]> git.proxmox.com Git - qemu.git/blob - hw/omap1.c
Allow attaching devices to OMAP UARTs.
[qemu.git] / hw / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21 #include "hw.h"
22 #include "arm-misc.h"
23 #include "omap.h"
24 #include "sysemu.h"
25 #include "qemu-timer.h"
26 #include "qemu-char.h"
27 #include "soc_dma.h"
28 /* We use pc-style serial ports. */
29 #include "pc.h"
30
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33 {
34 uint8_t ret;
35
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, (void *) &ret, 1);
38 return ret;
39 }
40
41 void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42 uint32_t value)
43 {
44 uint8_t val8 = value;
45
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, (void *) &val8, 1);
48 }
49
50 uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51 {
52 uint16_t ret;
53
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, (void *) &ret, 2);
56 return ret;
57 }
58
59 void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60 uint32_t value)
61 {
62 uint16_t val16 = value;
63
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, (void *) &val16, 2);
66 }
67
68 uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69 {
70 uint32_t ret;
71
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, (void *) &ret, 4);
74 return ret;
75 }
76
77 void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78 uint32_t value)
79 {
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, (void *) &value, 4);
82 }
83
84 /* Interrupt Handlers */
85 struct omap_intr_handler_bank_s {
86 uint32_t irqs;
87 uint32_t inputs;
88 uint32_t mask;
89 uint32_t fiq;
90 uint32_t sens_edge;
91 uint32_t swi;
92 unsigned char priority[32];
93 };
94
95 struct omap_intr_handler_s {
96 qemu_irq *pins;
97 qemu_irq parent_intr[2];
98 target_phys_addr_t base;
99 unsigned char nbanks;
100 int level_only;
101
102 /* state */
103 uint32_t new_agr[2];
104 int sir_intr[2];
105 int autoidle;
106 uint32_t mask;
107 struct omap_intr_handler_bank_s bank[];
108 };
109
110 static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
111 {
112 int i, j, sir_intr, p_intr, p, f;
113 uint32_t level;
114 sir_intr = 0;
115 p_intr = 255;
116
117 /* Find the interrupt line with the highest dynamic priority.
118 * Note: 0 denotes the hightest priority.
119 * If all interrupts have the same priority, the default order is IRQ_N,
120 * IRQ_N-1,...,IRQ_0. */
121 for (j = 0; j < s->nbanks; ++j) {
122 level = s->bank[j].irqs & ~s->bank[j].mask &
123 (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
124 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
125 level >>= f) {
126 p = s->bank[j].priority[i];
127 if (p <= p_intr) {
128 p_intr = p;
129 sir_intr = 32 * j + i;
130 }
131 f = ffs(level >> 1);
132 }
133 }
134 s->sir_intr[is_fiq] = sir_intr;
135 }
136
137 static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
138 {
139 int i;
140 uint32_t has_intr = 0;
141
142 for (i = 0; i < s->nbanks; ++i)
143 has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
144 (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
145
146 if (s->new_agr[is_fiq] & has_intr & s->mask) {
147 s->new_agr[is_fiq] = 0;
148 omap_inth_sir_update(s, is_fiq);
149 qemu_set_irq(s->parent_intr[is_fiq], 1);
150 }
151 }
152
153 #define INT_FALLING_EDGE 0
154 #define INT_LOW_LEVEL 1
155
156 static void omap_set_intr(void *opaque, int irq, int req)
157 {
158 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
159 uint32_t rise;
160
161 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
162 int n = irq & 31;
163
164 if (req) {
165 rise = ~bank->irqs & (1 << n);
166 if (~bank->sens_edge & (1 << n))
167 rise &= ~bank->inputs;
168
169 bank->inputs |= (1 << n);
170 if (rise) {
171 bank->irqs |= rise;
172 omap_inth_update(ih, 0);
173 omap_inth_update(ih, 1);
174 }
175 } else {
176 rise = bank->sens_edge & bank->irqs & (1 << n);
177 bank->irqs &= ~rise;
178 bank->inputs &= ~(1 << n);
179 }
180 }
181
182 /* Simplified version with no edge detection */
183 static void omap_set_intr_noedge(void *opaque, int irq, int req)
184 {
185 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
186 uint32_t rise;
187
188 struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
189 int n = irq & 31;
190
191 if (req) {
192 rise = ~bank->inputs & (1 << n);
193 if (rise) {
194 bank->irqs |= bank->inputs |= rise;
195 omap_inth_update(ih, 0);
196 omap_inth_update(ih, 1);
197 }
198 } else
199 bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
200 }
201
202 static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
203 {
204 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
205 int i, offset = addr - s->base;
206 int bank_no = offset >> 8;
207 int line_no;
208 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
209 offset &= 0xff;
210
211 switch (offset) {
212 case 0x00: /* ITR */
213 return bank->irqs;
214
215 case 0x04: /* MIR */
216 return bank->mask;
217
218 case 0x10: /* SIR_IRQ_CODE */
219 case 0x14: /* SIR_FIQ_CODE */
220 if (bank_no != 0)
221 break;
222 line_no = s->sir_intr[(offset - 0x10) >> 2];
223 bank = &s->bank[line_no >> 5];
224 i = line_no & 31;
225 if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
226 bank->irqs &= ~(1 << i);
227 return line_no;
228
229 case 0x18: /* CONTROL_REG */
230 if (bank_no != 0)
231 break;
232 return 0;
233
234 case 0x1c: /* ILR0 */
235 case 0x20: /* ILR1 */
236 case 0x24: /* ILR2 */
237 case 0x28: /* ILR3 */
238 case 0x2c: /* ILR4 */
239 case 0x30: /* ILR5 */
240 case 0x34: /* ILR6 */
241 case 0x38: /* ILR7 */
242 case 0x3c: /* ILR8 */
243 case 0x40: /* ILR9 */
244 case 0x44: /* ILR10 */
245 case 0x48: /* ILR11 */
246 case 0x4c: /* ILR12 */
247 case 0x50: /* ILR13 */
248 case 0x54: /* ILR14 */
249 case 0x58: /* ILR15 */
250 case 0x5c: /* ILR16 */
251 case 0x60: /* ILR17 */
252 case 0x64: /* ILR18 */
253 case 0x68: /* ILR19 */
254 case 0x6c: /* ILR20 */
255 case 0x70: /* ILR21 */
256 case 0x74: /* ILR22 */
257 case 0x78: /* ILR23 */
258 case 0x7c: /* ILR24 */
259 case 0x80: /* ILR25 */
260 case 0x84: /* ILR26 */
261 case 0x88: /* ILR27 */
262 case 0x8c: /* ILR28 */
263 case 0x90: /* ILR29 */
264 case 0x94: /* ILR30 */
265 case 0x98: /* ILR31 */
266 i = (offset - 0x1c) >> 2;
267 return (bank->priority[i] << 2) |
268 (((bank->sens_edge >> i) & 1) << 1) |
269 ((bank->fiq >> i) & 1);
270
271 case 0x9c: /* ISR */
272 return 0x00000000;
273
274 }
275 OMAP_BAD_REG(addr);
276 return 0;
277 }
278
279 static void omap_inth_write(void *opaque, target_phys_addr_t addr,
280 uint32_t value)
281 {
282 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
283 int i, offset = addr - s->base;
284 int bank_no = offset >> 8;
285 struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
286 offset &= 0xff;
287
288 switch (offset) {
289 case 0x00: /* ITR */
290 /* Important: ignore the clearing if the IRQ is level-triggered and
291 the input bit is 1 */
292 bank->irqs &= value | (bank->inputs & bank->sens_edge);
293 return;
294
295 case 0x04: /* MIR */
296 bank->mask = value;
297 omap_inth_update(s, 0);
298 omap_inth_update(s, 1);
299 return;
300
301 case 0x10: /* SIR_IRQ_CODE */
302 case 0x14: /* SIR_FIQ_CODE */
303 OMAP_RO_REG(addr);
304 break;
305
306 case 0x18: /* CONTROL_REG */
307 if (bank_no != 0)
308 break;
309 if (value & 2) {
310 qemu_set_irq(s->parent_intr[1], 0);
311 s->new_agr[1] = ~0;
312 omap_inth_update(s, 1);
313 }
314 if (value & 1) {
315 qemu_set_irq(s->parent_intr[0], 0);
316 s->new_agr[0] = ~0;
317 omap_inth_update(s, 0);
318 }
319 return;
320
321 case 0x1c: /* ILR0 */
322 case 0x20: /* ILR1 */
323 case 0x24: /* ILR2 */
324 case 0x28: /* ILR3 */
325 case 0x2c: /* ILR4 */
326 case 0x30: /* ILR5 */
327 case 0x34: /* ILR6 */
328 case 0x38: /* ILR7 */
329 case 0x3c: /* ILR8 */
330 case 0x40: /* ILR9 */
331 case 0x44: /* ILR10 */
332 case 0x48: /* ILR11 */
333 case 0x4c: /* ILR12 */
334 case 0x50: /* ILR13 */
335 case 0x54: /* ILR14 */
336 case 0x58: /* ILR15 */
337 case 0x5c: /* ILR16 */
338 case 0x60: /* ILR17 */
339 case 0x64: /* ILR18 */
340 case 0x68: /* ILR19 */
341 case 0x6c: /* ILR20 */
342 case 0x70: /* ILR21 */
343 case 0x74: /* ILR22 */
344 case 0x78: /* ILR23 */
345 case 0x7c: /* ILR24 */
346 case 0x80: /* ILR25 */
347 case 0x84: /* ILR26 */
348 case 0x88: /* ILR27 */
349 case 0x8c: /* ILR28 */
350 case 0x90: /* ILR29 */
351 case 0x94: /* ILR30 */
352 case 0x98: /* ILR31 */
353 i = (offset - 0x1c) >> 2;
354 bank->priority[i] = (value >> 2) & 0x1f;
355 bank->sens_edge &= ~(1 << i);
356 bank->sens_edge |= ((value >> 1) & 1) << i;
357 bank->fiq &= ~(1 << i);
358 bank->fiq |= (value & 1) << i;
359 return;
360
361 case 0x9c: /* ISR */
362 for (i = 0; i < 32; i ++)
363 if (value & (1 << i)) {
364 omap_set_intr(s, 32 * bank_no + i, 1);
365 return;
366 }
367 return;
368 }
369 OMAP_BAD_REG(addr);
370 }
371
372 static CPUReadMemoryFunc *omap_inth_readfn[] = {
373 omap_badwidth_read32,
374 omap_badwidth_read32,
375 omap_inth_read,
376 };
377
378 static CPUWriteMemoryFunc *omap_inth_writefn[] = {
379 omap_inth_write,
380 omap_inth_write,
381 omap_inth_write,
382 };
383
384 void omap_inth_reset(struct omap_intr_handler_s *s)
385 {
386 int i;
387
388 for (i = 0; i < s->nbanks; ++i){
389 s->bank[i].irqs = 0x00000000;
390 s->bank[i].mask = 0xffffffff;
391 s->bank[i].sens_edge = 0x00000000;
392 s->bank[i].fiq = 0x00000000;
393 s->bank[i].inputs = 0x00000000;
394 s->bank[i].swi = 0x00000000;
395 memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
396
397 if (s->level_only)
398 s->bank[i].sens_edge = 0xffffffff;
399 }
400
401 s->new_agr[0] = ~0;
402 s->new_agr[1] = ~0;
403 s->sir_intr[0] = 0;
404 s->sir_intr[1] = 0;
405 s->autoidle = 0;
406 s->mask = ~0;
407
408 qemu_set_irq(s->parent_intr[0], 0);
409 qemu_set_irq(s->parent_intr[1], 0);
410 }
411
412 struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
413 unsigned long size, unsigned char nbanks, qemu_irq **pins,
414 qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
415 {
416 int iomemtype;
417 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
418 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
419 sizeof(struct omap_intr_handler_bank_s) * nbanks);
420
421 s->parent_intr[0] = parent_irq;
422 s->parent_intr[1] = parent_fiq;
423 s->base = base;
424 s->nbanks = nbanks;
425 s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
426 if (pins)
427 *pins = s->pins;
428
429 omap_inth_reset(s);
430
431 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
432 omap_inth_writefn, s);
433 cpu_register_physical_memory(s->base, size, iomemtype);
434
435 return s;
436 }
437
438 static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
439 {
440 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
441 int offset = addr - s->base;
442 int bank_no, line_no;
443 struct omap_intr_handler_bank_s *bank = 0;
444
445 if ((offset & 0xf80) == 0x80) {
446 bank_no = (offset & 0x60) >> 5;
447 if (bank_no < s->nbanks) {
448 offset &= ~0x60;
449 bank = &s->bank[bank_no];
450 }
451 }
452
453 switch (offset) {
454 case 0x00: /* INTC_REVISION */
455 return 0x21;
456
457 case 0x10: /* INTC_SYSCONFIG */
458 return (s->autoidle >> 2) & 1;
459
460 case 0x14: /* INTC_SYSSTATUS */
461 return 1; /* RESETDONE */
462
463 case 0x40: /* INTC_SIR_IRQ */
464 return s->sir_intr[0];
465
466 case 0x44: /* INTC_SIR_FIQ */
467 return s->sir_intr[1];
468
469 case 0x48: /* INTC_CONTROL */
470 return (!s->mask) << 2; /* GLOBALMASK */
471
472 case 0x4c: /* INTC_PROTECTION */
473 return 0;
474
475 case 0x50: /* INTC_IDLE */
476 return s->autoidle & 3;
477
478 /* Per-bank registers */
479 case 0x80: /* INTC_ITR */
480 return bank->inputs;
481
482 case 0x84: /* INTC_MIR */
483 return bank->mask;
484
485 case 0x88: /* INTC_MIR_CLEAR */
486 case 0x8c: /* INTC_MIR_SET */
487 return 0;
488
489 case 0x90: /* INTC_ISR_SET */
490 return bank->swi;
491
492 case 0x94: /* INTC_ISR_CLEAR */
493 return 0;
494
495 case 0x98: /* INTC_PENDING_IRQ */
496 return bank->irqs & ~bank->mask & ~bank->fiq;
497
498 case 0x9c: /* INTC_PENDING_FIQ */
499 return bank->irqs & ~bank->mask & bank->fiq;
500
501 /* Per-line registers */
502 case 0x100 ... 0x300: /* INTC_ILR */
503 bank_no = (offset - 0x100) >> 7;
504 if (bank_no > s->nbanks)
505 break;
506 bank = &s->bank[bank_no];
507 line_no = (offset & 0x7f) >> 2;
508 return (bank->priority[line_no] << 2) |
509 ((bank->fiq >> line_no) & 1);
510 }
511 OMAP_BAD_REG(addr);
512 return 0;
513 }
514
515 static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
516 uint32_t value)
517 {
518 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
519 int offset = addr - s->base;
520 int bank_no, line_no;
521 struct omap_intr_handler_bank_s *bank = 0;
522
523 if ((offset & 0xf80) == 0x80) {
524 bank_no = (offset & 0x60) >> 5;
525 if (bank_no < s->nbanks) {
526 offset &= ~0x60;
527 bank = &s->bank[bank_no];
528 }
529 }
530
531 switch (offset) {
532 case 0x10: /* INTC_SYSCONFIG */
533 s->autoidle &= 4;
534 s->autoidle |= (value & 1) << 2;
535 if (value & 2) /* SOFTRESET */
536 omap_inth_reset(s);
537 return;
538
539 case 0x48: /* INTC_CONTROL */
540 s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
541 if (value & 2) { /* NEWFIQAGR */
542 qemu_set_irq(s->parent_intr[1], 0);
543 s->new_agr[1] = ~0;
544 omap_inth_update(s, 1);
545 }
546 if (value & 1) { /* NEWIRQAGR */
547 qemu_set_irq(s->parent_intr[0], 0);
548 s->new_agr[0] = ~0;
549 omap_inth_update(s, 0);
550 }
551 return;
552
553 case 0x4c: /* INTC_PROTECTION */
554 /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
555 * for every register, see Chapter 3 and 4 for privileged mode. */
556 if (value & 1)
557 fprintf(stderr, "%s: protection mode enable attempt\n",
558 __FUNCTION__);
559 return;
560
561 case 0x50: /* INTC_IDLE */
562 s->autoidle &= ~3;
563 s->autoidle |= value & 3;
564 return;
565
566 /* Per-bank registers */
567 case 0x84: /* INTC_MIR */
568 bank->mask = value;
569 omap_inth_update(s, 0);
570 omap_inth_update(s, 1);
571 return;
572
573 case 0x88: /* INTC_MIR_CLEAR */
574 bank->mask &= ~value;
575 omap_inth_update(s, 0);
576 omap_inth_update(s, 1);
577 return;
578
579 case 0x8c: /* INTC_MIR_SET */
580 bank->mask |= value;
581 return;
582
583 case 0x90: /* INTC_ISR_SET */
584 bank->irqs |= bank->swi |= value;
585 omap_inth_update(s, 0);
586 omap_inth_update(s, 1);
587 return;
588
589 case 0x94: /* INTC_ISR_CLEAR */
590 bank->swi &= ~value;
591 bank->irqs = bank->swi & bank->inputs;
592 return;
593
594 /* Per-line registers */
595 case 0x100 ... 0x300: /* INTC_ILR */
596 bank_no = (offset - 0x100) >> 7;
597 if (bank_no > s->nbanks)
598 break;
599 bank = &s->bank[bank_no];
600 line_no = (offset & 0x7f) >> 2;
601 bank->priority[line_no] = (value >> 2) & 0x3f;
602 bank->fiq &= ~(1 << line_no);
603 bank->fiq |= (value & 1) << line_no;
604 return;
605
606 case 0x00: /* INTC_REVISION */
607 case 0x14: /* INTC_SYSSTATUS */
608 case 0x40: /* INTC_SIR_IRQ */
609 case 0x44: /* INTC_SIR_FIQ */
610 case 0x80: /* INTC_ITR */
611 case 0x98: /* INTC_PENDING_IRQ */
612 case 0x9c: /* INTC_PENDING_FIQ */
613 OMAP_RO_REG(addr);
614 return;
615 }
616 OMAP_BAD_REG(addr);
617 }
618
619 static CPUReadMemoryFunc *omap2_inth_readfn[] = {
620 omap_badwidth_read32,
621 omap_badwidth_read32,
622 omap2_inth_read,
623 };
624
625 static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
626 omap2_inth_write,
627 omap2_inth_write,
628 omap2_inth_write,
629 };
630
631 struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
632 int size, int nbanks, qemu_irq **pins,
633 qemu_irq parent_irq, qemu_irq parent_fiq,
634 omap_clk fclk, omap_clk iclk)
635 {
636 int iomemtype;
637 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
638 qemu_mallocz(sizeof(struct omap_intr_handler_s) +
639 sizeof(struct omap_intr_handler_bank_s) * nbanks);
640
641 s->parent_intr[0] = parent_irq;
642 s->parent_intr[1] = parent_fiq;
643 s->base = base;
644 s->nbanks = nbanks;
645 s->level_only = 1;
646 s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
647 if (pins)
648 *pins = s->pins;
649
650 omap_inth_reset(s);
651
652 iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
653 omap2_inth_writefn, s);
654 cpu_register_physical_memory(s->base, size, iomemtype);
655
656 return s;
657 }
658
659 /* MPU OS timers */
660 struct omap_mpu_timer_s {
661 qemu_irq irq;
662 omap_clk clk;
663 target_phys_addr_t base;
664 uint32_t val;
665 int64_t time;
666 QEMUTimer *timer;
667 int64_t rate;
668 int it_ena;
669
670 int enable;
671 int ptv;
672 int ar;
673 int st;
674 uint32_t reset_val;
675 };
676
677 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
678 {
679 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
680
681 if (timer->st && timer->enable && timer->rate)
682 return timer->val - muldiv64(distance >> (timer->ptv + 1),
683 timer->rate, ticks_per_sec);
684 else
685 return timer->val;
686 }
687
688 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
689 {
690 timer->val = omap_timer_read(timer);
691 timer->time = qemu_get_clock(vm_clock);
692 }
693
694 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
695 {
696 int64_t expires;
697
698 if (timer->enable && timer->st && timer->rate) {
699 timer->val = timer->reset_val; /* Should skip this on clk enable */
700 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
701 ticks_per_sec, timer->rate);
702
703 /* If timer expiry would be sooner than in about 1 ms and
704 * auto-reload isn't set, then fire immediately. This is a hack
705 * to make systems like PalmOS run in acceptable time. PalmOS
706 * sets the interval to a very low value and polls the status bit
707 * in a busy loop when it wants to sleep just a couple of CPU
708 * ticks. */
709 if (expires > (ticks_per_sec >> 10) || timer->ar)
710 qemu_mod_timer(timer->timer, timer->time + expires);
711 else {
712 timer->val = 0;
713 timer->st = 0;
714 if (timer->it_ena)
715 /* Edge-triggered irq */
716 qemu_irq_pulse(timer->irq);
717 }
718 } else
719 qemu_del_timer(timer->timer);
720 }
721
722 static void omap_timer_tick(void *opaque)
723 {
724 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
725 omap_timer_sync(timer);
726
727 if (!timer->ar) {
728 timer->val = 0;
729 timer->st = 0;
730 }
731
732 if (timer->it_ena)
733 /* Edge-triggered irq */
734 qemu_irq_pulse(timer->irq);
735 omap_timer_update(timer);
736 }
737
738 static void omap_timer_clk_update(void *opaque, int line, int on)
739 {
740 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
741
742 omap_timer_sync(timer);
743 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
744 omap_timer_update(timer);
745 }
746
747 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
748 {
749 omap_clk_adduser(timer->clk,
750 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
751 timer->rate = omap_clk_getrate(timer->clk);
752 }
753
