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2544 break;
2545 case 2:
2546 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2547 break;
2548 case 3:
2549 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2550 break;
2551 }
2552 }
2553 if (diff & (3 << 0)) { /* ACLKOUT */
2554 clk = omap_findclk(s, "aclk_out");
2555 switch ((value >> 0) & 3) {
2556 case 1:
2557 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2558 omap_clk_onoff(clk, 1);
2559 break;
2560 case 2:
2561 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2562 omap_clk_onoff(clk, 1);
2563 break;
2564 case 3:
2565 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2566 omap_clk_onoff(clk, 1);
2567 break;
2568 default:
2569 omap_clk_onoff(clk, 0);
2570 }
2571 }
2572 }
2573
2574 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2575 uint32_t value)
2576 {
2577 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2578 int offset = addr - s->clkm.mpu_base;
2579 uint16_t diff;
2580 omap_clk clk;
2581 static const char *clkschemename[8] = {
2582 "fully synchronous", "fully asynchronous", "synchronous scalable",
2583 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2584 };
2585
2586 switch (offset) {
2587 case 0x00: /* ARM_CKCTL */
2588 diff = s->clkm.arm_ckctl ^ value;
2589 s->clkm.arm_ckctl = value & 0x7fff;
2590 omap_clkm_ckctl_update(s, diff, value);
2591 return;
2592
2593 case 0x04: /* ARM_IDLECT1 */
2594 diff = s->clkm.arm_idlect1 ^ value;
2595 s->clkm.arm_idlect1 = value & 0x0fff;
2596 omap_clkm_idlect1_update(s, diff, value);
2597 return;
2598
2599 case 0x08: /* ARM_IDLECT2 */
2600 diff = s->clkm.arm_idlect2 ^ value;
2601 s->clkm.arm_idlect2 = value & 0x07ff;
2602 omap_clkm_idlect2_update(s, diff, value);
2603 return;
2604
2605 case 0x0c: /* ARM_EWUPCT */
2606 diff = s->clkm.arm_ewupct ^ value;
2607 s->clkm.arm_ewupct = value & 0x003f;
2608 return;
2609
2610 case 0x10: /* ARM_RSTCT1 */
2611 diff = s->clkm.arm_rstct1 ^ value;
2612 s->clkm.arm_rstct1 = value & 0x0007;
2613 if (value & 9) {
2614 qemu_system_reset_request();
2615 s->clkm.cold_start = 0xa;
2616 }
2617 if (diff & ~value & 4) { /* DSP_RST */
2618 omap_mpui_reset(s);
2619 omap_tipb_bridge_reset(s->private_tipb);
2620 omap_tipb_bridge_reset(s->public_tipb);
2621 }
2622 if (diff & 2) { /* DSP_EN */
2623 clk = omap_findclk(s, "dsp_ck");
2624 omap_clk_canidle(clk, (~value >> 1) & 1);
2625 }
2626 return;
2627
2628 case 0x14: /* ARM_RSTCT2 */
2629 s->clkm.arm_rstct2 = value & 0x0001;
2630 return;
2631
2632 case 0x18: /* ARM_SYSST */
2633 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2634 s->clkm.clocking_scheme = (value >> 11) & 7;
2635 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2636 clkschemename[s->clkm.clocking_scheme]);
2637 }
2638 s->clkm.cold_start &= value & 0x3f;
2639 return;
2640
2641 case 0x1c: /* ARM_CKOUT1 */
2642 diff = s->clkm.arm_ckout1 ^ value;
2643 s->clkm.arm_ckout1 = value & 0x003f;
2644 omap_clkm_ckout1_update(s, diff, value);
2645 return;
2646
2647 case 0x20: /* ARM_CKOUT2 */
2648 default:
2649 OMAP_BAD_REG(addr);
2650 }
2651 }
2652
2653 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2654 omap_badwidth_read16,
2655 omap_clkm_read,
2656 omap_badwidth_read16,
2657 };
2658
2659 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2660 omap_badwidth_write16,
2661 omap_clkm_write,
2662 omap_badwidth_write16,
2663 };
2664
