]> git.proxmox.com Git - qemu.git/blob - hw/pc.c
microblaze: Boot and reset fixes.
[qemu.git] / hw / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "pc.h"
26 #include "fdc.h"
27 #include "pci.h"
28 #include "vmware_vga.h"
29 #include "usb-uhci.h"
30 #include "usb-ohci.h"
31 #include "prep_pci.h"
32 #include "apb_pci.h"
33 #include "block.h"
34 #include "sysemu.h"
35 #include "audio/audio.h"
36 #include "net.h"
37 #include "smbus.h"
38 #include "boards.h"
39 #include "monitor.h"
40 #include "fw_cfg.h"
41 #include "hpet_emul.h"
42 #include "watchdog.h"
43 #include "smbios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47
48 /* output Bochs bios info messages */
49 //#define DEBUG_BIOS
50
51 /* Show multiboot debug output */
52 //#define DEBUG_MULTIBOOT
53
54 #define BIOS_FILENAME "bios.bin"
55
56 #define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
57
58 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
59 #define ACPI_DATA_SIZE 0x10000
60 #define BIOS_CFG_IOPORT 0x510
61 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
62 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
63 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
64
65 #define MAX_IDE_BUS 2
66
67 static fdctrl_t *floppy_controller;
68 static RTCState *rtc_state;
69 static PITState *pit;
70 static PCII440FXState *i440fx_state;
71
72 typedef struct isa_irq_state {
73 qemu_irq *i8259;
74 qemu_irq *ioapic;
75 } IsaIrqState;
76
77 static void isa_irq_handler(void *opaque, int n, int level)
78 {
79 IsaIrqState *isa = (IsaIrqState *)opaque;
80
81 if (n < 16) {
82 qemu_set_irq(isa->i8259[n], level);
83 }
84 if (isa->ioapic)
85 qemu_set_irq(isa->ioapic[n], level);
86 };
87
88 static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
89 {
90 }
91
92 /* MSDOS compatibility mode FPU exception support */
93 static qemu_irq ferr_irq;
94 /* XXX: add IGNNE support */
95 void cpu_set_ferr(CPUX86State *s)
96 {
97 qemu_irq_raise(ferr_irq);
98 }
99
100 static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data)
101 {
102 qemu_irq_lower(ferr_irq);
103 }
104
105 /* TSC handling */
106 uint64_t cpu_get_tsc(CPUX86State *env)
107 {
108 return cpu_get_ticks();
109 }
110
111 /* SMM support */
112 void cpu_smm_update(CPUState *env)
113 {
114 if (i440fx_state && env == first_cpu)
115 i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1);
116 }
117
118
119 /* IRQ handling */
120 int cpu_get_pic_interrupt(CPUState *env)
121 {
122 int intno;
123
124 intno = apic_get_interrupt(env);
125 if (intno >= 0) {
126 /* set irq request if a PIC irq is still pending */
127 /* XXX: improve that */
128 pic_update_irq(isa_pic);
129 return intno;
130 }
131 /* read the irq from the PIC */
132 if (!apic_accept_pic_intr(env))
133 return -1;
134
135 intno = pic_read_irq(isa_pic);
136 return intno;
137 }
138
139 static void pic_irq_request(void *opaque, int irq, int level)
140 {
141 CPUState *env = first_cpu;
142
143 if (env->apic_state) {
144 while (env) {
145 if (apic_accept_pic_intr(env))
146 apic_deliver_pic_intr(env, level);
147 env = env->next_cpu;
148 }
149 } else {
150 if (level)
151 cpu_interrupt(env, CPU_INTERRUPT_HARD);
152 else
153 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
154 }
155 }
156
157 /* PC cmos mappings */
158
159 #define REG_EQUIPMENT_BYTE 0x14
160
161 static int cmos_get_fd_drive_type(int fd0)
162 {
163 int val;
164
165 switch (fd0) {
166 case 0:
167 /* 1.44 Mb 3"5 drive */
168 val = 4;
169 break;
170 case 1:
171 /* 2.88 Mb 3"5 drive */
172 val = 5;
173 break;
174 case 2:
175 /* 1.2 Mb 5"5 drive */
176 val = 2;
177 break;
178 default:
179 val = 0;
180 break;
181 }
182 return val;
183 }
184
185 static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd)
186 {
187 RTCState *s = rtc_state;
188 int cylinders, heads, sectors;
189 bdrv_get_geometry_hint(hd, &cylinders, &heads, &sectors);
190 rtc_set_memory(s, type_ofs, 47);
191 rtc_set_memory(s, info_ofs, cylinders);
192 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
193 rtc_set_memory(s, info_ofs + 2, heads);