754 static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
755 {
756 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
757 int offset = addr - s->base;
758
759 switch (offset) {
760 case 0x00: /* CNTL_TIMER */
761 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
762
763 case 0x04: /* LOAD_TIM */
764 break;
765
766 case 0x08: /* READ_TIM */
767 return omap_timer_read(s);
768 }
769
770 OMAP_BAD_REG(addr);
771 return 0;
772 }
773
774 static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
775 uint32_t value)
776 {
777 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
778 int offset = addr - s->base;
779
780 switch (offset) {
781 case 0x00: /* CNTL_TIMER */
782 omap_timer_sync(s);
783 s->enable = (value >> 5) & 1;
784 s->ptv = (value >> 2) & 7;
785 s->ar = (value >> 1) & 1;
786 s->st = value & 1;
787 omap_timer_update(s);
788 return;
789
790 case 0x04: /* LOAD_TIM */
791 s->reset_val = value;
792 return;
793
794 case 0x08: /* READ_TIM */
795 OMAP_RO_REG(addr);
796 break;
797
798 default:
799 OMAP_BAD_REG(addr);
800 }
801 }
802
803 static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
804 omap_badwidth_read32,
805 omap_badwidth_read32,
806 omap_mpu_timer_read,
807 };
808
809 static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
810 omap_badwidth_write32,
811 omap_badwidth_write32,
812 omap_mpu_timer_write,
813 };
814
815 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
816 {
817 qemu_del_timer(s->timer);
818 s->enable = 0;
819 s->reset_val = 31337;
820 s->val = 0;
821 s->ptv = 0;
822 s->ar = 0;
823 s->st = 0;
824 s->it_ena = 1;
825 }
826
827 struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
828 qemu_irq irq, omap_clk clk)
829 {
830 int iomemtype;
831 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
832 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
833
834 s->irq = irq;
835 s->clk = clk;
836 s->base = base;
837 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
838 omap_mpu_timer_reset(s);
839 omap_timer_clk_setup(s);
840
841 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
842 omap_mpu_timer_writefn, s);
843 cpu_register_physical_memory(s->base, 0x100, iomemtype);
844
845 return s;
846 }
847
848 /* Watchdog timer */
849 struct omap_watchdog_timer_s {
850 struct omap_mpu_timer_s timer;
851 uint8_t last_wr;
852 int mode;
853 int free;
854 int reset;
855 };
856
857 static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
858 {
859 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
860 int offset = addr - s->timer.base;
861
862 switch (offset) {
863 case 0x00: /* CNTL_TIMER */
864 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
865 (s->timer.st << 7) | (s->free << 1);
866
867 case 0x04: /* READ_TIMER */
868 return omap_timer_read(&s->timer);
869
870 case 0x08: /* TIMER_MODE */
871 return s->mode << 15;
872 }
873
874 OMAP_BAD_REG(addr);
875 return 0;
876 }
877
878 static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
879 uint32_t value)
880 {
881 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
882 int offset = addr - s->timer.base;
883
884 switch (offset) {
885 case 0x00: /* CNTL_TIMER */
886 omap_timer_sync(&s->timer);
887 s->timer.ptv = (value >> 9) & 7;
888 s->timer.ar = (value >> 8) & 1;
889 s->timer.st = (value >> 7) & 1;
890 s->free = (value >> 1) & 1;
891 omap_timer_update(&s->timer);
892 break;
893
894 case 0x04: /* LOAD_TIMER */
895 s->timer.reset_val = value & 0xffff;
896 break;
897
898 case 0x08: /* TIMER_MODE */
899 if (!s->mode && ((value >> 15) & 1))
900 omap_clk_get(s->timer.clk);
901 s->mode |= (value >> 15) & 1;
902 if (s->last_wr == 0xf5) {
903 if ((value & 0xff) == 0xa0) {
904 if (s->mode) {
905 s->mode = 0;
906 omap_clk_put(s->timer.clk);
907 }
908 } else {
909 /* XXX: on T|E hardware somehow this has no effect,
910 * on Zire 71 it works as specified. */
911 s->reset = 1;
912 qemu_system_reset_request();
913 }
914 }
915 s->last_wr = value & 0xff;
916 break;
917
918 default:
919 OMAP_BAD_REG(addr);
920 }
921 }
922
923 static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
924 omap_badwidth_read16,
925 omap_wd_timer_read,
926 omap_badwidth_read16,
927 };
928
929 static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
930 omap_badwidth_write16,
931 omap_wd_timer_write,
932 omap_badwidth_write16,
933 };
934
935 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
936 {
937 qemu_del_timer(s->timer.timer);
938 if (!s->mode)
939 omap_clk_get(s->timer.clk);
940 s->mode = 1;
941 s->free = 1;
942 s->reset = 0;
943 s->timer.enable = 1;
944 s->timer.it_ena = 1;
945 s->timer.reset_val = 0xffff;
946 s->timer.val = 0;
947 s->timer.st = 0;
948 s->timer.ptv = 0;
949 s->timer.ar = 0;
950 omap_timer_update(&s->timer);
951 }
952
953 struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
954 qemu_irq irq, omap_clk clk)
955 {
956 int iomemtype;
957 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
958 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
959
960 s->timer.irq = irq;
961 s->timer.clk = clk;
962 s->timer.base = base;
963 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
964 omap_wd_timer_reset(s);
965 omap_timer_clk_setup(&s->timer);
966
967 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
968 omap_wd_timer_writefn, s);
969 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
970
971 return s;
972 }
973
974 /* 32-kHz timer */
975 struct omap_32khz_timer_s {
976 struct omap_mpu_timer_s timer;
977 };
978
979 static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
980 {
981 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
982 int offset = addr & OMAP_MPUI_REG_MASK;
983
984 switch (offset) {
985 case 0x00: /* TVR */
986 return s->timer.reset_val;
987
988 case 0x04: /* TCR */
989 return omap_timer_read(&s->timer);
990
991 case 0x08: /* CR */
992 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
993
994 default:
995 break;
996 }
997 OMAP_BAD_REG(addr);
998 return 0;
999 }
1000
1001 static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1002 uint32_t value)
1003 {
1004 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1005 int offset = addr & OMAP_MPUI_REG_MASK;
1006
1007 switch (offset) {
1008 case 0x00: /* TVR */
1009 s->timer.reset_val = value & 0x00ffffff;
1010 break;
1011
1012 case 0x04: /* TCR */
1013 OMAP_RO_REG(addr);
1014 break;
1015
1016 case 0x08: /* CR */
1017 s->timer.ar = (value >> 3) & 1;
1018 s->timer.it_ena = (value >> 2) & 1;
1019 if (s->timer.st != (value & 1) || (value & 2)) {
1020 omap_timer_sync(&s->timer);
1021 s->timer.enable = value & 1;
1022 s->timer.st = value & 1;
1023 omap_timer_update(&s->timer);
1024 }
1025 break;
1026
1027 default:
1028 OMAP_BAD_REG(addr);
1029 }
1030 }
1031
1032 static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1033 omap_badwidth_read32,
1034 omap_badwidth_read32,
1035 omap_os_timer_read,
1036 };
1037
1038 static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1039 omap_badwidth_write32,
1040 omap_badwidth_write32,
1041 omap_os_timer_write,
1042 };
1043
1044 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1045 {
1046 qemu_del_timer(s->timer.timer);
1047 s->timer.enable = 0;
1048 s->timer.it_ena = 0;
1049 s->timer.reset_val = 0x00ffffff;
1050 s->timer.val = 0;
1051 s->timer.st = 0;
1052 s->timer.ptv = 0;
1053 s->timer.ar = 1;
1054 }
1055
1056 struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1057 qemu_irq irq, omap_clk clk)
1058 {
1059 int iomemtype;
1060 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1061 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1062
1063 s->timer.irq = irq;
1064 s->timer.clk = clk;
1065 s->timer.base = base;
1066 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1067 omap_os_timer_reset(s);
1068 omap_timer_clk_setup(&s->timer);
1069
1070 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1071 omap_os_timer_writefn, s);
1072 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1073
1074 return s;
1075 }
1076
1077 /* Ultra Low-Power Device Module */
1078 static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1079 {
1080 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1081 int offset = addr - s->ulpd_pm_base;
1082 uint16_t ret;
1083
1084 switch (offset) {
1085 case 0x14: /* IT_STATUS */
1086 ret = s->ulpd_pm_regs[offset >> 2];
1087 s->ulpd_pm_regs[offset >> 2] = 0;
1088 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1089 return ret;
1090
1091 case 0x18: /* Reserved */
1092 case 0x1c: /* Reserved */
1093 case 0x20: /* Reserved */
1094 case 0x28: /* Reserved */
1095 case 0x2c: /* Reserved */
1096 OMAP_BAD_REG(addr);
1097 case 0x00: /* COUNTER_32_LSB */
1098 case 0x04: /* COUNTER_32_MSB */
1099 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1100 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1101 case 0x10: /* GAUGING_CTRL */
1102 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1103 case 0x30: /* CLOCK_CTRL */
1104 case 0x34: /* SOFT_REQ */
1105 case 0x38: /* COUNTER_32_FIQ */
1106 case 0x3c: /* DPLL_CTRL */
1107 case 0x40: /* STATUS_REQ */
1108 /* XXX: check clk::usecount state for every clock */
1109 case 0x48: /* LOCL_TIME */
1110 case 0x4c: /* APLL_CTRL */
1111 case 0x50: /* POWER_CTRL */
1112 return s->ulpd_pm_regs[offset >> 2];
1113 }
1114
1115 OMAP_BAD_REG(addr);
1116 return 0;
1117 }
1118
1119 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1120 uint16_t diff, uint16_t value)
1121 {
1122 if (diff & (1 << 4)) /* USB_MCLK_EN */
1123 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1124 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1125 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1126 }
1127
1128 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1129 uint16_t diff, uint16_t value)
1130 {
1131 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1132 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1133 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1134 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1135 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1136 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1137 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1138 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1139 }
1140
1141 static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1142 uint32_t value)
1143 {
1144 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1145 int offset = addr - s->ulpd_pm_base;
1146 int64_t now, ticks;
1147 int div, mult;
1148 static const int bypass_div[4] = { 1, 2, 4, 4 };
1149 uint16_t diff;
1150
1151 switch (offset) {
1152 case 0x00: /* COUNTER_32_LSB */
1153 case 0x04: /* COUNTER_32_MSB */
1154 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1155 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1156 case 0x14: /* IT_STATUS */
1157 case 0x40: /* STATUS_REQ */
1158 OMAP_RO_REG(addr);
1159 break;
1160
1161 case 0x10: /* GAUGING_CTRL */
1162 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1163 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1164 now = qemu_get_clock(vm_clock);
1165
1166 if (value & 1)
1167 s->ulpd_gauge_start = now;
1168 else {
1169 now -= s->ulpd_gauge_start;
1170
1171 /* 32-kHz ticks */
1172 ticks = muldiv64(now, 32768, ticks_per_sec);
1173 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1174 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1175 if (ticks >> 32) /* OVERFLOW_32K */
1176 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1177
1178 /* High frequency ticks */
1179 ticks = muldiv64(now, 12000000, ticks_per_sec);
1180 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1181 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1182 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1183 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1184
1185 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1186 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1187 }
1188 }
1189 s->ulpd_pm_regs[offset >> 2] = value;
1190 break;
1191
1192 case 0x18: /* Reserved */
1193 case 0x1c: /* Reserved */
1194 case 0x20: /* Reserved */
1195 case 0x28: /* Reserved */
1196 case 0x2c: /* Reserved */
1197 OMAP_BAD_REG(addr);
1198 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1199 case 0x38: /* COUNTER_32_FIQ */
1200 case 0x48: /* LOCL_TIME */
1201 case 0x50: /* POWER_CTRL */
1202 s->ulpd_pm_regs[offset >> 2] = value;
1203 break;
1204
1205 case 0x30: /* CLOCK_CTRL */
1206 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1207 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1208 omap_ulpd_clk_update(s, diff, value);
1209 break;
1210
1211 case 0x34: /* SOFT_REQ */
1212 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1213 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1214 omap_ulpd_req_update(s, diff, value);
1215 break;
1216
1217 case 0x3c: /* DPLL_CTRL */
1218 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1219 * omitted altogether, probably a typo. */
1220 /* This register has identical semantics with DPLL(1:3) control
1221 * registers, see omap_dpll_write() */
1222 diff = s->ulpd_pm_regs[offset >> 2] & value;
1223 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1224 if (diff & (0x3ff << 2)) {
1225 if (value & (1 << 4)) { /* PLL_ENABLE */
1226 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1227 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1228 } else {
1229 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1230 mult = 1;
1231 }
1232 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1233 }
1234
1235 /* Enter the desired mode. */
1236 s->ulpd_pm_regs[offset >> 2] =
1237 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1238 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1239
1240 /* Act as if the lock is restored. */
1241 s->ulpd_pm_regs[offset >> 2] |= 2;
1242 break;
1243
1244 case 0x4c: /* APLL_CTRL */
1245 diff = s->ulpd_pm_regs[offset >> 2] & value;
1246 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1247 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1248 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1249 (value & (1 << 0)) ? "apll" : "dpll4"));
1250 break;
1251
1252 default:
1253 OMAP_BAD_REG(addr);
1254 }
1255 }
1256
1257 static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1258 omap_badwidth_read16,
1259 omap_ulpd_pm_read,
1260 omap_badwidth_read16,
1261 };
1262
1263 static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1264 omap_badwidth_write16,
1265 omap_ulpd_pm_write,
1266 omap_badwidth_write16,
1267 };
1268
1269 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1270 {
1271 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1272 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1273 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1274 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1275 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1276 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1277 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1278 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1279 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1280 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1281 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1282 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1283 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1284 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1285 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1286 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1287 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1288 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1289 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1290 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1291 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1292 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1293 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1294 }
1295
1296 static void omap_ulpd_pm_init(target_phys_addr_t base,
1297 struct omap_mpu_state_s *mpu)
1298 {
1299 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1300 omap_ulpd_pm_writefn, mpu);
1301
1302 mpu->ulpd_pm_base = base;
1303 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1304 omap_ulpd_pm_reset(mpu);
1305 }
1306
1307 /* OMAP Pin Configuration */
1308 static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1309 {
1310 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1311 int offset = addr - s->pin_cfg_base;
1312
1313 switch (offset) {
1314 case 0x00: /* FUNC_MUX_CTRL_0 */
1315 case 0x04: /* FUNC_MUX_CTRL_1 */
1316 case 0x08: /* FUNC_MUX_CTRL_2 */
1317 return s->func_mux_ctrl[offset >> 2];
1318
1319 case 0x0c: /* COMP_MODE_CTRL_0 */
1320 return s->comp_mode_ctrl[0];
1321
1322 case 0x10: /* FUNC_MUX_CTRL_3 */
1323 case 0x14: /* FUNC_MUX_CTRL_4 */
1324 case 0x18: /* FUNC_MUX_CTRL_5 */
1325 case 0x1c: /* FUNC_MUX_CTRL_6 */
1326 case 0x20: /* FUNC_MUX_CTRL_7 */
1327 case 0x24: /* FUNC_MUX_CTRL_8 */
1328 case 0x28: /* FUNC_MUX_CTRL_9 */
1329 case 0x2c: /* FUNC_MUX_CTRL_A */
1330 case 0x30: /* FUNC_MUX_CTRL_B */
1331 case 0x34: /* FUNC_MUX_CTRL_C */
1332 case 0x38: /* FUNC_MUX_CTRL_D */
1333 return s->func_mux_ctrl[(offset >> 2) - 1];
1334
1335 case 0x40: /* PULL_DWN_CTRL_0 */
1336 case 0x44: /* PULL_DWN_CTRL_1 */
1337 case 0x48: /* PULL_DWN_CTRL_2 */
1338 case 0x4c: /* PULL_DWN_CTRL_3 */
1339 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1340
1341 case 0x50: /* GATE_INH_CTRL_0 */
1342 return s->gate_inh_ctrl[0];
1343
1344 case 0x60: /* VOLTAGE_CTRL_0 */
1345 return s->voltage_ctrl[0];
1346
1347 case 0x70: /* TEST_DBG_CTRL_0 */
1348 return s->test_dbg_ctrl[0];
1349
1350 case 0x80: /* MOD_CONF_CTRL_0 */
1351 return s->mod_conf_ctrl[0];
1352 }
1353
1354 OMAP_BAD_REG(addr);
1355 return 0;
1356 }
1357
1358 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1359 uint32_t diff, uint32_t value)
1360 {
1361 if (s->compat1509) {
1362 if (diff & (1 << 9)) /* BLUETOOTH */
1363 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1364 (~value >> 9) & 1);
1365 if (diff & (1 << 7)) /* USB.CLKO */
1366 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1367 (value >> 7) & 1);
1368 }
1369 }
1370
1371 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1372 uint32_t diff, uint32_t value)
1373 {
1374 if (s->compat1509) {
1375 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1376 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1377 (value >> 31) & 1);
1378 if (diff & (1 << 1)) /* CLK32K */
1379 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1380 (~value >> 1) & 1);
1381 }
1382 }
1383
1384 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1385 uint32_t diff, uint32_t value)
1386 {
1387 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1388 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1389 omap_findclk(s, ((value >> 31) & 1) ?