2665 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2666 {
2667 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2668 int offset = addr - s->clkm.dsp_base;
2669
2670 switch (offset) {
2671 case 0x04: /* DSP_IDLECT1 */
2672 return s->clkm.dsp_idlect1;
2673
2674 case 0x08: /* DSP_IDLECT2 */
2675 return s->clkm.dsp_idlect2;
2676
2677 case 0x14: /* DSP_RSTCT2 */
2678 return s->clkm.dsp_rstct2;
2679
2680 case 0x18: /* DSP_SYSST */
2681 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start |
2682 (s->env->halted << 6); /* Quite useless... */
2683 }
2684
2685 OMAP_BAD_REG(addr);
2686 return 0;
2687 }
2688
2689 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2690 uint16_t diff, uint16_t value)
2691 {
2692 omap_clk clk;
2693
2694 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2695 }
2696
2697 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2698 uint16_t diff, uint16_t value)
2699 {
2700 omap_clk clk;
2701
2702 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2703 }
2704
2705 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2706 uint32_t value)
2707 {
2708 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2709 int offset = addr - s->clkm.dsp_base;
2710 uint16_t diff;
2711
2712 switch (offset) {
2713 case 0x04: /* DSP_IDLECT1 */
2714 diff = s->clkm.dsp_idlect1 ^ value;
2715 s->clkm.dsp_idlect1 = value & 0x01f7;
2716 omap_clkdsp_idlect1_update(s, diff, value);
2717 break;
2718
2719 case 0x08: /* DSP_IDLECT2 */
2720 s->clkm.dsp_idlect2 = value & 0x0037;
2721 diff = s->clkm.dsp_idlect1 ^ value;
2722 omap_clkdsp_idlect2_update(s, diff, value);
2723 break;
2724
2725 case 0x14: /* DSP_RSTCT2 */
2726 s->clkm.dsp_rstct2 = value & 0x0001;
2727 break;
2728
2729 case 0x18: /* DSP_SYSST */
2730 s->clkm.cold_start &= value & 0x3f;
2731 break;
2732
2733 default:
2734 OMAP_BAD_REG(addr);
2735 }
2736 }
2737
2738 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2739 omap_badwidth_read16,
2740 omap_clkdsp_read,
2741 omap_badwidth_read16,
2742 };
2743
2744 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2745 omap_badwidth_write16,
2746 omap_clkdsp_write,
2747 omap_badwidth_write16,
2748 };
2749
2750 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2751 {
2752 if (s->wdt && s->wdt->reset)
2753 s->clkm.cold_start = 0x6;
2754 s->clkm.clocking_scheme = 0;
2755 omap_clkm_ckctl_update(s, ~0, 0x3000);
2756 s->clkm.arm_ckctl = 0x3000;
2757 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 & 0x0400, 0x0400);
2758 s->clkm.arm_idlect1 = 0x0400;
2759 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 & 0x0100, 0x0100);
2760 s->clkm.arm_idlect2 = 0x0100;
2761 s->clkm.arm_ewupct = 0x003f;
2762 s->clkm.arm_rstct1 = 0x0000;
2763 s->clkm.arm_rstct2 = 0x0000;
2764 s->clkm.arm_ckout1 = 0x0015;
2765 s->clkm.dpll1_mode = 0x2002;
2766 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2767 s->clkm.dsp_idlect1 = 0x0040;
2768 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2769 s->clkm.dsp_idlect2 = 0x0000;
2770 s->clkm.dsp_rstct2 = 0x0000;
2771 }
2772
2773 static void omap_clkm_init(target_phys_addr_t mpu_base,
2774 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2775 {
2776 int iomemtype[2] = {
2777 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2778 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2779 };
2780
2781 s->clkm.mpu_base = mpu_base;
2782 s->clkm.dsp_base = dsp_base;
2783 s->clkm.cold_start = 0x3a;
2784 omap_clkm_reset(s);