194 rtc_set_memory(s, info_ofs + 3, 0xff);
195 rtc_set_memory(s, info_ofs + 4, 0xff);
196 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
197 rtc_set_memory(s, info_ofs + 6, cylinders);
198 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
199 rtc_set_memory(s, info_ofs + 8, sectors);
200 }
201
202 /* convert boot_device letter to something recognizable by the bios */
203 static int boot_device2nibble(char boot_device)
204 {
205 switch(boot_device) {
206 case 'a':
207 case 'b':
208 return 0x01; /* floppy boot */
209 case 'c':
210 return 0x02; /* hard drive boot */
211 case 'd':
212 return 0x03; /* CD-ROM boot */
213 case 'n':
214 return 0x04; /* Network boot */
215 }
216 return 0;
217 }
218
219 /* copy/pasted from cmos_init, should be made a general function
220 and used there as well */
221 static int pc_boot_set(void *opaque, const char *boot_device)
222 {
223 Monitor *mon = cur_mon;
224 #define PC_MAX_BOOT_DEVICES 3
225 RTCState *s = (RTCState *)opaque;
226 int nbds, bds[3] = { 0, };
227 int i;
228
229 nbds = strlen(boot_device);
230 if (nbds > PC_MAX_BOOT_DEVICES) {
231 monitor_printf(mon, "Too many boot devices for PC\n");
232 return(1);
233 }
234 for (i = 0; i < nbds; i++) {
235 bds[i] = boot_device2nibble(boot_device[i]);
236 if (bds[i] == 0) {
237 monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
238 boot_device[i]);
239 return(1);
240 }
241 }
242 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
243 rtc_set_memory(s, 0x38, (bds[2] << 4));
244 return(0);
245 }
246
247 /* hd_table must contain 4 block drivers */
248 static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
249 const char *boot_device, DriveInfo **hd_table)
250 {
251 RTCState *s = rtc_state;
252 int nbds, bds[3] = { 0, };
253 int val;
254 int fd0, fd1, nb;
255 int i;
256
257 /* various important CMOS locations needed by PC/Bochs bios */
258
259 /* memory size */
260 val = 640; /* base memory in K */
261 rtc_set_memory(s, 0x15, val);
262 rtc_set_memory(s, 0x16, val >> 8);
263
264 val = (ram_size / 1024) - 1024;
265 if (val > 65535)
266 val = 65535;
267 rtc_set_memory(s, 0x17, val);
268 rtc_set_memory(s, 0x18, val >> 8);
269 rtc_set_memory(s, 0x30, val);
270 rtc_set_memory(s, 0x31, val >> 8);
271
272 if (above_4g_mem_size) {
273 rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
274 rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
275 rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
276 }
277
278 if (ram_size > (16 * 1024 * 1024))
279 val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
280 else
281 val = 0;
282 if (val > 65535)
283 val = 65535;
284 rtc_set_memory(s, 0x34, val);
285 rtc_set_memory(s, 0x35, val >> 8);
286
287 /* set the number of CPU */
288 rtc_set_memory(s, 0x5f, smp_cpus - 1);
289
290 /* set boot devices, and disable floppy signature check if requested */
291 #define PC_MAX_BOOT_DEVICES 3
292 nbds = strlen(boot_device);
293 if (nbds > PC_MAX_BOOT_DEVICES) {
294 fprintf(stderr, "Too many boot devices for PC\n");
295 exit(1);
296 }
297 for (i = 0; i < nbds; i++) {
298 bds[i] = boot_device2nibble(boot_device[i]);
299 if (bds[i] == 0) {
300 fprintf(stderr, "Invalid boot device for PC: '%c'\n",
301 boot_device[i]);
302 exit(1);
303 }
304 }
305 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
306 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
307
308 /* floppy type */
309
310 fd0 = fdctrl_get_drive_type(floppy_controller, 0);
311 fd1 = fdctrl_get_drive_type(floppy_controller, 1);
312
313 val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1);
314 rtc_set_memory(s, 0x10, val);
315
316 val = 0;
317 nb = 0;
318 if (fd0 < 3)
319 nb++;
320 if (fd1 < 3)
321 nb++;
322 switch (nb) {
323 case 0:
324 break;
325 case 1:
326 val |= 0x01; /* 1 drive, ready for boot */
327 break;
328 case 2:
329 val |= 0x41; /* 2 drives, ready for boot */
330 break;
331 }
332 val |= 0x02; /* FPU is there */
333 val |= 0x04; /* PS/2 mouse installed */
334 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
335
336 /* hard drives */
337