1390 "ck_48m" : "armper_ck"));
1391 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1392 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1393 omap_findclk(s, ((value >> 30) & 1) ?
1394 "ck_48m" : "armper_ck"));
1395 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1396 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1397 omap_findclk(s, ((value >> 29) & 1) ?
1398 "ck_48m" : "armper_ck"));
1399 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1400 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1401 omap_findclk(s, ((value >> 23) & 1) ?
1402 "ck_48m" : "armper_ck"));
1403 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1404 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1405 omap_findclk(s, ((value >> 12) & 1) ?
1406 "ck_48m" : "armper_ck"));
1407 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1408 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1409 }
1410
1411 static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1412 uint32_t value)
1413 {
1414 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1415 int offset = addr - s->pin_cfg_base;
1416 uint32_t diff;
1417
1418 switch (offset) {
1419 case 0x00: /* FUNC_MUX_CTRL_0 */
1420 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1421 s->func_mux_ctrl[offset >> 2] = value;
1422 omap_pin_funcmux0_update(s, diff, value);
1423 return;
1424
1425 case 0x04: /* FUNC_MUX_CTRL_1 */
1426 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1427 s->func_mux_ctrl[offset >> 2] = value;
1428 omap_pin_funcmux1_update(s, diff, value);
1429 return;
1430
1431 case 0x08: /* FUNC_MUX_CTRL_2 */
1432 s->func_mux_ctrl[offset >> 2] = value;
1433 return;
1434
1435 case 0x0c: /* COMP_MODE_CTRL_0 */
1436 s->comp_mode_ctrl[0] = value;
1437 s->compat1509 = (value != 0x0000eaef);
1438 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1439 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1440 return;
1441
1442 case 0x10: /* FUNC_MUX_CTRL_3 */
1443 case 0x14: /* FUNC_MUX_CTRL_4 */
1444 case 0x18: /* FUNC_MUX_CTRL_5 */
1445 case 0x1c: /* FUNC_MUX_CTRL_6 */
1446 case 0x20: /* FUNC_MUX_CTRL_7 */
1447 case 0x24: /* FUNC_MUX_CTRL_8 */
1448 case 0x28: /* FUNC_MUX_CTRL_9 */
1449 case 0x2c: /* FUNC_MUX_CTRL_A */
1450 case 0x30: /* FUNC_MUX_CTRL_B */
1451 case 0x34: /* FUNC_MUX_CTRL_C */
1452 case 0x38: /* FUNC_MUX_CTRL_D */
1453 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1454 return;
1455
1456 case 0x40: /* PULL_DWN_CTRL_0 */
1457 case 0x44: /* PULL_DWN_CTRL_1 */
1458 case 0x48: /* PULL_DWN_CTRL_2 */
1459 case 0x4c: /* PULL_DWN_CTRL_3 */
1460 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1461 return;
1462
1463 case 0x50: /* GATE_INH_CTRL_0 */
1464 s->gate_inh_ctrl[0] = value;
1465 return;
1466
1467 case 0x60: /* VOLTAGE_CTRL_0 */
1468 s->voltage_ctrl[0] = value;
1469 return;
1470
1471 case 0x70: /* TEST_DBG_CTRL_0 */
1472 s->test_dbg_ctrl[0] = value;
1473 return;
1474
1475 case 0x80: /* MOD_CONF_CTRL_0 */
1476 diff = s->mod_conf_ctrl[0] ^ value;
1477 s->mod_conf_ctrl[0] = value;
1478 omap_pin_modconf1_update(s, diff, value);
1479 return;
1480
1481 default:
1482 OMAP_BAD_REG(addr);
1483 }
1484 }
1485
1486 static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1487 omap_badwidth_read32,
1488 omap_badwidth_read32,
1489 omap_pin_cfg_read,
1490 };
1491
1492 static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1493 omap_badwidth_write32,
1494 omap_badwidth_write32,
1495 omap_pin_cfg_write,
1496 };
1497
1498 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1499 {
1500 /* Start in Compatibility Mode. */
1501 mpu->compat1509 = 1;
1502 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1503 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1504 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1505 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1506 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1507 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1508 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1509 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1510 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1511 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1512 }
1513
1514 static void omap_pin_cfg_init(target_phys_addr_t base,
1515 struct omap_mpu_state_s *mpu)
1516 {
1517 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1518 omap_pin_cfg_writefn, mpu);
1519
1520 mpu->pin_cfg_base = base;
1521 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1522 omap_pin_cfg_reset(mpu);
1523 }
1524
1525 /* Device Identification, Die Identification */
1526 static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1527 {
1528 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1529
1530 switch (addr) {
1531 case 0xfffe1800: /* DIE_ID_LSB */
1532 return 0xc9581f0e;
1533 case 0xfffe1804: /* DIE_ID_MSB */
1534 return 0xa8858bfa;
1535
1536 case 0xfffe2000: /* PRODUCT_ID_LSB */
1537 return 0x00aaaafc;
1538 case 0xfffe2004: /* PRODUCT_ID_MSB */
1539 return 0xcafeb574;
1540
1541 case 0xfffed400: /* JTAG_ID_LSB */
1542 switch (s->mpu_model) {
1543 case omap310:
1544 return 0x03310315;
1545 case omap1510:
1546 return 0x03310115;
1547 default:
1548 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1549 }
1550 break;
1551
1552 case 0xfffed404: /* JTAG_ID_MSB */
1553 switch (s->mpu_model) {
1554 case omap310:
1555 return 0xfb57402f;
1556 case omap1510:
1557 return 0xfb47002f;
1558 default:
1559 cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1560 }
1561 break;
1562 }
1563
1564 OMAP_BAD_REG(addr);
1565 return 0;
1566 }
1567
1568 static void omap_id_write(void *opaque, target_phys_addr_t addr,
1569 uint32_t value)
1570 {
1571 OMAP_BAD_REG(addr);
1572 }
1573
1574 static CPUReadMemoryFunc *omap_id_readfn[] = {
1575 omap_badwidth_read32,
1576 omap_badwidth_read32,
1577 omap_id_read,
1578 };
1579
1580 static CPUWriteMemoryFunc *omap_id_writefn[] = {
1581 omap_badwidth_write32,
1582 omap_badwidth_write32,
1583 omap_id_write,
1584 };
1585
1586 static void omap_id_init(struct omap_mpu_state_s *mpu)
1587 {
1588 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1589 omap_id_writefn, mpu);
1590 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1591 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1592 if (!cpu_is_omap15xx(mpu))
1593 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1594 }
1595
1596 /* MPUI Control (Dummy) */
1597 static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1598 {
1599 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1600 int offset = addr - s->mpui_base;
1601
1602 switch (offset) {
1603 case 0x00: /* CTRL */
1604 return s->mpui_ctrl;
1605 case 0x04: /* DEBUG_ADDR */
1606 return 0x01ffffff;
1607 case 0x08: /* DEBUG_DATA */
1608 return 0xffffffff;
1609 case 0x0c: /* DEBUG_FLAG */
1610 return 0x00000800;
1611 case 0x10: /* STATUS */
1612 return 0x00000000;
1613
1614 /* Not in OMAP310 */
1615 case 0x14: /* DSP_STATUS */
1616 case 0x18: /* DSP_BOOT_CONFIG */
1617 return 0x00000000;
1618 case 0x1c: /* DSP_MPUI_CONFIG */
1619 return 0x0000ffff;
1620 }
1621
1622 OMAP_BAD_REG(addr);
1623 return 0;
1624 }
1625
1626 static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1627 uint32_t value)
1628 {
1629 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1630 int offset = addr - s->mpui_base;
1631
1632 switch (offset) {
1633 case 0x00: /* CTRL */
1634 s->mpui_ctrl = value & 0x007fffff;
1635 break;
1636
1637 case 0x04: /* DEBUG_ADDR */
1638 case 0x08: /* DEBUG_DATA */
1639 case 0x0c: /* DEBUG_FLAG */
1640 case 0x10: /* STATUS */
1641 /* Not in OMAP310 */
1642 case 0x14: /* DSP_STATUS */
1643 OMAP_RO_REG(addr);
1644 case 0x18: /* DSP_BOOT_CONFIG */
1645 case 0x1c: /* DSP_MPUI_CONFIG */
1646 break;
1647
1648 default:
1649 OMAP_BAD_REG(addr);
1650 }
1651 }
1652
1653 static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1654 omap_badwidth_read32,
1655 omap_badwidth_read32,
1656 omap_mpui_read,
1657 };
1658
1659 static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1660 omap_badwidth_write32,
1661 omap_badwidth_write32,
1662 omap_mpui_write,
1663 };
1664
1665 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1666 {
1667 s->mpui_ctrl = 0x0003ff1b;
1668 }
1669
1670 static void omap_mpui_init(target_phys_addr_t base,
1671 struct omap_mpu_state_s *mpu)
1672 {
1673 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1674 omap_mpui_writefn, mpu);
1675
1676 mpu->mpui_base = base;
1677 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
1678
1679 omap_mpui_reset(mpu);
1680 }
1681
1682 /* TIPB Bridges */
1683 struct omap_tipb_bridge_s {
1684 target_phys_addr_t base;
1685 qemu_irq abort;
1686
1687 int width_intr;
1688 uint16_t control;
1689 uint16_t alloc;
1690 uint16_t buffer;
1691 uint16_t enh_control;
1692 };
1693
1694 static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1695 {
1696 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1697 int offset = addr - s->base;
1698
1699 switch (offset) {
1700 case 0x00: /* TIPB_CNTL */
1701 return s->control;
1702 case 0x04: /* TIPB_BUS_ALLOC */
1703 return s->alloc;
1704 case 0x08: /* MPU_TIPB_CNTL */
1705 return s->buffer;
1706 case 0x0c: /* ENHANCED_TIPB_CNTL */
1707 return s->enh_control;
1708 case 0x10: /* ADDRESS_DBG */
1709 case 0x14: /* DATA_DEBUG_LOW */
1710 case 0x18: /* DATA_DEBUG_HIGH */
1711 return 0xffff;
1712 case 0x1c: /* DEBUG_CNTR_SIG */
1713 return 0x00f8;
1714 }
1715
1716 OMAP_BAD_REG(addr);
1717 return 0;
1718 }
1719
1720 static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1721 uint32_t value)
1722 {
1723 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1724 int offset = addr - s->base;
1725
1726 switch (offset) {
1727 case 0x00: /* TIPB_CNTL */
1728 s->control = value & 0xffff;
1729 break;
1730
1731 case 0x04: /* TIPB_BUS_ALLOC */
1732 s->alloc = value & 0x003f;
1733 break;
1734
1735 case 0x08: /* MPU_TIPB_CNTL */
1736 s->buffer = value & 0x0003;
1737 break;
1738
1739 case 0x0c: /* ENHANCED_TIPB_CNTL */
1740 s->width_intr = !(value & 2);
1741 s->enh_control = value & 0x000f;
1742 break;
1743
1744 case 0x10: /* ADDRESS_DBG */
1745 case 0x14: /* DATA_DEBUG_LOW */
1746 case 0x18: /* DATA_DEBUG_HIGH */
1747 case 0x1c: /* DEBUG_CNTR_SIG */
1748 OMAP_RO_REG(addr);
1749 break;
1750
1751 default:
1752 OMAP_BAD_REG(addr);
1753 }
1754 }
1755
1756 static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1757 omap_badwidth_read16,
1758 omap_tipb_bridge_read,
1759 omap_tipb_bridge_read,
1760 };
1761
1762 static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1763 omap_badwidth_write16,
1764 omap_tipb_bridge_write,
1765 omap_tipb_bridge_write,
1766 };
1767
1768 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1769 {
1770 s->control = 0xffff;
1771 s->alloc = 0x0009;
1772 s->buffer = 0x0000;
1773 s->enh_control = 0x000f;
1774 }
1775
1776 struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1777 qemu_irq abort_irq, omap_clk clk)
1778 {
1779 int iomemtype;
1780 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1781 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1782
1783 s->abort = abort_irq;
1784 s->base = base;
1785 omap_tipb_bridge_reset(s);
1786
1787 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1788 omap_tipb_bridge_writefn, s);
1789 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1790
1791 return s;
1792 }
1793
1794 /* Dummy Traffic Controller's Memory Interface */
1795 static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1796 {
1797 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1798 int offset = addr - s->tcmi_base;
1799 uint32_t ret;
1800
1801 switch (offset) {
1802 case 0x00: /* IMIF_PRIO */
1803 case 0x04: /* EMIFS_PRIO */
1804 case 0x08: /* EMIFF_PRIO */
1805 case 0x0c: /* EMIFS_CONFIG */
1806 case 0x10: /* EMIFS_CS0_CONFIG */
1807 case 0x14: /* EMIFS_CS1_CONFIG */
1808 case 0x18: /* EMIFS_CS2_CONFIG */
1809 case 0x1c: /* EMIFS_CS3_CONFIG */
1810 case 0x24: /* EMIFF_MRS */
1811 case 0x28: /* TIMEOUT1 */
1812 case 0x2c: /* TIMEOUT2 */
1813 case 0x30: /* TIMEOUT3 */
1814 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1815 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1816 return s->tcmi_regs[offset >> 2];
1817
1818 case 0x20: /* EMIFF_SDRAM_CONFIG */
1819 ret = s->tcmi_regs[offset >> 2];
1820 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1821 /* XXX: We can try using the VGA_DIRTY flag for this */
1822 return ret;
1823 }
1824
1825 OMAP_BAD_REG(addr);
1826 return 0;
1827 }
1828
1829 static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1830 uint32_t value)
1831 {
1832 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1833 int offset = addr - s->tcmi_base;
1834
1835 switch (offset) {
1836 case 0x00: /* IMIF_PRIO */
1837 case 0x04: /* EMIFS_PRIO */
1838 case 0x08: /* EMIFF_PRIO */
1839 case 0x10: /* EMIFS_CS0_CONFIG */
1840 case 0x14: /* EMIFS_CS1_CONFIG */
1841 case 0x18: /* EMIFS_CS2_CONFIG */
1842 case 0x1c: /* EMIFS_CS3_CONFIG */
1843 case 0x20: /* EMIFF_SDRAM_CONFIG */
1844 case 0x24: /* EMIFF_MRS */
1845 case 0x28: /* TIMEOUT1 */
1846 case 0x2c: /* TIMEOUT2 */
1847 case 0x30: /* TIMEOUT3 */
1848 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1849 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1850 s->tcmi_regs[offset >> 2] = value;
1851 break;
1852 case 0x0c: /* EMIFS_CONFIG */
1853 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
1854 break;
1855
1856 default:
1857 OMAP_BAD_REG(addr);
1858 }
1859 }
1860
1861 static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1862 omap_badwidth_read32,
1863 omap_badwidth_read32,
1864 omap_tcmi_read,
1865 };
1866
1867 static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1868 omap_badwidth_write32,
1869 omap_badwidth_write32,
1870 omap_tcmi_write,
1871 };
1872
1873 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1874 {
1875 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1876 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1877 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1878 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1879 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1880 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1881 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1882 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1883 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1884 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1885 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1886 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1887 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1888 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1889 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1890 }
1891
1892 static void omap_tcmi_init(target_phys_addr_t base,
1893 struct omap_mpu_state_s *mpu)
1894 {
1895 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1896 omap_tcmi_writefn, mpu);
1897
1898 mpu->tcmi_base = base;
1899 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
1900 omap_tcmi_reset(mpu);
1901 }
1902
1903 /* Digital phase-locked loops control */
1904 static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1905 {
1906 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1907 int offset = addr - s->base;
1908
1909 if (offset == 0x00) /* CTL_REG */
1910 return s->mode;
1911
1912 OMAP_BAD_REG(addr);
1913 return 0;
1914 }
1915
1916 static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1917 uint32_t value)
1918 {
1919 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1920 uint16_t diff;
1921 int offset = addr - s->base;
1922 static const int bypass_div[4] = { 1, 2, 4, 4 };
1923 int div, mult;
1924
1925 if (offset == 0x00) { /* CTL_REG */
1926 /* See omap_ulpd_pm_write() too */
1927 diff = s->mode & value;
1928 s->mode = value & 0x2fff;
1929 if (diff & (0x3ff << 2)) {