2785
2786 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2787 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2788 }
2789
2790 /* MPU I/O */
2791 struct omap_mpuio_s {
2792 target_phys_addr_t base;
2793 qemu_irq irq;
2794 qemu_irq kbd_irq;
2795 qemu_irq *in;
2796 qemu_irq handler[16];
2797 qemu_irq wakeup;
2798
2799 uint16_t inputs;
2800 uint16_t outputs;
2801 uint16_t dir;
2802 uint16_t edge;
2803 uint16_t mask;
2804 uint16_t ints;
2805
2806 uint16_t debounce;
2807 uint16_t latch;
2808 uint8_t event;
2809
2810 uint8_t buttons[5];
2811 uint8_t row_latch;
2812 uint8_t cols;
2813 int kbd_mask;
2814 int clk;
2815 };
2816
2817 static void omap_mpuio_set(void *opaque, int line, int level)
2818 {
2819 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2820 uint16_t prev = s->inputs;
2821
2822 if (level)
2823 s->inputs |= 1 << line;
2824 else
2825 s->inputs &= ~(1 << line);
2826
2827 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2828 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2829 s->ints |= 1 << line;
2830 qemu_irq_raise(s->irq);
2831 /* TODO: wakeup */
2832 }
2833 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2834 (s->event >> 1) == line) /* PIN_SELECT */
2835 s->latch = s->inputs;
2836 }
2837 }
2838
2839 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2840 {
2841 int i;
2842 uint8_t *row, rows = 0, cols = ~s->cols;
2843
2844 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2845 if (*row & cols)
2846 rows |= i;
2847
2848 qemu_set_irq(s->kbd_irq, rows && ~s->kbd_mask && s->clk);
2849 s->row_latch = rows ^ 0x1f;
2850 }
2851
2852 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2853 {
2854 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2855 int offset = addr - s->base;
2856 uint16_t ret;
2857
2858 switch (offset) {
2859 case 0x00: /* INPUT_LATCH */
2860 return s->inputs;
2861
2862 case 0x04: /* OUTPUT_REG */
2863 return s->outputs;
2864
2865 case 0x08: /* IO_CNTL */
2866 return s->dir;
2867
2868 case 0x10: /* KBR_LATCH */
2869 return s->row_latch;
2870
2871 case 0x14: /* KBC_REG */
2872 return s->cols;
2873
2874 case 0x18: /* GPIO_EVENT_MODE_REG */
2875 return s->event;
2876
2877 case 0x1c: /* GPIO_INT_EDGE_REG */
2878 return s->edge;
2879
2880 case 0x20: /* KBD_INT */
2881 return (s->row_latch != 0x1f) && !s->kbd_mask;
2882
2883 case 0x24: /* GPIO_INT */
2884 ret = s->ints;
2885 s->ints &= s->mask;
2886 if (ret)
2887 qemu_irq_lower(s->irq);
2888 return ret;
2889
2890 case 0x28: /* KBD_MASKIT */
2891 return s->kbd_mask;
2892
2893 case 0x2c: /* GPIO_MASKIT */
2894 return s->mask;
2895
2896 case 0x30: /* GPIO_DEBOUNCING_REG */
2897 return s->debounce;
2898
2899 case 0x34: /* GPIO_LATCH_REG */
2900 return s->latch;
2901 }
2902
2903 OMAP_BAD_REG(addr);
2904 return 0;
2905 }
2906
2907 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2908 uint32_t value)
2909 {
2910 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2911 int offset = addr - s->base;
2912 uint16_t diff;
2913 int ln;
2914
2915 switch (offset) {
2916 case 0x04: /* OUTPUT_REG */
2917 diff = s->outputs ^ (value & ~s->dir);
2918 s->outputs = value;
2919 value &= ~s->dir;
2920 while ((ln = ffs(diff))) {
2921 ln --;
2922 if (s->handler[ln])
2923 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2924 diff &= ~(1 << ln);
2925 }
2926 break;
2927
2928 case 0x08: /* IO_CNTL */
2929 diff = s->outputs & (s->dir ^ value);