338 rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0));
339 if (hd_table[0])
340 cmos_init_hd(0x19, 0x1b, hd_table[0]->bdrv);
341 if (hd_table[1])
342 cmos_init_hd(0x1a, 0x24, hd_table[1]->bdrv);
343
344 val = 0;
345 for (i = 0; i < 4; i++) {
346 if (hd_table[i]) {
347 int cylinders, heads, sectors, translation;
348 /* NOTE: bdrv_get_geometry_hint() returns the physical
349 geometry. It is always such that: 1 <= sects <= 63, 1
350 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
351 geometry can be different if a translation is done. */
352 translation = bdrv_get_translation_hint(hd_table[i]->bdrv);
353 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
354 bdrv_get_geometry_hint(hd_table[i]->bdrv, &cylinders, &heads, &sectors);
355 if (cylinders <= 1024 && heads <= 16 && sectors <= 63) {
356 /* No translation. */
357 translation = 0;
358 } else {
359 /* LBA translation. */
360 translation = 1;
361 }
362 } else {
363 translation--;
364 }
365 val |= translation << (i * 2);
366 }
367 }
368 rtc_set_memory(s, 0x39, val);
369 }
370
371 void ioport_set_a20(int enable)
372 {
373 /* XXX: send to all CPUs ? */
374 cpu_x86_set_a20(first_cpu, enable);
375 }
376
377 int ioport_get_a20(void)
378 {
379 return ((first_cpu->a20_mask >> 20) & 1);
380 }
381
382 static void ioport92_write(void *opaque, uint32_t addr, uint32_t val)
383 {
384 ioport_set_a20((val >> 1) & 1);
385 /* XXX: bit 0 is fast reset */
386 }
387
388 static uint32_t ioport92_read(void *opaque, uint32_t addr)
389 {
390 return ioport_get_a20() << 1;
391 }
392
393 /***********************************************************/
394 /* Bochs BIOS debug ports */
395
396 static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
397 {
398 static const char shutdown_str[8] = "Shutdown";
399 static int shutdown_index = 0;
400
401 switch(addr) {
402 /* Bochs BIOS messages */
403 case 0x400:
404 case 0x401:
405 fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
406 exit(1);
407 case 0x402:
408 case 0x403:
409 #ifdef DEBUG_BIOS
410 fprintf(stderr, "%c", val);
411 #endif
412 break;
413 case 0x8900:
414 /* same as Bochs power off */
415 if (val == shutdown_str[shutdown_index]) {
416 shutdown_index++;
417 if (shutdown_index == 8) {
418 shutdown_index = 0;
419 qemu_system_shutdown_request();
420 }
421 } else {
422 shutdown_index = 0;
423 }
424 break;
425
426 /* LGPL'ed VGA BIOS messages */
427 case 0x501:
428 case 0x502:
429 fprintf(stderr, "VGA BIOS panic, line %d\n", val);
430 exit(1);
431 case 0x500:
432 case 0x503:
433 #ifdef DEBUG_BIOS
434 fprintf(stderr, "%c", val);
435 #endif
436 break;
437 }
438 }
439
440 static void *bochs_bios_init(void)
441 {
442 void *fw_cfg;
443 uint8_t *smbios_table;
444 size_t smbios_len;
445 uint64_t *numa_fw_cfg;
446 int i, j;
447
448 register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
449 register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
450 register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
451 register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL);
452 register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL);
453
454 register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL);
455 register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
456 register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
457 register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
458
459 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
460
461 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
462 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
463 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
464 acpi_tables_len);
465 fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1);
466
467 smbios_table = smbios_get_table(&smbios_len);
468 if (smbios_table)
469 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
470 smbios_table, smbios_len);
471
472 /* allocate memory for the NUMA channel: one (64bit) word for the number
473 * of nodes, one word for each VCPU->node and one word for each node to
474 * hold the amount of memory.