1930 if (value & (1 << 4)) { /* PLL_ENABLE */
1931 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1932 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1933 } else {
1934 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1935 mult = 1;
1936 }
1937 omap_clk_setrate(s->dpll, div, mult);
1938 }
1939
1940 /* Enter the desired mode. */
1941 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1942
1943 /* Act as if the lock is restored. */
1944 s->mode |= 2;
1945 } else {
1946 OMAP_BAD_REG(addr);
1947 }
1948 }
1949
1950 static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1951 omap_badwidth_read16,
1952 omap_dpll_read,
1953 omap_badwidth_read16,
1954 };
1955
1956 static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1957 omap_badwidth_write16,
1958 omap_dpll_write,
1959 omap_badwidth_write16,
1960 };
1961
1962 static void omap_dpll_reset(struct dpll_ctl_s *s)
1963 {
1964 s->mode = 0x2002;
1965 omap_clk_setrate(s->dpll, 1, 1);
1966 }
1967
1968 static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1969 omap_clk clk)
1970 {
1971 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1972 omap_dpll_writefn, s);
1973
1974 s->base = base;
1975 s->dpll = clk;
1976 omap_dpll_reset(s);
1977
1978 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1979 }
1980
1981 /* UARTs */
1982 struct omap_uart_s {
1983 SerialState *serial; /* TODO */
1984 struct omap_target_agent_s *ta;
1985 target_phys_addr_t base;
1986 omap_clk fclk;
1987 qemu_irq irq;
1988
1989 uint8_t eblr;
1990 uint8_t syscontrol;
1991 uint8_t wkup;
1992 uint8_t cfps;
1993 uint8_t mdr[2];
1994 uint8_t scr;
1995 };
1996
1997 void omap_uart_reset(struct omap_uart_s *s)
1998 {
1999 s->eblr = 0x00;
2000 s->syscontrol = 0;
2001 s->wkup = 0x3f;
2002 s->cfps = 0x69;
2003 }
2004
2005 struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2006 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2007 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2008 {
2009 struct omap_uart_s *s = (struct omap_uart_s *)
2010 qemu_mallocz(sizeof(struct omap_uart_s));
2011
2012 s->base = base;
2013 s->fclk = fclk;
2014 s->irq = irq;
2015 s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
2016 chr ?: qemu_chr_open("null"), 1);
2017
2018 return s;
2019 }
2020
2021 static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
2022 {
2023 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2024 int offset = addr - s->base;
2025
2026 switch (offset) {
2027 case 0x20: /* MDR1 */
2028 return s->mdr[0];
2029 case 0x24: /* MDR2 */
2030 return s->mdr[1];
2031 case 0x40: /* SCR */
2032 return s->scr;
2033 case 0x44: /* SSR */
2034 return 0x0;
2035 case 0x48: /* EBLR */
2036 return s->eblr;
2037 case 0x50: /* MVR */
2038 return 0x30;
2039 case 0x54: /* SYSC */
2040 return s->syscontrol;
2041 case 0x58: /* SYSS */
2042 return 1;
2043 case 0x5c: /* WER */
2044 return s->wkup;
2045 case 0x60: /* CFPS */
2046 return s->cfps;
2047 }
2048
2049 OMAP_BAD_REG(addr);
2050 return 0;
2051 }
2052
2053 static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2054 uint32_t value)
2055 {
2056 struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2057 int offset = addr - s->base;
2058
2059 switch (offset) {
2060 case 0x20: /* MDR1 */
2061 s->mdr[0] = value & 0x7f;
2062 break;
2063 case 0x24: /* MDR2 */
2064 s->mdr[1] = value & 0xff;
2065 break;
2066 case 0x40: /* SCR */
2067 s->scr = value & 0xff;
2068 break;
2069 case 0x48: /* EBLR */
2070 s->eblr = value & 0xff;
2071 break;
2072 case 0x44: /* SSR */
2073 case 0x50: /* MVR */
2074 case 0x58: /* SYSS */
2075 OMAP_RO_REG(addr);
2076 break;
2077 case 0x54: /* SYSC */
2078 s->syscontrol = value & 0x1d;
2079 if (value & 2)
2080 omap_uart_reset(s);
2081 break;
2082 case 0x5c: /* WER */
2083 s->wkup = value & 0x7f;
2084 break;
2085 case 0x60: /* CFPS */
2086 s->cfps = value & 0xff;
2087 break;
2088 default:
2089 OMAP_BAD_REG(addr);
2090 }
2091 }
2092
2093 static CPUReadMemoryFunc *omap_uart_readfn[] = {
2094 omap_uart_read,
2095 omap_uart_read,
2096 omap_badwidth_read8,
2097 };
2098
2099 static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2100 omap_uart_write,
2101 omap_uart_write,
2102 omap_badwidth_write8,
2103 };
2104
2105 struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2106 qemu_irq irq, omap_clk fclk, omap_clk iclk,
2107 qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2108 {
2109 target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2110 struct omap_uart_s *s = omap_uart_init(base, irq,
2111 fclk, iclk, txdma, rxdma, chr);
2112 int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2113 omap_uart_writefn, s);
2114
2115 s->ta = ta;
2116
2117 cpu_register_physical_memory(s->base + 0x20, 0x100, iomemtype);
2118
2119 return s;
2120 }
2121
2122 void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2123 {
2124 /* TODO: Should reuse or destroy current s->serial */
2125 s->serial = serial_mm_init(s->base, 2, s->irq,
2126 omap_clk_getrate(s->fclk) / 16,
2127 chr ?: qemu_chr_open("null"), 1);
2128 }
2129
2130 /* MPU Clock/Reset/Power Mode Control */
2131 static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2132 {
2133 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2134 int offset = addr - s->clkm.mpu_base;
2135
2136 switch (offset) {
2137 case 0x00: /* ARM_CKCTL */
2138 return s->clkm.arm_ckctl;
2139
2140 case 0x04: /* ARM_IDLECT1 */
2141 return s->clkm.arm_idlect1;
2142
2143 case 0x08: /* ARM_IDLECT2 */
2144 return s->clkm.arm_idlect2;
2145
2146 case 0x0c: /* ARM_EWUPCT */
2147 return s->clkm.arm_ewupct;
2148
2149 case 0x10: /* ARM_RSTCT1 */
2150 return s->clkm.arm_rstct1;
2151
2152 case 0x14: /* ARM_RSTCT2 */
2153 return s->clkm.arm_rstct2;
2154
2155 case 0x18: /* ARM_SYSST */
2156 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2157
2158 case 0x1c: /* ARM_CKOUT1 */
2159 return s->clkm.arm_ckout1;
2160
2161 case 0x20: /* ARM_CKOUT2 */
2162 break;
2163 }
2164
2165 OMAP_BAD_REG(addr);
2166 return 0;
2167 }
2168
2169 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2170 uint16_t diff, uint16_t value)
2171 {
2172 omap_clk clk;
2173
2174 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2175 if (value & (1 << 14))
2176 /* Reserved */;
2177 else {
2178 clk = omap_findclk(s, "arminth_ck");
2179 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2180 }
2181 }
2182 if (diff & (1 << 12)) { /* ARM_TIMXO */
2183 clk = omap_findclk(s, "armtim_ck");
2184 if (value & (1 << 12))
2185 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2186 else
2187 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2188 }
2189 /* XXX: en_dspck */
2190 if (diff & (3 << 10)) { /* DSPMMUDIV */
2191 clk = omap_findclk(s, "dspmmu_ck");
2192 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2193 }
2194 if (diff & (3 << 8)) { /* TCDIV */
2195 clk = omap_findclk(s, "tc_ck");
2196 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2197 }
2198 if (diff & (3 << 6)) { /* DSPDIV */
2199 clk = omap_findclk(s, "dsp_ck");
2200 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2201 }
2202 if (diff & (3 << 4)) { /* ARMDIV */
2203 clk = omap_findclk(s, "arm_ck");
2204 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2205 }
2206 if (diff & (3 << 2)) { /* LCDDIV */
2207 clk = omap_findclk(s, "lcd_ck");
2208 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2209 }
2210 if (diff & (3 << 0)) { /* PERDIV */
2211 clk = omap_findclk(s, "armper_ck");
2212 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2213 }
2214 }
2215
2216 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2217 uint16_t diff, uint16_t value)
2218 {
2219 omap_clk clk;
2220
2221 if (value & (1 << 11)) /* SETARM_IDLE */
2222 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2223 if (!(value & (1 << 10))) /* WKUP_MODE */
2224 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2225
2226 #define SET_CANIDLE(clock, bit) \
2227 if (diff & (1 << bit)) { \
2228 clk = omap_findclk(s, clock); \
2229 omap_clk_canidle(clk, (value >> bit) & 1); \
2230 }
2231 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2232 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2233 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2234 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2235 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2236 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2237 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2238 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2239 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2240 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2241 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2242 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2243 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2244 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2245 }
2246
2247 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2248 uint16_t diff, uint16_t value)
2249 {
2250 omap_clk clk;
2251
2252 #define SET_ONOFF(clock, bit) \
2253 if (diff & (1 << bit)) { \
2254 clk = omap_findclk(s, clock); \
2255 omap_clk_onoff(clk, (value >> bit) & 1); \
2256 }
2257 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2258 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2259 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2260 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2261 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2262 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2263 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2264 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2265 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2266 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2267 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2268 }
2269
2270 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2271 uint16_t diff, uint16_t value)
2272 {
2273 omap_clk clk;
2274
2275 if (diff & (3 << 4)) { /* TCLKOUT */
2276 clk = omap_findclk(s, "tclk_out");
2277 switch ((value >> 4) & 3) {
2278 case 1:
2279 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2280 omap_clk_onoff(clk, 1);
2281 break;
2282 case 2:
2283 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2284 omap_clk_onoff(clk, 1);
2285 break;
2286 default:
2287 omap_clk_onoff(clk, 0);
2288 }
2289 }
2290 if (diff & (3 << 2)) { /* DCLKOUT */
2291 clk = omap_findclk(s, "dclk_out");
2292 switch ((value >> 2) & 3) {
2293 case 0:
2294 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2295 break;
2296 case 1:
2297 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2298 break;
2299 case 2:
2300 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2301 break;
2302 case 3:
2303 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2304 break;
2305 }
2306 }
2307 if (diff & (3 << 0)) { /* ACLKOUT */
2308 clk = omap_findclk(s, "aclk_out");
2309 switch ((value >> 0) & 3) {
2310 case 1:
2311 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2312 omap_clk_onoff(clk, 1);
2313 break;
2314 case 2:
2315 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2316 omap_clk_onoff(clk, 1);
2317 break;
2318 case 3:
2319 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2320 omap_clk_onoff(clk, 1);
2321 break;
2322 default:
2323 omap_clk_onoff(clk, 0);
2324 }
2325 }
2326 }
2327
2328 static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2329 uint32_t value)
2330 {
2331 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2332 int offset = addr - s->clkm.mpu_base;
2333 uint16_t diff;
2334 omap_clk clk;
2335 static const char *clkschemename[8] = {
2336 "fully synchronous", "fully asynchronous", "synchronous scalable",
2337 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2338 };
2339
2340 switch (offset) {
2341 case 0x00: /* ARM_CKCTL */
2342 diff = s->clkm.arm_ckctl ^ value;
2343 s->clkm.arm_ckctl = value & 0x7fff;
2344 omap_clkm_ckctl_update(s, diff, value);
2345 return;
2346
2347 case 0x04: /* ARM_IDLECT1 */
2348 diff = s->clkm.arm_idlect1 ^ value;
2349 s->clkm.arm_idlect1 = value & 0x0fff;
2350 omap_clkm_idlect1_update(s, diff, value);
2351 return;
2352
2353 case 0x08: /* ARM_IDLECT2 */
2354 diff = s->clkm.arm_idlect2 ^ value;
2355 s->clkm.arm_idlect2 = value & 0x07ff;
2356 omap_clkm_idlect2_update(s, diff, value);
2357 return;
2358
2359 case 0x0c: /* ARM_EWUPCT */
2360 diff = s->clkm.arm_ewupct ^ value;
2361 s->clkm.arm_ewupct = value & 0x003f;
2362 return;
2363
2364 case 0x10: /* ARM_RSTCT1 */
2365 diff = s->clkm.arm_rstct1 ^ value;
2366 s->clkm.arm_rstct1 = value & 0x0007;
2367 if (value & 9) {
2368 qemu_system_reset_request();
2369 s->clkm.cold_start = 0xa;
2370 }
2371 if (diff & ~value & 4) { /* DSP_RST */
2372 omap_mpui_reset(s);
2373 omap_tipb_bridge_reset(s->private_tipb);
2374 omap_tipb_bridge_reset(s->public_tipb);
2375 }
2376 if (diff & 2) { /* DSP_EN */
2377 clk = omap_findclk(s, "dsp_ck");
2378 omap_clk_canidle(clk, (~value >> 1) & 1);
2379 }
2380 return;
2381
2382 case 0x14: /* ARM_RSTCT2 */
2383 s->clkm.arm_rstct2 = value & 0x0001;
2384 return;
2385
2386 case 0x18: /* ARM_SYSST */
2387 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2388 s->clkm.clocking_scheme = (value >> 11) & 7;
2389 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2390 clkschemename[s->clkm.clocking_scheme]);
2391 }
2392 s->clkm.cold_start &= value & 0x3f;
2393 return;
2394
2395 case 0x1c: /* ARM_CKOUT1 */
2396 diff = s->clkm.arm_ckout1 ^ value;
2397 s->clkm.arm_ckout1 = value & 0x003f;
2398 omap_clkm_ckout1_update(s, diff, value);
2399 return;
2400
2401 case 0x20: /* ARM_CKOUT2 */
2402 default:
2403 OMAP_BAD_REG(addr);
2404 }
2405 }
2406
2407 static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2408 omap_badwidth_read16,
2409 omap_clkm_read,
2410 omap_badwidth_read16,
2411 };
2412
2413 static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2414 omap_badwidth_write16,
2415 omap_clkm_write,
2416 omap_badwidth_write16,
2417 };
2418
2419 static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2420 {
2421 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2422 int offset = addr - s->clkm.dsp_base;
2423
2424 switch (offset) {
2425 case 0x04: /* DSP_IDLECT1 */
2426 return s->clkm.dsp_idlect1;
2427
2428 case 0x08: /* DSP_IDLECT2 */
2429 return s->clkm.dsp_idlect2;
2430
2431 case 0x14: /* DSP_RSTCT2 */
2432 return s->clkm.dsp_rstct2;
2433
2434 case 0x18: /* DSP_SYSST */
2435 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2436 (s->env->halted << 6); /* Quite useless... */
2437 }
2438
2439 OMAP_BAD_REG(addr);
2440 return 0;
2441 }
2442
2443 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2444 uint16_t diff, uint16_t value)
2445 {
2446 omap_clk clk;
2447
2448 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2449 }
2450
2451 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2452 uint16_t diff, uint16_t value)
2453 {
2454 omap_clk clk;
2455
2456 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2457 }
2458
2459 static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2460 uint32_t value)
2461 {
2462 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2463 int offset = addr - s->clkm.dsp_base;
2464 uint16_t diff;
2465
2466 switch (offset) {
2467 case 0x04: /* DSP_IDLECT1 */
2468 diff = s->clkm.dsp_idlect1 ^ value;
2469 s->clkm.dsp_idlect1 = value & 0x01f7;
2470 omap_clkdsp_idlect1_update(s, diff, value);
2471 break;
2472
2473 case 0x08: /* DSP_IDLECT2 */
2474 s->clkm.dsp_idlect2 = value & 0x0037;
2475 diff = s->clkm.dsp_idlect1 ^ value;
2476 omap_clkdsp_idlect2_update(s, diff, value);
2477 break;
2478
2479 case 0x14: /* DSP_RSTCT2 */
2480 s->clkm.dsp_rstct2 = value & 0x0001;
2481 break;
2482
2483 case 0x18: /* DSP_SYSST */
2484 s->clkm.cold_start &= value & 0x3f;
2485 break;
2486
2487 default:
2488 OMAP_BAD_REG(addr);
2489 }
2490 }
2491
2492 static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2493 omap_badwidth_read16,