2930 s->dir = value;
2931
2932 value = s->outputs & ~s->dir;
2933 while ((ln = ffs(diff))) {
2934 ln --;
2935 if (s->handler[ln])
2936 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2937 diff &= ~(1 << ln);
2938 }
2939 break;
2940
2941 case 0x14: /* KBC_REG */
2942 s->cols = value;
2943 omap_mpuio_kbd_update(s);
2944 break;
2945
2946 case 0x18: /* GPIO_EVENT_MODE_REG */
2947 s->event = value & 0x1f;
2948 break;
2949
2950 case 0x1c: /* GPIO_INT_EDGE_REG */
2951 s->edge = value;
2952 break;
2953
2954 case 0x28: /* KBD_MASKIT */
2955 s->kbd_mask = value & 1;
2956 omap_mpuio_kbd_update(s);
2957 break;
2958
2959 case 0x2c: /* GPIO_MASKIT */
2960 s->mask = value;
2961 break;
2962
2963 case 0x30: /* GPIO_DEBOUNCING_REG */
2964 s->debounce = value & 0x1ff;
2965 break;
2966
2967 case 0x00: /* INPUT_LATCH */
2968 case 0x10: /* KBR_LATCH */
2969 case 0x20: /* KBD_INT */
2970 case 0x24: /* GPIO_INT */
2971 case 0x34: /* GPIO_LATCH_REG */
2972 OMAP_RO_REG(addr);
2973 return;
2974
2975 default:
2976 OMAP_BAD_REG(addr);
2977 return;
2978 }
2979 }
2980
2981 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2982 omap_badwidth_read16,
2983 omap_mpuio_read,
2984 omap_badwidth_read16,
2985 };
2986
2987 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2988 omap_badwidth_write16,
2989 omap_mpuio_write,
2990 omap_badwidth_write16,
2991 };
2992
2993 void omap_mpuio_reset(struct omap_mpuio_s *s)
2994 {
2995 s->inputs = 0;
2996 s->outputs = 0;
2997 s->dir = ~0;
2998 s->event = 0;
2999 s->edge = 0;
3000 s->kbd_mask = 0;
3001 s->mask = 0;
3002 s->debounce = 0;
3003 s->latch = 0;
3004 s->ints = 0;
3005 s->row_latch = 0x1f;
3006 s->clk = 1;
3007 }
3008
3009 static void omap_mpuio_onoff(void *opaque, int line, int on)
3010 {
3011 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
3012
3013 s->clk = on;
3014 if (on)
3015 omap_mpuio_kbd_update(s);
3016 }
3017
3018 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
3019 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
3020 omap_clk clk)
3021 {
3022 int iomemtype;
3023 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
3024 qemu_mallocz(sizeof(struct omap_mpuio_s));
3025
3026 s->base = base;
3027 s->irq = gpio_int;
3028 s->kbd_irq = kbd_int;
3029 s->wakeup = wakeup;
3030 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
3031 omap_mpuio_reset(s);
3032
3033 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
3034 omap_mpuio_writefn, s);
3035 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3036
3037 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
3038
3039 return s;
3040 }
3041
3042 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
3043 {
3044 return s->in;
3045 }
3046
3047 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
3048 {
3049 if (line >= 16 || line < 0)
3050 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3051 s->handler[line] = handler;
3052 }
3053
3054 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
3055 {
3056 if (row >= 5 || row < 0)
3057 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
3058 __FUNCTION__, col, row);
3059
3060 if (down)
3061 s->buttons[row] |= 1 << col;
3062 else
3063 s->buttons[row] &= ~(1 << col);
3064
3065 omap_mpuio_kbd_update(s);
3066 }
3067
3068 /* General-Purpose I/O */
3069 struct omap_gpio_s {
3070 target_phys_addr_t base;
3071 qemu_irq irq;
3072 qemu_irq *in;
3073 qemu_irq handler[16];
3074
3075 uint16_t inputs;