475 */
476 numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
477 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
478 for (i = 0; i < smp_cpus; i++) {
479 for (j = 0; j < nb_numa_nodes; j++) {
480 if (node_cpumask[j] & (1 << i)) {
481 numa_fw_cfg[i + 1] = cpu_to_le64(j);
482 break;
483 }
484 }
485 }
486 for (i = 0; i < nb_numa_nodes; i++) {
487 numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
488 }
489 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
490 (1 + smp_cpus + nb_numa_nodes) * 8);
491
492 return fw_cfg;
493 }
494
495 static long get_file_size(FILE *f)
496 {
497 long where, size;
498
499 /* XXX: on Unix systems, using fstat() probably makes more sense */
500
501 where = ftell(f);
502 fseek(f, 0, SEEK_END);
503 size = ftell(f);
504 fseek(f, where, SEEK_SET);
505
506 return size;
507 }
508
509 #define MULTIBOOT_STRUCT_ADDR 0x9000
510
511 #if MULTIBOOT_STRUCT_ADDR > 0xf0000
512 #error multiboot struct needs to fit in 16 bit real mode
513 #endif
514
515 static int load_multiboot(void *fw_cfg,
516 FILE *f,
517 const char *kernel_filename,
518 const char *initrd_filename,
519 const char *kernel_cmdline,
520 uint8_t *header)
521 {
522 int i, is_multiboot = 0;
523 uint32_t flags = 0;
524 uint32_t mh_entry_addr;
525 uint32_t mh_load_addr;
526 uint32_t mb_kernel_size;
527 uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
528 uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
529 uint32_t mb_mod_end;
530 uint8_t bootinfo[0x500];
531 uint32_t cmdline = 0x200;
532 uint8_t *mb_kernel_data;
533 uint8_t *mb_bootinfo_data;
534
535 /* Ok, let's see if it is a multiboot image.
536 The header is 12x32bit long, so the latest entry may be 8192 - 48. */
537 for (i = 0; i < (8192 - 48); i += 4) {
538 if (ldl_p(header+i) == 0x1BADB002) {
539 uint32_t checksum = ldl_p(header+i+8);
540 flags = ldl_p(header+i+4);
541 checksum += flags;
542 checksum += (uint32_t)0x1BADB002;
543 if (!checksum) {
544 is_multiboot = 1;
545 break;
546 }
547 }
548 }
549
550 if (!is_multiboot)
551 return 0; /* no multiboot */
552
553 #ifdef DEBUG_MULTIBOOT
554 fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
555 #endif
556 memset(bootinfo, 0, sizeof(bootinfo));
557
558 if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
559 fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
560 }
561 if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
562 uint64_t elf_entry;
563 int kernel_size;
564 fclose(f);
565 kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
566 0, ELF_MACHINE, 0);
567 if (kernel_size < 0) {
568 fprintf(stderr, "Error while loading elf kernel\n");
569 exit(1);
570 }
571 mh_load_addr = mh_entry_addr = elf_entry;
572 mb_kernel_size = kernel_size;
573
574 mb_kernel_data = qemu_malloc(mb_kernel_size);
575 if (rom_copy(mb_kernel_data, elf_entry, kernel_size) != kernel_size) {
576 fprintf(stderr, "Error while fetching elf kernel from rom\n");
577 exit(1);
578 }
579
580 #ifdef DEBUG_MULTIBOOT
581 fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
582 mb_kernel_size, (size_t)mh_entry_addr);
583 #endif
584 } else {
585 /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
586 uint32_t mh_header_addr = ldl_p(header+i+12);
587 mh_load_addr = ldl_p(header+i+16);
588 #ifdef DEBUG_MULTIBOOT
589 uint32_t mh_load_end_addr = ldl_p(header+i+20);
590 uint32_t mh_bss_end_addr = ldl_p(header+i+24);
591 #endif
592 uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
593
594 mh_entry_addr = ldl_p(header+i+28);
595 mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
596
597 /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
598 uint32_t mh_mode_type = ldl_p(header+i+32);
599 uint32_t mh_width = ldl_p(header+i+36);
600 uint32_t mh_height = ldl_p(header+i+40);
601 uint32_t mh_depth = ldl_p(header+i+44); */
602
603 #ifdef DEBUG_MULTIBOOT
604 fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
605 fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
606 fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
607 fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