2494 omap_clkdsp_read,
2495 omap_badwidth_read16,
2496 };
2497
2498 static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2499 omap_badwidth_write16,
2500 omap_clkdsp_write,
2501 omap_badwidth_write16,
2502 };
2503
2504 static void omap_clkm_reset(struct omap_mpu_state_s *s)
2505 {
2506 if (s->wdt && s->wdt->reset)
2507 s->clkm.cold_start = 0x6;
2508 s->clkm.clocking_scheme = 0;
2509 omap_clkm_ckctl_update(s, ~0, 0x3000);
2510 s->clkm.arm_ckctl = 0x3000;
2511 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2512 s->clkm.arm_idlect1 = 0x0400;
2513 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2514 s->clkm.arm_idlect2 = 0x0100;
2515 s->clkm.arm_ewupct = 0x003f;
2516 s->clkm.arm_rstct1 = 0x0000;
2517 s->clkm.arm_rstct2 = 0x0000;
2518 s->clkm.arm_ckout1 = 0x0015;
2519 s->clkm.dpll1_mode = 0x2002;
2520 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2521 s->clkm.dsp_idlect1 = 0x0040;
2522 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2523 s->clkm.dsp_idlect2 = 0x0000;
2524 s->clkm.dsp_rstct2 = 0x0000;
2525 }
2526
2527 static void omap_clkm_init(target_phys_addr_t mpu_base,
2528 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2529 {
2530 int iomemtype[2] = {
2531 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2532 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2533 };
2534
2535 s->clkm.mpu_base = mpu_base;
2536 s->clkm.dsp_base = dsp_base;
2537 s->clkm.arm_idlect1 = 0x03ff;
2538 s->clkm.arm_idlect2 = 0x0100;
2539 s->clkm.dsp_idlect1 = 0x0002;
2540 omap_clkm_reset(s);
2541 s->clkm.cold_start = 0x3a;
2542
2543 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2544 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2545 }
2546
2547 /* MPU I/O */
2548 struct omap_mpuio_s {
2549 target_phys_addr_t base;
2550 qemu_irq irq;
2551 qemu_irq kbd_irq;
2552 qemu_irq *in;
2553 qemu_irq handler[16];
2554 qemu_irq wakeup;
2555
2556 uint16_t inputs;
2557 uint16_t outputs;
2558 uint16_t dir;
2559 uint16_t edge;
2560 uint16_t mask;
2561 uint16_t ints;
2562
2563 uint16_t debounce;
2564 uint16_t latch;
2565 uint8_t event;
2566
2567 uint8_t buttons[5];
2568 uint8_t row_latch;
2569 uint8_t cols;
2570 int kbd_mask;
2571 int clk;
2572 };
2573
2574 static void omap_mpuio_set(void *opaque, int line, int level)
2575 {
2576 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2577 uint16_t prev = s->inputs;
2578
2579 if (level)
2580 s->inputs |= 1 << line;
2581 else
2582 s->inputs &= ~(1 << line);
2583
2584 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2585 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2586 s->ints |= 1 << line;
2587 qemu_irq_raise(s->irq);
2588 /* TODO: wakeup */
2589 }
2590 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2591 (s->event >> 1) == line) /* PIN_SELECT */
2592 s->latch = s->inputs;
2593 }
2594 }
2595
2596 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2597 {
2598 int i;
2599 uint8_t *row, rows = 0, cols = ~s->cols;
2600
2601 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2602 if (*row & cols)
2603 rows |= i;
2604
2605 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2606 s->row_latch = ~rows;
2607 }
2608
2609 static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2610 {
2611 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2612 int offset = addr & OMAP_MPUI_REG_MASK;
2613 uint16_t ret;
2614
2615 switch (offset) {
2616 case 0x00: /* INPUT_LATCH */
2617 return s->inputs;
2618
2619 case 0x04: /* OUTPUT_REG */
2620 return s->outputs;
2621
2622 case 0x08: /* IO_CNTL */
2623 return s->dir;
2624
2625 case 0x10: /* KBR_LATCH */
2626 return s->row_latch;
2627
2628 case 0x14: /* KBC_REG */
2629 return s->cols;
2630
2631 case 0x18: /* GPIO_EVENT_MODE_REG */
2632 return s->event;
2633
2634 case 0x1c: /* GPIO_INT_EDGE_REG */
2635 return s->edge;
2636
2637 case 0x20: /* KBD_INT */
2638 return (~s->row_latch & 0x1f) && !s->kbd_mask;
2639
2640 case 0x24: /* GPIO_INT */
2641 ret = s->ints;
2642 s->ints &= s->mask;
2643 if (ret)
2644 qemu_irq_lower(s->irq);
2645 return ret;
2646
2647 case 0x28: /* KBD_MASKIT */
2648 return s->kbd_mask;
2649
2650 case 0x2c: /* GPIO_MASKIT */
2651 return s->mask;
2652
2653 case 0x30: /* GPIO_DEBOUNCING_REG */
2654 return s->debounce;
2655
2656 case 0x34: /* GPIO_LATCH_REG */
2657 return s->latch;
2658 }
2659
2660 OMAP_BAD_REG(addr);
2661 return 0;
2662 }
2663
2664 static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2665 uint32_t value)
2666 {
2667 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2668 int offset = addr & OMAP_MPUI_REG_MASK;
2669 uint16_t diff;
2670 int ln;
2671
2672 switch (offset) {
2673 case 0x04: /* OUTPUT_REG */
2674 diff = (s->outputs ^ value) & ~s->dir;
2675 s->outputs = value;
2676 while ((ln = ffs(diff))) {
2677 ln --;
2678 if (s->handler[ln])
2679 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2680 diff &= ~(1 << ln);
2681 }
2682 break;
2683
2684 case 0x08: /* IO_CNTL */
2685 diff = s->outputs & (s->dir ^ value);
2686 s->dir = value;
2687
2688 value = s->outputs & ~s->dir;
2689 while ((ln = ffs(diff))) {
2690 ln --;
2691 if (s->handler[ln])
2692 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2693 diff &= ~(1 << ln);
2694 }
2695 break;
2696
2697 case 0x14: /* KBC_REG */
2698 s->cols = value;
2699 omap_mpuio_kbd_update(s);
2700 break;
2701
2702 case 0x18: /* GPIO_EVENT_MODE_REG */
2703 s->event = value & 0x1f;
2704 break;
2705
2706 case 0x1c: /* GPIO_INT_EDGE_REG */
2707 s->edge = value;
2708 break;
2709
2710 case 0x28: /* KBD_MASKIT */
2711 s->kbd_mask = value & 1;
2712 omap_mpuio_kbd_update(s);
2713 break;
2714
2715 case 0x2c: /* GPIO_MASKIT */
2716 s->mask = value;
2717 break;
2718
2719 case 0x30: /* GPIO_DEBOUNCING_REG */
2720 s->debounce = value & 0x1ff;
2721 break;
2722
2723 case 0x00: /* INPUT_LATCH */
2724 case 0x10: /* KBR_LATCH */
2725 case 0x20: /* KBD_INT */
2726 case 0x24: /* GPIO_INT */
2727 case 0x34: /* GPIO_LATCH_REG */
2728 OMAP_RO_REG(addr);
2729 return;
2730
2731 default:
2732 OMAP_BAD_REG(addr);
2733 return;
2734 }
2735 }
2736
2737 static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2738 omap_badwidth_read16,
2739 omap_mpuio_read,
2740 omap_badwidth_read16,
2741 };
2742
2743 static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2744 omap_badwidth_write16,
2745 omap_mpuio_write,
2746 omap_badwidth_write16,
2747 };
2748
2749 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2750 {
2751 s->inputs = 0;
2752 s->outputs = 0;
2753 s->dir = ~0;
2754 s->event = 0;
2755 s->edge = 0;
2756 s->kbd_mask = 0;
2757 s->mask = 0;
2758 s->debounce = 0;
2759 s->latch = 0;
2760 s->ints = 0;
2761 s->row_latch = 0x1f;
2762 s->clk = 1;
2763 }
2764
2765 static void omap_mpuio_onoff(void *opaque, int line, int on)
2766 {
2767 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2768
2769 s->clk = on;
2770 if (on)
2771 omap_mpuio_kbd_update(s);
2772 }
2773
2774 struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2775 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2776 omap_clk clk)
2777 {
2778 int iomemtype;
2779 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2780 qemu_mallocz(sizeof(struct omap_mpuio_s));
2781
2782 s->base = base;
2783 s->irq = gpio_int;
2784 s->kbd_irq = kbd_int;
2785 s->wakeup = wakeup;
2786 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2787 omap_mpuio_reset(s);
2788
2789 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2790 omap_mpuio_writefn, s);
2791 cpu_register_physical_memory(s->base, 0x800, iomemtype);
2792
2793 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2794
2795 return s;
2796 }
2797
2798 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2799 {
2800 return s->in;
2801 }
2802
2803 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2804 {
2805 if (line >= 16 || line < 0)
2806 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2807 s->handler[line] = handler;
2808 }
2809
2810 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2811 {
2812 if (row >= 5 || row < 0)
2813 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2814 __FUNCTION__, col, row);
2815
2816 if (down)
2817 s->buttons[row] |= 1 << col;
2818 else
2819 s->buttons[row] &= ~(1 << col);
2820
2821 omap_mpuio_kbd_update(s);
2822 }
2823
2824 /* General-Purpose I/O */
2825 struct omap_gpio_s {
2826 target_phys_addr_t base;
2827 qemu_irq irq;
2828 qemu_irq *in;
2829 qemu_irq handler[16];
2830
2831 uint16_t inputs;
2832 uint16_t outputs;
2833 uint16_t dir;
2834 uint16_t edge;
2835 uint16_t mask;
2836 uint16_t ints;
2837 uint16_t pins;
2838 };
2839
2840 static void omap_gpio_set(void *opaque, int line, int level)
2841 {
2842 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2843 uint16_t prev = s->inputs;
2844
2845 if (level)
2846 s->inputs |= 1 << line;
2847 else
2848 s->inputs &= ~(1 << line);
2849
2850 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2851 (1 << line) & s->dir & ~s->mask) {
2852 s->ints |= 1 << line;
2853 qemu_irq_raise(s->irq);
2854 }
2855 }
2856
2857 static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2858 {
2859 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2860 int offset = addr & OMAP_MPUI_REG_MASK;
2861
2862 switch (offset) {
2863 case 0x00: /* DATA_INPUT */
2864 return s->inputs & s->pins;
2865
2866 case 0x04: /* DATA_OUTPUT */
2867 return s->outputs;
2868
2869 case 0x08: /* DIRECTION_CONTROL */
2870 return s->dir;
2871
2872 case 0x0c: /* INTERRUPT_CONTROL */
2873 return s->edge;
2874
2875 case 0x10: /* INTERRUPT_MASK */
2876 return s->mask;
2877
2878 case 0x14: /* INTERRUPT_STATUS */
2879 return s->ints;
2880
2881 case 0x18: /* PIN_CONTROL (not in OMAP310) */
2882 OMAP_BAD_REG(addr);
2883 return s->pins;
2884 }
2885
2886 OMAP_BAD_REG(addr);
2887 return 0;
2888 }
2889
2890 static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2891 uint32_t value)
2892 {
2893 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2894 int offset = addr & OMAP_MPUI_REG_MASK;
2895 uint16_t diff;
2896 int ln;
2897
2898 switch (offset) {
2899 case 0x00: /* DATA_INPUT */
2900 OMAP_RO_REG(addr);
2901 return;
2902
2903 case 0x04: /* DATA_OUTPUT */
2904 diff = (s->outputs ^ value) & ~s->dir;
2905 s->outputs = value;
2906 while ((ln = ffs(diff))) {
2907 ln --;
2908 if (s->handler[ln])
2909 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2910 diff &= ~(1 << ln);
2911 }
2912 break;
2913
2914 case 0x08: /* DIRECTION_CONTROL */
2915 diff = s->outputs & (s->dir ^ value);
2916 s->dir = value;
2917
2918 value = s->outputs & ~s->dir;
2919 while ((ln = ffs(diff))) {
2920 ln --;
2921 if (s->handler[ln])
2922 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2923 diff &= ~(1 << ln);
2924 }
2925 break;
2926
2927 case 0x0c: /* INTERRUPT_CONTROL */
2928 s->edge = value;
2929 break;
2930
2931 case 0x10: /* INTERRUPT_MASK */
2932 s->mask = value;
2933 break;
2934
2935 case 0x14: /* INTERRUPT_STATUS */
2936 s->ints &= ~value;
2937 if (!s->ints)
2938 qemu_irq_lower(s->irq);
2939 break;
2940
2941 case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
2942 OMAP_BAD_REG(addr);
2943 s->pins = value;
2944 break;
2945
2946 default:
2947 OMAP_BAD_REG(addr);
2948 return;
2949 }
2950 }
2951
2952 /* *Some* sources say the memory region is 32-bit. */
2953 static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2954 omap_badwidth_read16,
2955 omap_gpio_read,
2956 omap_badwidth_read16,
2957 };
2958
2959 static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2960 omap_badwidth_write16,
2961 omap_gpio_write,
2962 omap_badwidth_write16,
2963 };
2964
2965 static void omap_gpio_reset(struct omap_gpio_s *s)
2966 {
2967 s->inputs = 0;
2968 s->outputs = ~0;
2969 s->dir = ~0;
2970 s->edge = ~0;
2971 s->mask = ~0;
2972 s->ints = 0;
2973 s->pins = ~0;
2974 }
2975
2976 struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2977 qemu_irq irq, omap_clk clk)
2978 {
2979 int iomemtype;
2980 struct omap_gpio_s *s = (struct omap_gpio_s *)
2981 qemu_mallocz(sizeof(struct omap_gpio_s));
2982
2983 s->base = base;
2984 s->irq = irq;
2985 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2986 omap_gpio_reset(s);
2987
2988 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2989 omap_gpio_writefn, s);
2990 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2991
2992 return s;
2993 }
2994
2995 qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2996 {
2997 return s->in;
2998 }
2999
3000 void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3001 {
3002 if (line >= 16 || line < 0)
3003 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3004 s->handler[line] = handler;
3005 }
3006
3007 /* MicroWire Interface */
3008 struct omap_uwire_s {
3009 target_phys_addr_t base;
3010 qemu_irq txirq;
3011 qemu_irq rxirq;
3012 qemu_irq txdrq;
3013
3014 uint16_t txbuf;
3015 uint16_t rxbuf;
3016 uint16_t control;
3017 uint16_t setup[5];
3018
3019 struct uwire_slave_s *chip[4];
3020 };
3021
3022 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3023 {
3024 int chipselect = (s->control >> 10) & 3; /* INDEX */
3025 struct uwire_slave_s *slave = s->chip[chipselect];
3026
3027 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3028 if (s->control & (1 << 12)) /* CS_CMD */
3029 if (slave && slave->send)
3030 slave->send(slave->opaque,
3031 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3032 s->control &= ~(1 << 14); /* CSRB */
3033 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3034 * a DRQ. When is the level IRQ supposed to be reset? */
3035 }
3036
3037 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3038 if (s->control & (1 << 12)) /* CS_CMD */
3039 if (slave && slave->receive)
3040 s->rxbuf = slave->receive(slave->opaque);
3041 s->control |= 1 << 15; /* RDRB */
3042 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3043 * a DRQ. When is the level IRQ supposed to be reset? */
3044 }
3045 }
3046
3047 static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3048 {
3049 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3050 int offset = addr & OMAP_MPUI_REG_MASK;
3051
3052 switch (offset) {
3053 case 0x00: /* RDR */
3054 s->control &= ~(1 << 15); /* RDRB */
3055 return s->rxbuf;
3056
3057 case 0x04: /* CSR */
3058 return s->control;
3059
3060 case 0x08: /* SR1 */
3061 return s->setup[0];
3062 case 0x0c: /* SR2 */
3063 return s->setup[1];
3064 case 0x10: /* SR3 */
3065 return s->setup[2];
3066 case 0x14: /* SR4 */
3067 return s->setup[3];
3068 case 0x18: /* SR5 */
3069 return s->setup[4];
3070 }
3071
3072 OMAP_BAD_REG(addr);
3073 return 0;
3074 }
3075
3076 static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3077 uint32_t value)
3078 {
3079 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3080 int offset = addr & OMAP_MPUI_REG_MASK;
3081
3082 switch (offset) {
3083 case 0x00: /* TDR */
3084 s->txbuf = value; /* TD */
3085 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3086 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3087 (s->control & (1 << 12)))) { /* CS_CMD */
3088 s->control |= 1 << 14; /* CSRB */
3089 omap_uwire_transfer_start(s);
3090 }
3091 break;
3092
3093 case 0x04: /* CSR */
3094 s->control = value & 0x1fff;
3095 if (value & (1 << 13)) /* START */
3096 omap_uwire_transfer_start(s);
3097 break;
3098
3099 case 0x08: /* SR1 */
3100 s->setup[0] = value & 0x003f;
3101 break;
3102
3103 case 0x0c: /* SR2 */
3104 s->setup[1] = value & 0x0fc0;
3105 break;
3106
3107 case 0x10: /* SR3 */
3108 s->setup[2] = value & 0x0003;
3109 break;
3110
3111 case 0x14: /* SR4 */
3112 s->setup[3] = value & 0x0001;
3113 break;
3114
3115 case 0x18: /* SR5 */
3116 s->setup[4] = value & 0x000f;
3117 break;
3118
3119 default:
3120 OMAP_BAD_REG(addr);
3121 return;
3122 }
3123 }
3124
3125 static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3126 omap_badwidth_read16,
3127 omap_uwire_read,
3128 omap_badwidth_read16,
3129 };
3130