3076 uint16_t outputs;
3077 uint16_t dir;
3078 uint16_t edge;
3079 uint16_t mask;
3080 uint16_t ints;
3081 };
3082
3083 static void omap_gpio_set(void *opaque, int line, int level)
3084 {
3085 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3086 uint16_t prev = s->inputs;
3087
3088 if (level)
3089 s->inputs |= 1 << line;
3090 else
3091 s->inputs &= ~(1 << line);
3092
3093 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
3094 (1 << line) & s->dir & ~s->mask) {
3095 s->ints |= 1 << line;
3096 qemu_irq_raise(s->irq);
3097 }
3098 }
3099
3100 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
3101 {
3102 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3103 int offset = addr - s->base;
3104
3105 switch (offset) {
3106 case 0x00: /* DATA_INPUT */
3107 return s->inputs;
3108
3109 case 0x04: /* DATA_OUTPUT */
3110 return s->outputs;
3111
3112 case 0x08: /* DIRECTION_CONTROL */
3113 return s->dir;
3114
3115 case 0x0c: /* INTERRUPT_CONTROL */
3116 return s->edge;
3117
3118 case 0x10: /* INTERRUPT_MASK */
3119 return s->mask;
3120
3121 case 0x14: /* INTERRUPT_STATUS */
3122 return s->ints;
3123 }
3124
3125 OMAP_BAD_REG(addr);
3126 return 0;
3127 }
3128
3129 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
3130 uint32_t value)
3131 {
3132 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3133 int offset = addr - s->base;
3134 uint16_t diff;
3135 int ln;
3136
3137 switch (offset) {
3138 case 0x00: /* DATA_INPUT */
3139 OMAP_RO_REG(addr);
3140 return;
3141
3142 case 0x04: /* DATA_OUTPUT */
3143 diff = s->outputs ^ (value & ~s->dir);
3144 s->outputs = value;
3145 value &= ~s->dir;
3146 while ((ln = ffs(diff))) {
3147 ln --;
3148 if (s->handler[ln])
3149 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3150 diff &= ~(1 << ln);
3151 }
3152 break;
3153
3154 case 0x08: /* DIRECTION_CONTROL */
3155 diff = s->outputs & (s->dir ^ value);
3156 s->dir = value;
3157
3158 value = s->outputs & ~s->dir;
3159 while ((ln = ffs(diff))) {
3160 ln --;
3161 if (s->handler[ln])
3162 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3163 diff &= ~(1 << ln);
3164 }
3165 break;
3166
3167 case 0x0c: /* INTERRUPT_CONTROL */
3168 s->edge = value;
3169 break;
3170
3171 case 0x10: /* INTERRUPT_MASK */
3172 s->mask = value;
3173 break;
3174
3175 case 0x14: /* INTERRUPT_STATUS */
3176 s->ints &= ~value;
3177 if (!s->ints)
3178 qemu_irq_lower(s->irq);
3179 break;
3180
3181 default:
3182 OMAP_BAD_REG(addr);
3183 return;
3184 }
3185 }
3186
3187 /* *Some* sources say the memory region is 32-bit. */
3188 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
3189 omap_badwidth_read16,
3190 omap_gpio_read,
3191 omap_badwidth_read16,
3192 };
3193
3194 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
3195 omap_badwidth_write16,
3196 omap_gpio_write,
3197 omap_badwidth_write16,
3198 };
3199
3200 void omap_gpio_reset(struct omap_gpio_s *s)
3201 {
3202 s->inputs = 0;
3203 s->outputs = ~0;
3204 s->dir = ~0;
3205 s->edge = ~0;
3206 s->mask = ~0;
3207 s->ints = 0;
3208 }
3209
3210 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
3211 qemu_irq irq, omap_clk clk)
3212 {
3213 int iomemtype;
3214 struct omap_gpio_s *s = (struct omap_gpio_s *)
3215 qemu_mallocz(sizeof(struct omap_gpio_s));
3216
3217 s->base = base;
3218 s->irq = irq;
3219 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
3220 omap_gpio_reset(s);
3221
3222 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