608 fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
609 mb_kernel_size, mh_load_addr);
610 #endif
611
612 mb_kernel_data = qemu_malloc(mb_kernel_size);
613 fseek(f, mb_kernel_text_offset, SEEK_SET);
614 fread(mb_kernel_data, 1, mb_kernel_size, f);
615 fclose(f);
616 }
617
618 /* blob size is only the kernel for now */
619 mb_mod_end = mh_load_addr + mb_kernel_size;
620
621 /* load modules */
622 stl_p(bootinfo + 20, 0x0); /* mods_count */
623 if (initrd_filename) {
624 uint32_t mb_mod_info = 0x100;
625 uint32_t mb_mod_cmdline = 0x300;
626 uint32_t mb_mod_start = mh_load_addr;
627 uint32_t mb_mod_length = mb_kernel_size;
628 char *next_initrd;
629 char *next_space;
630 int mb_mod_count = 0;
631
632 do {
633 if (mb_mod_info + 16 > mb_mod_cmdline) {
634 printf("WARNING: Too many modules loaded, aborting.\n");
635 break;
636 }
637
638 next_initrd = strchr(initrd_filename, ',');
639 if (next_initrd)
640 *next_initrd = '\0';
641 /* if a space comes after the module filename, treat everything
642 after that as parameters */
643 pstrcpy((char*)bootinfo + mb_mod_cmdline,
644 sizeof(bootinfo) - mb_mod_cmdline,
645 initrd_filename);
646 stl_p(bootinfo + mb_mod_info + 8, mb_bootinfo + mb_mod_cmdline); /* string */
647 mb_mod_cmdline += strlen(initrd_filename) + 1;
648 if (mb_mod_cmdline > sizeof(bootinfo)) {
649 mb_mod_cmdline = sizeof(bootinfo);
650 printf("WARNING: Too many module cmdlines loaded, aborting.\n");
651 break;
652 }
653 if ((next_space = strchr(initrd_filename, ' ')))
654 *next_space = '\0';
655 #ifdef DEBUG_MULTIBOOT
656 printf("multiboot loading module: %s\n", initrd_filename);
657 #endif
658 mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
659 & (TARGET_PAGE_MASK);
660 mb_mod_length = get_image_size(initrd_filename);
661 if (mb_mod_length < 0) {
662 fprintf(stderr, "failed to get %s image size\n", initrd_filename);
663 exit(1);
664 }
665 mb_mod_end = mb_mod_start + mb_mod_length;
666 mb_mod_count++;
667
668 /* append module data at the end of last module */
669 mb_kernel_data = qemu_realloc(mb_kernel_data,
670 mb_mod_end - mh_load_addr);
671 load_image(initrd_filename,
672 mb_kernel_data + mb_mod_start - mh_load_addr);
673
674 stl_p(bootinfo + mb_mod_info + 0, mb_mod_start);
675 stl_p(bootinfo + mb_mod_info + 4, mb_mod_start + mb_mod_length);
676 stl_p(bootinfo + mb_mod_info + 12, 0x0); /* reserved */
677 #ifdef DEBUG_MULTIBOOT
678 printf("mod_start: %#x\nmod_end: %#x\n", mb_mod_start,
679 mb_mod_start + mb_mod_length);
680 #endif
681 initrd_filename = next_initrd+1;
682 mb_mod_info += 16;
683 } while (next_initrd);
684 stl_p(bootinfo + 20, mb_mod_count); /* mods_count */
685 stl_p(bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
686 }
687
688 /* Commandline support */
689 stl_p(bootinfo + 16, mb_bootinfo + cmdline);
690 snprintf((char*)bootinfo + cmdline, 0x100, "%s %s",
691 kernel_filename, kernel_cmdline);
692
693 /* the kernel is where we want it to be now */
694 #define MULTIBOOT_FLAGS_MEMORY (1 << 0)
695 #define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
696 #define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
697 #define MULTIBOOT_FLAGS_MODULES (1 << 3)
698 #define MULTIBOOT_FLAGS_MMAP (1 << 6)
699 stl_p(bootinfo, MULTIBOOT_FLAGS_MEMORY
700 | MULTIBOOT_FLAGS_BOOT_DEVICE
701 | MULTIBOOT_FLAGS_CMDLINE
702 | MULTIBOOT_FLAGS_MODULES
703 | MULTIBOOT_FLAGS_MMAP);
704 stl_p(bootinfo + 4, 640); /* mem_lower */
705 stl_p(bootinfo + 8, ram_size / 1024); /* mem_upper */
706 stl_p(bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
707 stl_p(bootinfo + 48, mmap_addr); /* mmap_addr */
708
709 #ifdef DEBUG_MULTIBOOT
710 fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
711 #endif
712
713 /* save bootinfo off the stack */
714 mb_bootinfo_data = qemu_malloc(sizeof(bootinfo));
715 memcpy(mb_bootinfo_data, bootinfo, sizeof(bootinfo));
716
717 /* Pass variables to option rom */
718 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, mh_entry_addr);
719 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
720 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, mb_mod_end - mh_load_addr);