3131 static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3132 omap_badwidth_write16,
3133 omap_uwire_write,
3134 omap_badwidth_write16,
3135 };
3136
3137 static void omap_uwire_reset(struct omap_uwire_s *s)
3138 {
3139 s->control = 0;
3140 s->setup[0] = 0;
3141 s->setup[1] = 0;
3142 s->setup[2] = 0;
3143 s->setup[3] = 0;
3144 s->setup[4] = 0;
3145 }
3146
3147 struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3148 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3149 {
3150 int iomemtype;
3151 struct omap_uwire_s *s = (struct omap_uwire_s *)
3152 qemu_mallocz(sizeof(struct omap_uwire_s));
3153
3154 s->base = base;
3155 s->txirq = irq[0];
3156 s->rxirq = irq[1];
3157 s->txdrq = dma;
3158 omap_uwire_reset(s);
3159
3160 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3161 omap_uwire_writefn, s);
3162 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3163
3164 return s;
3165 }
3166
3167 void omap_uwire_attach(struct omap_uwire_s *s,
3168 struct uwire_slave_s *slave, int chipselect)
3169 {
3170 if (chipselect < 0 || chipselect > 3) {
3171 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3172 exit(-1);
3173 }
3174
3175 s->chip[chipselect] = slave;
3176 }
3177
3178 /* Pseudonoise Pulse-Width Light Modulator */
3179 static void omap_pwl_update(struct omap_mpu_state_s *s)
3180 {
3181 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3182
3183 if (output != s->pwl.output) {
3184 s->pwl.output = output;
3185 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3186 }
3187 }
3188
3189 static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3190 {
3191 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3192 int offset = addr & OMAP_MPUI_REG_MASK;
3193
3194 switch (offset) {
3195 case 0x00: /* PWL_LEVEL */
3196 return s->pwl.level;
3197 case 0x04: /* PWL_CTRL */
3198 return s->pwl.enable;
3199 }
3200 OMAP_BAD_REG(addr);
3201 return 0;
3202 }
3203
3204 static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3205 uint32_t value)
3206 {
3207 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3208 int offset = addr & OMAP_MPUI_REG_MASK;
3209
3210 switch (offset) {
3211 case 0x00: /* PWL_LEVEL */
3212 s->pwl.level = value;
3213 omap_pwl_update(s);
3214 break;
3215 case 0x04: /* PWL_CTRL */
3216 s->pwl.enable = value & 1;
3217 omap_pwl_update(s);
3218 break;
3219 default:
3220 OMAP_BAD_REG(addr);
3221 return;
3222 }
3223 }
3224
3225 static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3226 omap_pwl_read,
3227 omap_badwidth_read8,
3228 omap_badwidth_read8,
3229 };
3230
3231 static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3232 omap_pwl_write,
3233 omap_badwidth_write8,
3234 omap_badwidth_write8,
3235 };
3236
3237 static void omap_pwl_reset(struct omap_mpu_state_s *s)
3238 {
3239 s->pwl.output = 0;
3240 s->pwl.level = 0;
3241 s->pwl.enable = 0;
3242 s->pwl.clk = 1;
3243 omap_pwl_update(s);
3244 }
3245
3246 static void omap_pwl_clk_update(void *opaque, int line, int on)
3247 {
3248 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3249
3250 s->pwl.clk = on;
3251 omap_pwl_update(s);
3252 }
3253
3254 static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3255 omap_clk clk)
3256 {
3257 int iomemtype;
3258
3259 omap_pwl_reset(s);
3260
3261 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3262 omap_pwl_writefn, s);
3263 cpu_register_physical_memory(base, 0x800, iomemtype);
3264
3265 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3266 }
3267
3268 /* Pulse-Width Tone module */
3269 static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3270 {
3271 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3272 int offset = addr & OMAP_MPUI_REG_MASK;
3273
3274 switch (offset) {
3275 case 0x00: /* FRC */
3276 return s->pwt.frc;
3277 case 0x04: /* VCR */
3278 return s->pwt.vrc;
3279 case 0x08: /* GCR */
3280 return s->pwt.gcr;
3281 }
3282 OMAP_BAD_REG(addr);
3283 return 0;
3284 }
3285
3286 static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3287 uint32_t value)
3288 {
3289 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3290 int offset = addr & OMAP_MPUI_REG_MASK;
3291
3292 switch (offset) {
3293 case 0x00: /* FRC */
3294 s->pwt.frc = value & 0x3f;
3295 break;
3296 case 0x04: /* VRC */
3297 if ((value ^ s->pwt.vrc) & 1) {
3298 if (value & 1)
3299 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3300 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3301 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3302 /* Pre-multiplexer divider */
3303 ((s->pwt.gcr & 2) ? 1 : 154) /
3304 /* Octave multiplexer */
3305 (2 << (value & 3)) *
3306 /* 101/107 divider */
3307 ((value & (1 << 2)) ? 101 : 107) *
3308 /* 49/55 divider */
3309 ((value & (1 << 3)) ? 49 : 55) *
3310 /* 50/63 divider */
3311 ((value & (1 << 4)) ? 50 : 63) *
3312 /* 80/127 divider */
3313 ((value & (1 << 5)) ? 80 : 127) /
3314 (107 * 55 * 63 * 127)));
3315 else
3316 printf("%s: silence!\n", __FUNCTION__);
3317 }
3318 s->pwt.vrc = value & 0x7f;
3319 break;
3320 case 0x08: /* GCR */
3321 s->pwt.gcr = value & 3;
3322 break;
3323 default:
3324 OMAP_BAD_REG(addr);
3325 return;
3326 }
3327 }
3328
3329 static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3330 omap_pwt_read,
3331 omap_badwidth_read8,
3332 omap_badwidth_read8,
3333 };
3334
3335 static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3336 omap_pwt_write,
3337 omap_badwidth_write8,
3338 omap_badwidth_write8,
3339 };
3340
3341 static void omap_pwt_reset(struct omap_mpu_state_s *s)
3342 {
3343 s->pwt.frc = 0;
3344 s->pwt.vrc = 0;
3345 s->pwt.gcr = 0;
3346 }
3347
3348 static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3349 omap_clk clk)
3350 {
3351 int iomemtype;
3352
3353 s->pwt.clk = clk;
3354 omap_pwt_reset(s);
3355
3356 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3357 omap_pwt_writefn, s);
3358 cpu_register_physical_memory(base, 0x800, iomemtype);
3359 }
3360
3361 /* Real-time Clock module */
3362 struct omap_rtc_s {
3363 target_phys_addr_t base;
3364 qemu_irq irq;
3365 qemu_irq alarm;
3366 QEMUTimer *clk;
3367
3368 uint8_t interrupts;
3369 uint8_t status;
3370 int16_t comp_reg;
3371 int running;
3372 int pm_am;
3373 int auto_comp;
3374 int round;
3375 struct tm alarm_tm;
3376 time_t alarm_ti;
3377
3378 struct tm current_tm;
3379 time_t ti;
3380 uint64_t tick;
3381 };
3382
3383 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3384 {
3385 /* s->alarm is level-triggered */
3386 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3387 }
3388
3389 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3390 {
3391 s->alarm_ti = mktime(&s->alarm_tm);
3392 if (s->alarm_ti == -1)
3393 printf("%s: conversion failed\n", __FUNCTION__);
3394 }
3395
3396 static inline uint8_t omap_rtc_bcd(int num)
3397 {
3398 return ((num / 10) << 4) | (num % 10);
3399 }
3400
3401 static inline int omap_rtc_bin(uint8_t num)
3402 {
3403 return (num & 15) + 10 * (num >> 4);
3404 }
3405
3406 static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3407 {
3408 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3409 int offset = addr & OMAP_MPUI_REG_MASK;
3410 uint8_t i;
3411
3412 switch (offset) {
3413 case 0x00: /* SECONDS_REG */
3414 return omap_rtc_bcd(s->current_tm.tm_sec);
3415
3416 case 0x04: /* MINUTES_REG */
3417 return omap_rtc_bcd(s->current_tm.tm_min);
3418
3419 case 0x08: /* HOURS_REG */
3420 if (s->pm_am)
3421 return ((s->current_tm.tm_hour > 11) << 7) |
3422 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3423 else
3424 return omap_rtc_bcd(s->current_tm.tm_hour);
3425
3426 case 0x0c: /* DAYS_REG */
3427 return omap_rtc_bcd(s->current_tm.tm_mday);
3428
3429 case 0x10: /* MONTHS_REG */
3430 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3431
3432 case 0x14: /* YEARS_REG */
3433 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3434
3435 case 0x18: /* WEEK_REG */
3436 return s->current_tm.tm_wday;
3437
3438 case 0x20: /* ALARM_SECONDS_REG */
3439 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3440
3441 case 0x24: /* ALARM_MINUTES_REG */
3442 return omap_rtc_bcd(s->alarm_tm.tm_min);
3443
3444 case 0x28: /* ALARM_HOURS_REG */
3445 if (s->pm_am)
3446 return ((s->alarm_tm.tm_hour > 11) << 7) |
3447 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3448 else
3449 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3450
3451 case 0x2c: /* ALARM_DAYS_REG */
3452 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3453
3454 case 0x30: /* ALARM_MONTHS_REG */
3455 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3456
3457 case 0x34: /* ALARM_YEARS_REG */
3458 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3459
3460 case 0x40: /* RTC_CTRL_REG */
3461 return (s->pm_am << 3) | (s->auto_comp << 2) |
3462 (s->round << 1) | s->running;
3463
3464 case 0x44: /* RTC_STATUS_REG */
3465 i = s->status;
3466 s->status &= ~0x3d;
3467 return i;
3468
3469 case 0x48: /* RTC_INTERRUPTS_REG */
3470 return s->interrupts;
3471
3472 case 0x4c: /* RTC_COMP_LSB_REG */
3473 return ((uint16_t) s->comp_reg) & 0xff;
3474
3475 case 0x50: /* RTC_COMP_MSB_REG */
3476 return ((uint16_t) s->comp_reg) >> 8;
3477 }
3478
3479 OMAP_BAD_REG(addr);
3480 return 0;
3481 }
3482
3483 static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3484 uint32_t value)
3485 {
3486 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3487 int offset = addr & OMAP_MPUI_REG_MASK;
3488 struct tm new_tm;
3489 time_t ti[2];
3490
3491 switch (offset) {
3492 case 0x00: /* SECONDS_REG */
3493 #ifdef ALMDEBUG
3494 printf("RTC SEC_REG <-- %02x\n", value);
3495 #endif
3496 s->ti -= s->current_tm.tm_sec;
3497 s->ti += omap_rtc_bin(value);
3498 return;
3499
3500 case 0x04: /* MINUTES_REG */
3501 #ifdef ALMDEBUG
3502 printf("RTC MIN_REG <-- %02x\n", value);
3503 #endif
3504 s->ti -= s->current_tm.tm_min * 60;
3505 s->ti += omap_rtc_bin(value) * 60;
3506 return;
3507
3508 case 0x08: /* HOURS_REG */
3509 #ifdef ALMDEBUG
3510 printf("RTC HRS_REG <-- %02x\n", value);
3511 #endif
3512 s->ti -= s->current_tm.tm_hour * 3600;
3513 if (s->pm_am) {
3514 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3515 s->ti += ((value >> 7) & 1) * 43200;
3516 } else
3517 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3518 return;
3519
3520 case 0x0c: /* DAYS_REG */
3521 #ifdef ALMDEBUG
3522 printf("RTC DAY_REG <-- %02x\n", value);
3523 #endif
3524 s->ti -= s->current_tm.tm_mday * 86400;
3525 s->ti += omap_rtc_bin(value) * 86400;
3526 return;
3527
3528 case 0x10: /* MONTHS_REG */
3529 #ifdef ALMDEBUG
3530 printf("RTC MTH_REG <-- %02x\n", value);
3531 #endif
3532 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3533 new_tm.tm_mon = omap_rtc_bin(value);
3534 ti[0] = mktime(&s->current_tm);
3535 ti[1] = mktime(&new_tm);
3536
3537 if (ti[0] != -1 && ti[1] != -1) {
3538 s->ti -= ti[0];
3539 s->ti += ti[1];
3540 } else {
3541 /* A less accurate version */
3542 s->ti -= s->current_tm.tm_mon * 2592000;
3543 s->ti += omap_rtc_bin(value) * 2592000;
3544 }
3545 return;
3546
3547 case 0x14: /* YEARS_REG */
3548 #ifdef ALMDEBUG
3549 printf("RTC YRS_REG <-- %02x\n", value);
3550 #endif
3551 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3552 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3553 ti[0] = mktime(&s->current_tm);
3554 ti[1] = mktime(&new_tm);
3555
3556 if (ti[0] != -1 && ti[1] != -1) {
3557 s->ti -= ti[0];
3558 s->ti += ti[1];
3559 } else {
3560 /* A less accurate version */
3561 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3562 s->ti += omap_rtc_bin(value) * 31536000;
3563 }
3564 return;
3565
3566 case 0x18: /* WEEK_REG */
3567 return; /* Ignored */
3568
3569 case 0x20: /* ALARM_SECONDS_REG */
3570 #ifdef ALMDEBUG
3571 printf("ALM SEC_REG <-- %02x\n", value);
3572 #endif
3573 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3574 omap_rtc_alarm_update(s);
3575 return;
3576
3577 case 0x24: /* ALARM_MINUTES_REG */
3578 #ifdef ALMDEBUG
3579 printf("ALM MIN_REG <-- %02x\n", value);
3580 #endif
3581 s->alarm_tm.tm_min = omap_rtc_bin(value);
3582 omap_rtc_alarm_update(s);
3583 return;
3584
3585 case 0x28: /* ALARM_HOURS_REG */
3586 #ifdef ALMDEBUG
3587 printf("ALM HRS_REG <-- %02x\n", value);
3588 #endif
3589 if (s->pm_am)
3590 s->alarm_tm.tm_hour =
3591 ((omap_rtc_bin(value & 0x3f)) % 12) +
3592 ((value >> 7) & 1) * 12;
3593 else
3594 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3595 omap_rtc_alarm_update(s);
3596 return;
3597
3598 case 0x2c: /* ALARM_DAYS_REG */
3599 #ifdef ALMDEBUG
3600 printf("ALM DAY_REG <-- %02x\n", value);
3601 #endif
3602 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3603 omap_rtc_alarm_update(s);
3604 return;
3605
3606 case 0x30: /* ALARM_MONTHS_REG */
3607 #ifdef ALMDEBUG
3608 printf("ALM MON_REG <-- %02x\n", value);
3609 #endif
3610 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3611 omap_rtc_alarm_update(s);
3612 return;
3613
3614 case 0x34: /* ALARM_YEARS_REG */
3615 #ifdef ALMDEBUG
3616 printf("ALM YRS_REG <-- %02x\n", value);
3617 #endif
3618 s->alarm_tm.tm_year = omap_rtc_bin(value);
3619 omap_rtc_alarm_update(s);
3620 return;
3621
3622 case 0x40: /* RTC_CTRL_REG */
3623 #ifdef ALMDEBUG
3624 printf("RTC CONTROL <-- %02x\n", value);
3625 #endif
3626 s->pm_am = (value >> 3) & 1;
3627 s->auto_comp = (value >> 2) & 1;
3628 s->round = (value >> 1) & 1;
3629 s->running = value & 1;
3630 s->status &= 0xfd;
3631 s->status |= s->running << 1;
3632 return;
3633
3634 case 0x44: /* RTC_STATUS_REG */
3635 #ifdef ALMDEBUG
3636 printf("RTC STATUSL <-- %02x\n", value);
3637 #endif
3638 s->status &= ~((value & 0xc0) ^ 0x80);
3639 omap_rtc_interrupts_update(s);
3640 return;
3641
3642 case 0x48: /* RTC_INTERRUPTS_REG */
3643 #ifdef ALMDEBUG
3644 printf("RTC INTRS <-- %02x\n", value);
3645 #endif
3646 s->interrupts = value;
3647 return;
3648
3649 case 0x4c: /* RTC_COMP_LSB_REG */
3650 #ifdef ALMDEBUG
3651 printf("RTC COMPLSB <-- %02x\n", value);
3652 #endif
3653 s->comp_reg &= 0xff00;
3654 s->comp_reg |= 0x00ff & value;
3655 return;
3656
3657 case 0x50: /* RTC_COMP_MSB_REG */
3658 #ifdef ALMDEBUG
3659 printf("RTC COMPMSB <-- %02x\n", value);
3660 #endif
3661 s->comp_reg &= 0x00ff;
3662 s->comp_reg |= 0xff00 & (value << 8);
3663 return;
3664
3665 default:
3666 OMAP_BAD_REG(addr);
3667 return;
3668 }
3669 }
3670
3671 static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3672 omap_rtc_read,
3673 omap_badwidth_read8,
3674 omap_badwidth_read8,
3675 };
3676
3677 static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3678 omap_rtc_write,
3679 omap_badwidth_write8,
3680 omap_badwidth_write8,
3681 };
3682
3683 static void omap_rtc_tick(void *opaque)
3684 {
3685 struct omap_rtc_s *s = opaque;
3686
3687 if (s->round) {
3688 /* Round to nearest full minute. */
3689 if (s->current_tm.tm_sec < 30)
3690 s->ti -= s->current_tm.tm_sec;
3691 else
3692 s->ti += 60 - s->current_tm.tm_sec;
3693
3694 s->round = 0;
3695 }
3696
3697 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3698
3699 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3700 s->status |= 0x40;
3701 omap_rtc_interrupts_update(s);
3702 }
3703
3704 if (s->interrupts & 0x04)
3705 switch (s->interrupts & 3) {
3706 case 0:
3707 s->status |= 0x04;
3708 qemu_irq_pulse(s->irq);
3709 break;
3710 case 1:
3711 if (s->current_tm.tm_sec)
3712 break;
3713 s->status |= 0x08;
3714 qemu_irq_pulse(s->irq);
3715 break;
3716 case 2:
3717 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3718 break;
3719 s->status |= 0x10;
3720 qemu_irq_pulse(s->irq);
3721 break;
3722 case 3:
3723 if (s->current_tm.tm_sec ||
3724 s->current_tm.tm_min || s->current_tm.tm_hour)
3725 break;
3726 s->status |= 0x20;
3727 qemu_irq_pulse(s->irq);
3728 break;
3729 }
3730
3731 /* Move on */
3732 if (s->running)
3733 s->ti ++;
3734 s->tick += 1000;
3735
3736 /*
3737 * Every full hour add a rough approximation of the compensation
3738 * register to the 32kHz Timer (which drives the RTC) value.