3223 omap_gpio_writefn, s);
3224 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
3225
3226 return s;
3227 }
3228
3229 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
3230 {
3231 return s->in;
3232 }
3233
3234 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3235 {
3236 if (line >= 16 || line < 0)
3237 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3238 s->handler[line] = handler;
3239 }
3240
3241 /* MicroWire Interface */
3242 struct omap_uwire_s {
3243 target_phys_addr_t base;
3244 qemu_irq txirq;
3245 qemu_irq rxirq;
3246 qemu_irq txdrq;
3247
3248 uint16_t txbuf;
3249 uint16_t rxbuf;
3250 uint16_t control;
3251 uint16_t setup[5];
3252
3253 struct uwire_slave_s *chip[4];
3254 };
3255
3256 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3257 {
3258 int chipselect = (s->control >> 10) & 3; /* INDEX */
3259 struct uwire_slave_s *slave = s->chip[chipselect];
3260
3261 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3262 if (s->control & (1 << 12)) /* CS_CMD */
3263 if (slave && slave->send)
3264 slave->send(slave->opaque,
3265 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3266 s->control &= ~(1 << 14); /* CSRB */
3267 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3268 * a DRQ. When is the level IRQ supposed to be reset? */
3269 }
3270
3271 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3272 if (s->control & (1 << 12)) /* CS_CMD */
3273 if (slave && slave->receive)
3274 s->rxbuf = slave->receive(slave->opaque);
3275 s->control |= 1 << 15; /* RDRB */
3276 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3277 * a DRQ. When is the level IRQ supposed to be reset? */
3278 }
3279 }
3280
3281 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3282 {
3283 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3284 int offset = addr - s->base;
3285
3286 switch (offset) {
3287 case 0x00: /* RDR */
3288 s->control &= ~(1 << 15); /* RDRB */
3289 return s->rxbuf;
3290
3291 case 0x04: /* CSR */
3292 return s->control;
3293
3294 case 0x08: /* SR1 */
3295 return s->setup[0];
3296 case 0x0c: /* SR2 */
3297 return s->setup[1];
3298 case 0x10: /* SR3 */
3299 return s->setup[2];
3300 case 0x14: /* SR4 */
3301 return s->setup[3];
3302 case 0x18: /* SR5 */
3303 return s->setup[4];
3304 }
3305
3306 OMAP_BAD_REG(addr);
3307 return 0;
3308 }
3309
3310 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3311 uint32_t value)
3312 {
3313 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3314 int offset = addr - s->base;
3315
3316 switch (offset) {
3317 case 0x00: /* TDR */
3318 s->txbuf = value; /* TD */
3319 s->control |= 1 << 14; /* CSRB */
3320 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3321 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3322 (s->control & (1 << 12)))) /* CS_CMD */
3323 omap_uwire_transfer_start(s);
3324 break;
3325
3326 case 0x04: /* CSR */
3327 s->control = value & 0x1fff;
3328 if (value & (1 << 13)) /* START */
3329 omap_uwire_transfer_start(s);
3330 break;
3331
3332 case 0x08: /* SR1 */
3333 s->setup[0] = value & 0x003f;
3334 break;
3335
3336 case 0x0c: /* SR2 */
3337 s->setup[1] = value & 0x0fc0;
3338 break;
3339
3340 case 0x10: /* SR3 */
3341 s->setup[2] = value & 0x0003;
3342 break;
3343
3344 case 0x14: /* SR4 */
3345 s->setup[3] = value & 0x0001;
3346 break;
3347
3348 case 0x18: /* SR5 */
3349 s->setup[4] = value & 0x000f;
3350 break;
3351
3352 default:
3353 OMAP_BAD_REG(addr);
3354 return;
3355 }
3356 }
3357
3358 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3359 omap_badwidth_read16,
3360 omap_uwire_read,
3361 omap_badwidth_read16,
3362 };
3363
3364 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3365 omap_badwidth_write16,
3366 omap_uwire_write,
3367 omap_badwidth_write16,
3368 };
3369
3370 void omap_uwire_reset(struct omap_uwire_s *s)
3371 {
3372 s->control= 0;
3373 s->setup[0] = 0;
3374 s->setup[1] = 0;
3375 s->setup[2] = 0;
3376 s->setup[3] = 0;
3377 s->setup[4] = 0;
3378 }
3379
3380 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3381 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3382 {
3383 int iomemtype;
3384 struct omap_uwire_s *s = (struct omap_uwire_s *)
3385 qemu_mallocz(sizeof(struct omap_uwire_s));
3386
3387 s->base = base;
3388 s->txirq = irq[0];
3389 s->rxirq = irq[1];
3390 s->txdrq = dma;
3391 omap_uwire_reset(s);
3392
3393 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3394 omap_uwire_writefn, s);
3395 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3396
3397 return s;
3398 }
3399
3400 void omap_uwire_attach(struct omap_uwire_s *s,
3401 struct uwire_slave_s *slave, int chipselect)
3402 {
3403 if (chipselect < 0 || chipselect > 3)
3404 cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__,
3405 chipselect);
3406
3407 s->chip[chipselect] = slave;
3408 }
3409
3410 /* General chip reset */
3411 static void omap_mpu_reset(void *opaque)
3412 {
3413 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3414
3415 omap_clkm_reset(mpu);
3416 omap_inth_reset(mpu->ih[0]);
3417 omap_inth_reset(mpu->ih[1]);
3418 omap_dma_reset(mpu->dma);
3419 omap_mpu_timer_reset(mpu->timer[0]);
3420 omap_mpu_timer_reset(mpu->timer[1]);
3421 omap_mpu_timer_reset(mpu->timer[2]);
3422 omap_wd_timer_reset(mpu->wdt);
3423 omap_os_timer_reset(mpu->os_timer);
3424 omap_lcdc_reset(mpu->lcd);
3425 omap_ulpd_pm_reset(mpu);
3426 omap_pin_cfg_reset(mpu);
3427 omap_mpui_reset(mpu);
3428 omap_tipb_bridge_reset(mpu->private_tipb);
3429 omap_tipb_bridge_reset(mpu->public_tipb);
3430 omap_dpll_reset(&mpu->dpll[0]);
3431 omap_dpll_reset(&mpu->dpll[1]);
3432 omap_dpll_reset(&mpu->dpll[2]);
3433 omap_uart_reset(mpu->uart[0]);
3434 omap_uart_reset(mpu->uart[1]);
3435 omap_uart_reset(mpu->uart[2]);
3436 omap_mmc_reset(mpu->mmc);
3437 omap_mpuio_reset(mpu->mpuio);
3438 omap_gpio_reset(mpu->gpio);
3439 omap_uwire_reset(mpu->microwire);
3440 cpu_reset(mpu->env);
3441 }
3442
3443 static void omap_mpu_wakeup(void *opaque, int irq, int req)
3444 {
3445 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3446
3447 if (mpu->env->halted)
3448 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
3449 }
3450
3451 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
3452 DisplayState *ds, const char *core)
3453 {
3454 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3455 qemu_mallocz(sizeof(struct omap_mpu_state_s));
3456 ram_addr_t imif_base, emiff_base;
3457
3458 /* Core */
3459 s->mpu_model = omap310;
3460 s->env = cpu_init();
3461 s->sdram_size = sdram_size;
3462 s->sram_size = OMAP15XX_SRAM_SIZE;
3463
3464 cpu_arm_set_model(s->env, core ?: "ti925t");
3465
3466 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3467
3468 /* Clocks */
3469 omap_clk_init(s);
3470
3471 /* Memory-mapped stuff */
3472 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