3739 */
3740 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3741 s->tick += s->comp_reg * 1000 / 32768;
3742
3743 qemu_mod_timer(s->clk, s->tick);
3744 }
3745
3746 static void omap_rtc_reset(struct omap_rtc_s *s)
3747 {
3748 struct tm tm;
3749
3750 s->interrupts = 0;
3751 s->comp_reg = 0;
3752 s->running = 0;
3753 s->pm_am = 0;
3754 s->auto_comp = 0;
3755 s->round = 0;
3756 s->tick = qemu_get_clock(rt_clock);
3757 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3758 s->alarm_tm.tm_mday = 0x01;
3759 s->status = 1 << 7;
3760 qemu_get_timedate(&tm, 0);
3761 s->ti = mktime(&tm);
3762
3763 omap_rtc_alarm_update(s);
3764 omap_rtc_tick(s);
3765 }
3766
3767 struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3768 qemu_irq *irq, omap_clk clk)
3769 {
3770 int iomemtype;
3771 struct omap_rtc_s *s = (struct omap_rtc_s *)
3772 qemu_mallocz(sizeof(struct omap_rtc_s));
3773
3774 s->base = base;
3775 s->irq = irq[0];
3776 s->alarm = irq[1];
3777 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3778
3779 omap_rtc_reset(s);
3780
3781 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3782 omap_rtc_writefn, s);
3783 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3784
3785 return s;
3786 }
3787
3788 /* Multi-channel Buffered Serial Port interfaces */
3789 struct omap_mcbsp_s {
3790 target_phys_addr_t base;
3791 qemu_irq txirq;
3792 qemu_irq rxirq;
3793 qemu_irq txdrq;
3794 qemu_irq rxdrq;
3795
3796 uint16_t spcr[2];
3797 uint16_t rcr[2];
3798 uint16_t xcr[2];
3799 uint16_t srgr[2];
3800 uint16_t mcr[2];
3801 uint16_t pcr;
3802 uint16_t rcer[8];
3803 uint16_t xcer[8];
3804 int tx_rate;
3805 int rx_rate;
3806 int tx_req;
3807 int rx_req;
3808
3809 struct i2s_codec_s *codec;
3810 QEMUTimer *source_timer;
3811 QEMUTimer *sink_timer;
3812 };
3813
3814 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3815 {
3816 int irq;
3817
3818 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
3819 case 0:
3820 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
3821 break;
3822 case 3:
3823 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3824 break;
3825 default:
3826 irq = 0;
3827 break;
3828 }
3829
3830 if (irq)
3831 qemu_irq_pulse(s->rxirq);
3832
3833 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3834 case 0:
3835 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3836 break;
3837 case 3:
3838 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3839 break;
3840 default:
3841 irq = 0;
3842 break;
3843 }
3844
3845 if (irq)
3846 qemu_irq_pulse(s->txirq);
3847 }
3848
3849 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3850 {
3851 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3852 s->spcr[0] |= 1 << 2; /* RFULL */
3853 s->spcr[0] |= 1 << 1; /* RRDY */
3854 qemu_irq_raise(s->rxdrq);
3855 omap_mcbsp_intr_update(s);
3856 }
3857
3858 static void omap_mcbsp_source_tick(void *opaque)
3859 {
3860 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3861 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3862
3863 if (!s->rx_rate)
3864 return;
3865 if (s->rx_req)
3866 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3867
3868 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3869
3870 omap_mcbsp_rx_newdata(s);
3871 qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3872 }
3873
3874 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3875 {
3876 if (!s->codec || !s->codec->rts)
3877 omap_mcbsp_source_tick(s);
3878 else if (s->codec->in.len) {
3879 s->rx_req = s->codec->in.len;
3880 omap_mcbsp_rx_newdata(s);
3881 }
3882 }
3883
3884 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3885 {
3886 qemu_del_timer(s->source_timer);
3887 }
3888
3889 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3890 {
3891 s->spcr[0] &= ~(1 << 1); /* RRDY */
3892 qemu_irq_lower(s->rxdrq);
3893 omap_mcbsp_intr_update(s);
3894 }
3895
3896 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3897 {
3898 s->spcr[1] |= 1 << 1; /* XRDY */
3899 qemu_irq_raise(s->txdrq);
3900 omap_mcbsp_intr_update(s);
3901 }
3902
3903 static void omap_mcbsp_sink_tick(void *opaque)
3904 {
3905 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3906 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3907
3908 if (!s->tx_rate)
3909 return;
3910 if (s->tx_req)
3911 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3912
3913 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3914
3915 omap_mcbsp_tx_newdata(s);
3916 qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3917 }
3918
3919 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3920 {
3921 if (!s->codec || !s->codec->cts)
3922 omap_mcbsp_sink_tick(s);
3923 else if (s->codec->out.size) {
3924 s->tx_req = s->codec->out.size;
3925 omap_mcbsp_tx_newdata(s);
3926 }
3927 }
3928
3929 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3930 {
3931 s->spcr[1] &= ~(1 << 1); /* XRDY */
3932 qemu_irq_lower(s->txdrq);
3933 omap_mcbsp_intr_update(s);
3934 if (s->codec && s->codec->cts)
3935 s->codec->tx_swallow(s->codec->opaque);
3936 }
3937
3938 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3939 {
3940 s->tx_req = 0;
3941 omap_mcbsp_tx_done(s);
3942 qemu_del_timer(s->sink_timer);
3943 }
3944
3945 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3946 {
3947 int prev_rx_rate, prev_tx_rate;
3948 int rx_rate = 0, tx_rate = 0;
3949 int cpu_rate = 1500000; /* XXX */
3950
3951 /* TODO: check CLKSTP bit */
3952 if (s->spcr[1] & (1 << 6)) { /* GRST */
3953 if (s->spcr[0] & (1 << 0)) { /* RRST */
3954 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3955 (s->pcr & (1 << 8))) { /* CLKRM */
3956 if (~s->pcr & (1 << 7)) /* SCLKME */
3957 rx_rate = cpu_rate /
3958 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3959 } else
3960 if (s->codec)
3961 rx_rate = s->codec->rx_rate;
3962 }
3963
3964 if (s->spcr[1] & (1 << 0)) { /* XRST */
3965 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3966 (s->pcr & (1 << 9))) { /* CLKXM */
3967 if (~s->pcr & (1 << 7)) /* SCLKME */
3968 tx_rate = cpu_rate /
3969 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3970 } else
3971 if (s->codec)
3972 tx_rate = s->codec->tx_rate;
3973 }
3974 }
3975 prev_tx_rate = s->tx_rate;
3976 prev_rx_rate = s->rx_rate;
3977 s->tx_rate = tx_rate;
3978 s->rx_rate = rx_rate;
3979
3980 if (s->codec)
3981 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3982
3983 if (!prev_tx_rate && tx_rate)
3984 omap_mcbsp_tx_start(s);
3985 else if (s->tx_rate && !tx_rate)
3986 omap_mcbsp_tx_stop(s);
3987
3988 if (!prev_rx_rate && rx_rate)
3989 omap_mcbsp_rx_start(s);
3990 else if (prev_tx_rate && !tx_rate)
3991 omap_mcbsp_rx_stop(s);
3992 }
3993
3994 static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3995 {
3996 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3997 int offset = addr & OMAP_MPUI_REG_MASK;
3998 uint16_t ret;
3999
4000 switch (offset) {
4001 case 0x00: /* DRR2 */
4002 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
4003 return 0x0000;
4004 /* Fall through. */
4005 case 0x02: /* DRR1 */
4006 if (s->rx_req < 2) {
4007 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
4008 omap_mcbsp_rx_done(s);
4009 } else {
4010 s->tx_req -= 2;
4011 if (s->codec && s->codec->in.len >= 2) {
4012 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
4013 ret |= s->codec->in.fifo[s->codec->in.start ++];
4014 s->codec->in.len -= 2;
4015 } else
4016 ret = 0x0000;
4017 if (!s->tx_req)
4018 omap_mcbsp_rx_done(s);
4019 return ret;
4020 }
4021 return 0x0000;
4022
4023 case 0x04: /* DXR2 */
4024 case 0x06: /* DXR1 */
4025 return 0x0000;
4026
4027 case 0x08: /* SPCR2 */
4028 return s->spcr[1];
4029 case 0x0a: /* SPCR1 */
4030 return s->spcr[0];
4031 case 0x0c: /* RCR2 */
4032 return s->rcr[1];
4033 case 0x0e: /* RCR1 */
4034 return s->rcr[0];
4035 case 0x10: /* XCR2 */
4036 return s->xcr[1];
4037 case 0x12: /* XCR1 */
4038 return s->xcr[0];
4039 case 0x14: /* SRGR2 */
4040 return s->srgr[1];
4041 case 0x16: /* SRGR1 */
4042 return s->srgr[0];
4043 case 0x18: /* MCR2 */
4044 return s->mcr[1];
4045 case 0x1a: /* MCR1 */
4046 return s->mcr[0];
4047 case 0x1c: /* RCERA */
4048 return s->rcer[0];
4049 case 0x1e: /* RCERB */
4050 return s->rcer[1];
4051 case 0x20: /* XCERA */
4052 return s->xcer[0];
4053 case 0x22: /* XCERB */
4054 return s->xcer[1];
4055 case 0x24: /* PCR0 */
4056 return s->pcr;
4057 case 0x26: /* RCERC */
4058 return s->rcer[2];
4059 case 0x28: /* RCERD */
4060 return s->rcer[3];
4061 case 0x2a: /* XCERC */
4062 return s->xcer[2];
4063 case 0x2c: /* XCERD */
4064 return s->xcer[3];
4065 case 0x2e: /* RCERE */
4066 return s->rcer[4];
4067 case 0x30: /* RCERF */
4068 return s->rcer[5];
4069 case 0x32: /* XCERE */
4070 return s->xcer[4];
4071 case 0x34: /* XCERF */
4072 return s->xcer[5];
4073 case 0x36: /* RCERG */
4074 return s->rcer[6];
4075 case 0x38: /* RCERH */
4076 return s->rcer[7];
4077 case 0x3a: /* XCERG */
4078 return s->xcer[6];
4079 case 0x3c: /* XCERH */
4080 return s->xcer[7];
4081 }
4082
4083 OMAP_BAD_REG(addr);
4084 return 0;
4085 }
4086
4087 static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4088 uint32_t value)
4089 {
4090 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4091 int offset = addr & OMAP_MPUI_REG_MASK;
4092
4093 switch (offset) {
4094 case 0x00: /* DRR2 */
4095 case 0x02: /* DRR1 */
4096 OMAP_RO_REG(addr);
4097 return;
4098
4099 case 0x04: /* DXR2 */
4100 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4101 return;
4102 /* Fall through. */
4103 case 0x06: /* DXR1 */
4104 if (s->tx_req > 1) {
4105 s->tx_req -= 2;
4106 if (s->codec && s->codec->cts) {
4107 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4108 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4109 }
4110 if (s->tx_req < 2)
4111 omap_mcbsp_tx_done(s);
4112 } else
4113 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4114 return;
4115
4116 case 0x08: /* SPCR2 */
4117 s->spcr[1] &= 0x0002;
4118 s->spcr[1] |= 0x03f9 & value;
4119 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
4120 if (~value & 1) /* XRST */
4121 s->spcr[1] &= ~6;
4122 omap_mcbsp_req_update(s);
4123 return;
4124 case 0x0a: /* SPCR1 */
4125 s->spcr[0] &= 0x0006;
4126 s->spcr[0] |= 0xf8f9 & value;
4127 if (value & (1 << 15)) /* DLB */
4128 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4129 if (~value & 1) { /* RRST */
4130 s->spcr[0] &= ~6;
4131 s->rx_req = 0;
4132 omap_mcbsp_rx_done(s);
4133 }
4134 omap_mcbsp_req_update(s);
4135 return;
4136
4137 case 0x0c: /* RCR2 */
4138 s->rcr[1] = value & 0xffff;
4139 return;
4140 case 0x0e: /* RCR1 */
4141 s->rcr[0] = value & 0x7fe0;
4142 return;
4143 case 0x10: /* XCR2 */
4144 s->xcr[1] = value & 0xffff;
4145 return;
4146 case 0x12: /* XCR1 */
4147 s->xcr[0] = value & 0x7fe0;
4148 return;
4149 case 0x14: /* SRGR2 */
4150 s->srgr[1] = value & 0xffff;
4151 omap_mcbsp_req_update(s);
4152 return;
4153 case 0x16: /* SRGR1 */
4154 s->srgr[0] = value & 0xffff;
4155 omap_mcbsp_req_update(s);
4156 return;
4157 case 0x18: /* MCR2 */
4158 s->mcr[1] = value & 0x03e3;
4159 if (value & 3) /* XMCM */
4160 printf("%s: Tx channel selection mode enable attempt\n",
4161 __FUNCTION__);
4162 return;
4163 case 0x1a: /* MCR1 */
4164 s->mcr[0] = value & 0x03e1;
4165 if (value & 1) /* RMCM */
4166 printf("%s: Rx channel selection mode enable attempt\n",
4167 __FUNCTION__);
4168 return;
4169 case 0x1c: /* RCERA */
4170 s->rcer[0] = value & 0xffff;
4171 return;
4172 case 0x1e: /* RCERB */
4173 s->rcer[1] = value & 0xffff;
4174 return;
4175 case 0x20: /* XCERA */
4176 s->xcer[0] = value & 0xffff;
4177 return;
4178 case 0x22: /* XCERB */
4179 s->xcer[1] = value & 0xffff;
4180 return;
4181 case 0x24: /* PCR0 */
4182 s->pcr = value & 0x7faf;
4183 return;
4184 case 0x26: /* RCERC */
4185 s->rcer[2] = value & 0xffff;
4186 return;
4187 case 0x28: /* RCERD */
4188 s->rcer[3] = value & 0xffff;
4189 return;
4190 case 0x2a: /* XCERC */
4191 s->xcer[2] = value & 0xffff;
4192 return;
4193 case 0x2c: /* XCERD */
4194 s->xcer[3] = value & 0xffff;
4195 return;
4196 case 0x2e: /* RCERE */
4197 s->rcer[4] = value & 0xffff;
4198 return;
4199 case 0x30: /* RCERF */
4200 s->rcer[5] = value & 0xffff;
4201 return;
4202 case 0x32: /* XCERE */
4203 s->xcer[4] = value & 0xffff;
4204 return;
4205 case 0x34: /* XCERF */
4206 s->xcer[5] = value & 0xffff;
4207 return;
4208 case 0x36: /* RCERG */
4209 s->rcer[6] = value & 0xffff;
4210 return;
4211 case 0x38: /* RCERH */
4212 s->rcer[7] = value & 0xffff;
4213 return;
4214 case 0x3a: /* XCERG */
4215 s->xcer[6] = value & 0xffff;
4216 return;
4217 case 0x3c: /* XCERH */
4218 s->xcer[7] = value & 0xffff;
4219 return;
4220 }
4221
4222 OMAP_BAD_REG(addr);
4223 }
4224
4225 static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4226 uint32_t value)
4227 {
4228 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4229 int offset = addr & OMAP_MPUI_REG_MASK;
4230
4231 if (offset == 0x04) { /* DXR */
4232 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
4233 return;
4234 if (s->tx_req > 3) {
4235 s->tx_req -= 4;
4236 if (s->codec && s->codec->cts) {
4237 s->codec->out.fifo[s->codec->out.len ++] =
4238 (value >> 24) & 0xff;
4239 s->codec->out.fifo[s->codec->out.len ++] =
4240 (value >> 16) & 0xff;
4241 s->codec->out.fifo[s->codec->out.len ++] =
4242 (value >> 8) & 0xff;
4243 s->codec->out.fifo[s->codec->out.len ++] =
4244 (value >> 0) & 0xff;
4245 }
4246 if (s->tx_req < 4)
4247 omap_mcbsp_tx_done(s);
4248 } else
4249 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4250 return;
4251 }
4252
4253 omap_badwidth_write16(opaque, addr, value);
4254 }
4255
4256 static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4257 omap_badwidth_read16,
4258 omap_mcbsp_read,
4259 omap_badwidth_read16,
4260 };
4261
4262 static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4263 omap_badwidth_write16,
4264 omap_mcbsp_writeh,
4265 omap_mcbsp_writew,
4266 };
4267
4268 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4269 {
4270 memset(&s->spcr, 0, sizeof(s->spcr));
4271 memset(&s->rcr, 0, sizeof(s->rcr));
4272 memset(&s->xcr, 0, sizeof(s->xcr));
4273 s->srgr[0] = 0x0001;
4274 s->srgr[1] = 0x2000;
4275 memset(&s->mcr, 0, sizeof(s->mcr));
4276 memset(&s->pcr, 0, sizeof(s->pcr));
4277 memset(&s->rcer, 0, sizeof(s->rcer));
4278 memset(&s->xcer, 0, sizeof(s->xcer));
4279 s->tx_req = 0;
4280 s->rx_req = 0;
4281 s->tx_rate = 0;
4282 s->rx_rate = 0;
4283 qemu_del_timer(s->source_timer);
4284 qemu_del_timer(s->sink_timer);
4285 }
4286
4287 struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4288 qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4289 {
4290 int iomemtype;
4291 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4292 qemu_mallocz(sizeof(struct omap_mcbsp_s));
4293
4294 s->base = base;
4295 s->txirq = irq[0];
4296 s->rxirq = irq[1];
4297 s->txdrq = dma[0];
4298 s->rxdrq = dma[1];
4299 s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4300 s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4301 omap_mcbsp_reset(s);
4302
4303 iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4304 omap_mcbsp_writefn, s);
4305 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4306
4307 return s;
4308 }
4309
4310 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4311 {
4312 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4313
4314 if (s->rx_rate) {
4315 s->rx_req = s->codec->in.len;
4316 omap_mcbsp_rx_newdata(s);
4317 }
4318 }
4319
4320 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4321 {
4322 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4323
4324 if (s->tx_rate) {
4325 s->tx_req = s->codec->out.size;
4326 omap_mcbsp_tx_newdata(s);
4327 }
4328 }
4329
4330 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4331 {
4332 s->codec = slave;
4333 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4334 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4335 }
4336
4337 /* LED Pulse Generators */