3473 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
3474 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
3475 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
3476
3477 omap_clkm_init(0xfffece00, 0xe1008000, s);
3478
3479 s->ih[0] = omap_inth_init(0xfffecb00, 0x100,
3480 arm_pic_init_cpu(s->env),
3481 omap_findclk(s, "arminth_ck"));
3482 s->ih[1] = omap_inth_init(0xfffe0000, 0x800,
3483 &s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ],
3484 omap_findclk(s, "arminth_ck"));
3485 s->irq[0] = s->ih[0]->pins;
3486 s->irq[1] = s->ih[1]->pins;
3487
3488 s->dma = omap_dma_init(0xfffed800, s->irq[0], s,
3489 omap_findclk(s, "dma_ck"));
3490 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3491 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3492 s->port[imif ].addr_valid = omap_validate_imif_addr;
3493 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3494 s->port[local ].addr_valid = omap_validate_local_addr;
3495 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3496
3497 s->timer[0] = omap_mpu_timer_init(0xfffec500,
3498 s->irq[0][OMAP_INT_TIMER1],
3499 omap_findclk(s, "mputim_ck"));
3500 s->timer[1] = omap_mpu_timer_init(0xfffec600,
3501 s->irq[0][OMAP_INT_TIMER2],
3502 omap_findclk(s, "mputim_ck"));
3503 s->timer[2] = omap_mpu_timer_init(0xfffec700,
3504 s->irq[0][OMAP_INT_TIMER3],
3505 omap_findclk(s, "mputim_ck"));
3506
3507 s->wdt = omap_wd_timer_init(0xfffec800,
3508 s->irq[0][OMAP_INT_WD_TIMER],
3509 omap_findclk(s, "armwdt_ck"));
3510
3511 s->os_timer = omap_os_timer_init(0xfffb9000,
3512 s->irq[1][OMAP_INT_OS_TIMER],
3513 omap_findclk(s, "clk32-kHz"));
3514
3515 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
3516 &s->dma->lcd_ch, ds, imif_base, emiff_base,
3517 omap_findclk(s, "lcd_ck"));
3518
3519 omap_ulpd_pm_init(0xfffe0800, s);
3520 omap_pin_cfg_init(0xfffe1000, s);
3521 omap_id_init(s);
3522
3523 omap_mpui_init(0xfffec900, s);
3524
3525 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
3526 s->irq[0][OMAP_INT_BRIDGE_PRIV],
3527 omap_findclk(s, "tipb_ck"));
3528 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
3529 s->irq[0][OMAP_INT_BRIDGE_PUB],
3530 omap_findclk(s, "tipb_ck"));
3531
3532 omap_tcmi_init(0xfffecc00, s);
3533
3534 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
3535 omap_findclk(s, "uart1_ck"),
3536 serial_hds[0]);
3537 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
3538 omap_findclk(s, "uart2_ck"),
3539 serial_hds[0] ? serial_hds[1] : 0);
3540 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
3541 omap_findclk(s, "uart3_ck"),
3542 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
3543
3544 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
3545 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
3546 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
3547
3548 s->mmc = omap_mmc_init(0xfffb7800, s->irq[1][OMAP_INT_OQN],
3549 &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck"));
3550
3551 s->mpuio = omap_mpuio_init(0xfffb5000,
3552 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
3553 s->wakeup, omap_findclk(s, "clk32-kHz"));
3554
3555 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
3556 omap_findclk(s, "mpuper_ck"));
3557
3558 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
3559 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3560
3561 qemu_register_reset(omap_mpu_reset, s);
3562
3563 return s;
3564 }