4338 struct omap_lpg_s {
4339 target_phys_addr_t base;
4340 QEMUTimer *tm;
4341
4342 uint8_t control;
4343 uint8_t power;
4344 int64_t on;
4345 int64_t period;
4346 int clk;
4347 int cycle;
4348 };
4349
4350 static void omap_lpg_tick(void *opaque)
4351 {
4352 struct omap_lpg_s *s = opaque;
4353
4354 if (s->cycle)
4355 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4356 else
4357 qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4358
4359 s->cycle = !s->cycle;
4360 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4361 }
4362
4363 static void omap_lpg_update(struct omap_lpg_s *s)
4364 {
4365 int64_t on, period = 1, ticks = 1000;
4366 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4367
4368 if (~s->control & (1 << 6)) /* LPGRES */
4369 on = 0;
4370 else if (s->control & (1 << 7)) /* PERM_ON */
4371 on = period;
4372 else {
4373 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
4374 256 / 32);
4375 on = (s->clk && s->power) ? muldiv64(ticks,
4376 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
4377 }
4378
4379 qemu_del_timer(s->tm);
4380 if (on == period && s->on < s->period)
4381 printf("%s: LED is on\n", __FUNCTION__);
4382 else if (on == 0 && s->on)
4383 printf("%s: LED is off\n", __FUNCTION__);
4384 else if (on && (on != s->on || period != s->period)) {
4385 s->cycle = 0;
4386 s->on = on;
4387 s->period = period;
4388 omap_lpg_tick(s);
4389 return;
4390 }
4391
4392 s->on = on;
4393 s->period = period;
4394 }
4395
4396 static void omap_lpg_reset(struct omap_lpg_s *s)
4397 {
4398 s->control = 0x00;
4399 s->power = 0x00;
4400 s->clk = 1;
4401 omap_lpg_update(s);
4402 }
4403
4404 static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4405 {
4406 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4407 int offset = addr & OMAP_MPUI_REG_MASK;
4408
4409 switch (offset) {
4410 case 0x00: /* LCR */
4411 return s->control;
4412
4413 case 0x04: /* PMR */
4414 return s->power;
4415 }
4416
4417 OMAP_BAD_REG(addr);
4418 return 0;
4419 }
4420
4421 static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4422 uint32_t value)
4423 {
4424 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4425 int offset = addr & OMAP_MPUI_REG_MASK;
4426
4427 switch (offset) {
4428 case 0x00: /* LCR */
4429 if (~value & (1 << 6)) /* LPGRES */
4430 omap_lpg_reset(s);
4431 s->control = value & 0xff;
4432 omap_lpg_update(s);
4433 return;
4434
4435 case 0x04: /* PMR */
4436 s->power = value & 0x01;
4437 omap_lpg_update(s);
4438 return;
4439
4440 default:
4441 OMAP_BAD_REG(addr);
4442 return;
4443 }
4444 }
4445
4446 static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4447 omap_lpg_read,
4448 omap_badwidth_read8,
4449 omap_badwidth_read8,
4450 };
4451
4452 static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4453 omap_lpg_write,
4454 omap_badwidth_write8,
4455 omap_badwidth_write8,
4456 };
4457
4458 static void omap_lpg_clk_update(void *opaque, int line, int on)
4459 {
4460 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4461
4462 s->clk = on;
4463 omap_lpg_update(s);
4464 }
4465
4466 struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4467 {
4468 int iomemtype;
4469 struct omap_lpg_s *s = (struct omap_lpg_s *)
4470 qemu_mallocz(sizeof(struct omap_lpg_s));
4471
4472 s->base = base;
4473 s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4474
4475 omap_lpg_reset(s);
4476
4477 iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4478 omap_lpg_writefn, s);
4479 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4480
4481 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4482
4483 return s;
4484 }
4485
4486 /* MPUI Peripheral Bridge configuration */
4487 static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4488 {
4489 if (addr == OMAP_MPUI_BASE) /* CMR */
4490 return 0xfe4d;
4491
4492 OMAP_BAD_REG(addr);
4493 return 0;
4494 }
4495
4496 static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4497 omap_badwidth_read16,
4498 omap_mpui_io_read,
4499 omap_badwidth_read16,
4500 };
4501
4502 static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4503 omap_badwidth_write16,
4504 omap_badwidth_write16,
4505 omap_badwidth_write16,
4506 };
4507
4508 static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4509 {
4510 int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4511 omap_mpui_io_writefn, mpu);
4512 cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4513 }
4514
4515 /* General chip reset */
4516 static void omap1_mpu_reset(void *opaque)
4517 {
4518 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4519
4520 omap_inth_reset(mpu->ih[0]);
4521 omap_inth_reset(mpu->ih[1]);
4522 omap_dma_reset(mpu->dma);
4523 omap_mpu_timer_reset(mpu->timer[0]);
4524 omap_mpu_timer_reset(mpu->timer[1]);
4525 omap_mpu_timer_reset(mpu->timer[2]);
4526 omap_wd_timer_reset(mpu->wdt);
4527 omap_os_timer_reset(mpu->os_timer);
4528 omap_lcdc_reset(mpu->lcd);
4529 omap_ulpd_pm_reset(mpu);
4530 omap_pin_cfg_reset(mpu);
4531 omap_mpui_reset(mpu);
4532 omap_tipb_bridge_reset(mpu->private_tipb);
4533 omap_tipb_bridge_reset(mpu->public_tipb);
4534 omap_dpll_reset(&mpu->dpll[0]);
4535 omap_dpll_reset(&mpu->dpll[1]);
4536 omap_dpll_reset(&mpu->dpll[2]);
4537 omap_uart_reset(mpu->uart[0]);
4538 omap_uart_reset(mpu->uart[1]);
4539 omap_uart_reset(mpu->uart[2]);
4540 omap_mmc_reset(mpu->mmc);
4541 omap_mpuio_reset(mpu->mpuio);
4542 omap_gpio_reset(mpu->gpio);
4543 omap_uwire_reset(mpu->microwire);
4544 omap_pwl_reset(mpu);
4545 omap_pwt_reset(mpu);
4546 omap_i2c_reset(mpu->i2c[0]);
4547 omap_rtc_reset(mpu->rtc);
4548 omap_mcbsp_reset(mpu->mcbsp1);
4549 omap_mcbsp_reset(mpu->mcbsp2);
4550 omap_mcbsp_reset(mpu->mcbsp3);
4551 omap_lpg_reset(mpu->led[0]);
4552 omap_lpg_reset(mpu->led[1]);
4553 omap_clkm_reset(mpu);
4554 cpu_reset(mpu->env);
4555 }
4556
4557 static const struct omap_map_s {
4558 target_phys_addr_t phys_dsp;
4559 target_phys_addr_t phys_mpu;
4560 uint32_t size;
4561 const char *name;
4562 } omap15xx_dsp_mm[] = {
4563 /* Strobe 0 */
4564 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
4565 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
4566 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
4567 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
4568 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
4569 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
4570 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
4571 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
4572 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
4573 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
4574 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
4575 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
4576 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
4577 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
4578 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
4579 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
4580 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
4581 /* Strobe 1 */
4582 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
4583
4584 { 0 }
4585 };
4586
4587 static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4588 {
4589 int io;
4590
4591 for (; map->phys_dsp; map ++) {
4592 io = cpu_get_physical_page_desc(map->phys_mpu);
4593
4594 cpu_register_physical_memory(map->phys_dsp, map->size, io);
4595 }
4596 }
4597
4598 void omap_mpu_wakeup(void *opaque, int irq, int req)
4599 {
4600 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4601
4602 if (mpu->env->halted)
4603 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4604 }
4605
4606 static const struct dma_irq_map omap1_dma_irq_map[] = {
4607 { 0, OMAP_INT_DMA_CH0_6 },
4608 { 0, OMAP_INT_DMA_CH1_7 },
4609 { 0, OMAP_INT_DMA_CH2_8 },
4610 { 0, OMAP_INT_DMA_CH3 },
4611 { 0, OMAP_INT_DMA_CH4 },
4612 { 0, OMAP_INT_DMA_CH5 },
4613 { 1, OMAP_INT_1610_DMA_CH6 },
4614 { 1, OMAP_INT_1610_DMA_CH7 },
4615 { 1, OMAP_INT_1610_DMA_CH8 },
4616 { 1, OMAP_INT_1610_DMA_CH9 },
4617 { 1, OMAP_INT_1610_DMA_CH10 },
4618 { 1, OMAP_INT_1610_DMA_CH11 },
4619 { 1, OMAP_INT_1610_DMA_CH12 },
4620 { 1, OMAP_INT_1610_DMA_CH13 },
4621 { 1, OMAP_INT_1610_DMA_CH14 },
4622 { 1, OMAP_INT_1610_DMA_CH15 }
4623 };
4624
4625 /* DMA ports for OMAP1 */
4626 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4627 target_phys_addr_t addr)
4628 {
4629 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4630 }
4631
4632 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4633 target_phys_addr_t addr)
4634 {
4635 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4636 }
4637
4638 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4639 target_phys_addr_t addr)
4640 {
4641 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4642 }
4643
4644 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4645 target_phys_addr_t addr)
4646 {
4647 return addr >= 0xfffb0000 && addr < 0xffff0000;
4648 }
4649
4650 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4651 target_phys_addr_t addr)
4652 {
4653 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4654 }
4655
4656 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4657 target_phys_addr_t addr)
4658 {
4659 return addr >= 0xe1010000 && addr < 0xe1020004;
4660 }
4661
4662 struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4663 DisplayState *ds, const char *core)
4664 {
4665 int i;
4666 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4667 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4668 ram_addr_t imif_base, emiff_base;
4669 qemu_irq *cpu_irq;
4670 qemu_irq dma_irqs[6];
4671 int sdindex;
4672
4673 if (!core)
4674 core = "ti925t";
4675
4676 /* Core */
4677 s->mpu_model = omap310;
4678 s->env = cpu_init(core);
4679 if (!s->env) {
4680 fprintf(stderr, "Unable to find CPU definition\n");
4681 exit(1);
4682 }
4683 s->sdram_size = sdram_size;
4684 s->sram_size = OMAP15XX_SRAM_SIZE;
4685
4686 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4687
4688 /* Clocks */
4689 omap_clk_init(s);
4690
4691 /* Memory-mapped stuff */
4692 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4693 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4694 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4695 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4696
4697 omap_clkm_init(0xfffece00, 0xe1008000, s);
4698
4699 cpu_irq = arm_pic_init_cpu(s->env);
4700 s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4701 cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4702 omap_findclk(s, "arminth_ck"));
4703 s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4704 s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4705 omap_findclk(s, "arminth_ck"));
4706
4707 for (i = 0; i < 6; i ++)
4708 dma_irqs[i] =
4709 s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4710 s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4711 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4712
4713 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4714 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4715 s->port[imif ].addr_valid = omap_validate_imif_addr;
4716 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4717 s->port[local ].addr_valid = omap_validate_local_addr;
4718 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4719
4720 /* Register SDRAM and SRAM DMA ports for fast transfers. */
4721 soc_dma_port_add_mem_ram(s->dma,
4722 emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4723 soc_dma_port_add_mem_ram(s->dma,
4724 imif_base, OMAP_IMIF_BASE, s->sram_size);
4725
4726 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4727 s->irq[0][OMAP_INT_TIMER1],
4728 omap_findclk(s, "mputim_ck"));
4729 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4730 s->irq[0][OMAP_INT_TIMER2],
4731 omap_findclk(s, "mputim_ck"));
4732 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4733 s->irq[0][OMAP_INT_TIMER3],
4734 omap_findclk(s, "mputim_ck"));
4735
4736 s->wdt = omap_wd_timer_init(0xfffec800,
4737 s->irq[0][OMAP_INT_WD_TIMER],
4738 omap_findclk(s, "armwdt_ck"));
4739
4740 s->os_timer = omap_os_timer_init(0xfffb9000,
4741 s->irq[1][OMAP_INT_OS_TIMER],
4742 omap_findclk(s, "clk32-kHz"));
4743
4744 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4745 omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4746 omap_findclk(s, "lcd_ck"));
4747
4748 omap_ulpd_pm_init(0xfffe0800, s);
4749 omap_pin_cfg_init(0xfffe1000, s);
4750 omap_id_init(s);
4751
4752 omap_mpui_init(0xfffec900, s);
4753
4754 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4755 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4756 omap_findclk(s, "tipb_ck"));
4757 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4758 s->irq[0][OMAP_INT_BRIDGE_PUB],
4759 omap_findclk(s, "tipb_ck"));
4760
4761 omap_tcmi_init(0xfffecc00, s);
4762
4763 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4764 omap_findclk(s, "uart1_ck"),
4765 omap_findclk(s, "uart1_ck"),
4766 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4767 serial_hds[0]);
4768 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4769 omap_findclk(s, "uart2_ck"),
4770 omap_findclk(s, "uart2_ck"),
4771 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4772 serial_hds[0] ? serial_hds[1] : 0);
4773 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4774 omap_findclk(s, "uart3_ck"),
4775 omap_findclk(s, "uart3_ck"),
4776 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4777 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4778
4779 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4780 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4781 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4782
4783 sdindex = drive_get_index(IF_SD, 0, 0);
4784 if (sdindex == -1) {
4785 fprintf(stderr, "qemu: missing SecureDigital device\n");
4786 exit(1);
4787 }
4788 s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4789 s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4790 omap_findclk(s, "mmc_ck"));
4791
4792 s->mpuio = omap_mpuio_init(0xfffb5000,
4793 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4794 s->wakeup, omap_findclk(s, "clk32-kHz"));
4795
4796 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4797 omap_findclk(s, "arm_gpio_ck"));
4798
4799 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4800 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4801
4802 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4803 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4804
4805 s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4806 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4807
4808 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4809 omap_findclk(s, "clk32-kHz"));
4810
4811 s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4812 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4813 s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4814 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4815 s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4816 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4817
4818 s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4819 s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4820
4821 /* Register mappings not currenlty implemented:
4822 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4823 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4824 * USB W2FC fffb4000 - fffb47ff
4825 * Camera Interface fffb6800 - fffb6fff
4826 * USB Host fffba000 - fffba7ff
4827 * FAC fffba800 - fffbafff
4828 * HDQ/1-Wire fffbc000 - fffbc7ff
4829 * TIPB switches fffbc800 - fffbcfff
4830 * Mailbox fffcf000 - fffcf7ff
4831 * Local bus IF fffec100 - fffec1ff
4832 * Local bus MMU fffec200 - fffec2ff
4833 * DSP MMU fffed200 - fffed2ff
4834 */
4835
4836 omap_setup_dsp_mapping(omap15xx_dsp_mm);
4837 omap_setup_mpui_io(s);
4838
4839 qemu_register_reset(omap1_mpu_reset, s);
4840
4841 return s;
4842 }