721 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, mb_kernel_data,
722 mb_mod_end - mh_load_addr);
723
724 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
725 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, sizeof(bootinfo));
726 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, mb_bootinfo_data,
727 sizeof(bootinfo));
728
729 option_rom[nb_option_roms] = "multiboot.bin";
730 nb_option_roms++;
731
732 return 1; /* yes, we are multiboot */
733 }
734
735 static void load_linux(void *fw_cfg,
736 const char *kernel_filename,
737 const char *initrd_filename,
738 const char *kernel_cmdline,
739 target_phys_addr_t max_ram_size)
740 {
741 uint16_t protocol;
742 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
743 uint32_t initrd_max;
744 uint8_t header[8192], *setup, *kernel, *initrd_data;
745 target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
746 FILE *f;
747 char *vmode;
748
749 /* Align to 16 bytes as a paranoia measure */
750 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
751
752 /* load the kernel header */
753 f = fopen(kernel_filename, "rb");
754 if (!f || !(kernel_size = get_file_size(f)) ||
755 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
756 MIN(ARRAY_SIZE(header), kernel_size)) {
757 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
758 kernel_filename, strerror(errno));
759 exit(1);
760 }
761
762 /* kernel protocol version */
763 #if 0
764 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
765 #endif
766 if (ldl_p(header+0x202) == 0x53726448)
767 protocol = lduw_p(header+0x206);
768 else {
769 /* This looks like a multiboot kernel. If it is, let's stop
770 treating it like a Linux kernel. */
771 if (load_multiboot(fw_cfg, f, kernel_filename,
772 initrd_filename, kernel_cmdline, header))
773 return;
774 protocol = 0;
775 }
776
777 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
778 /* Low kernel */
779 real_addr = 0x90000;
780 cmdline_addr = 0x9a000 - cmdline_size;
781 prot_addr = 0x10000;
782 } else if (protocol < 0x202) {
783 /* High but ancient kernel */
784 real_addr = 0x90000;
785 cmdline_addr = 0x9a000 - cmdline_size;
786 prot_addr = 0x100000;
787 } else {
788 /* High and recent kernel */
789 real_addr = 0x10000;
790 cmdline_addr = 0x20000;
791 prot_addr = 0x100000;
792 }
793
794 #if 0
795 fprintf(stderr,
796 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
797 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
798 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
799 real_addr,
800 cmdline_addr,
801 prot_addr);
802 #endif
803
804 /* highest address for loading the initrd */
805 if (protocol >= 0x203)
806 initrd_max = ldl_p(header+0x22c);
807 else
808 initrd_max = 0x37ffffff;
809
810 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
811 initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
812
813 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
814 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
815 fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
816 (uint8_t*)strdup(kernel_cmdline),
817 strlen(kernel_cmdline)+1);
818
819 if (protocol >= 0x202) {
820 stl_p(header+0x228, cmdline_addr);
821 } else {
822 stw_p(header+0x20, 0xA33F);
823 stw_p(header+0x22, cmdline_addr-real_addr);
824 }
825
826 /* handle vga= parameter */
827 vmode = strstr(kernel_cmdline, "vga=");
828 if (vmode) {
829 unsigned int video_mode;
830 /* skip "vga=" */
831 vmode += 4;
832 if (!strncmp(vmode, "normal", 6)) {
833 video_mode = 0xffff;
834 } else if (!strncmp(vmode, "ext", 3)) {
835 video_mode = 0xfffe;
836 } else if (!strncmp(vmode, "ask", 3)) {
837 video_mode = 0xfffd;
838 } else {
839 video_mode = strtol(vmode, NULL, 0);
840 }
841 stw_p(header+0x1fa, video_mode);
842 }
843
844 /* loader type */
845 /* High nybble = B reserved for Qemu; low nybble is revision number.
846 If this code is substantially changed, you may want to consider
847 incrementing the revision. */
848 if (protocol >= 0x200)
849 header[0x210] = 0xB0;
850
851 /* heap */
852 if (protocol >= 0x201) {
853 header[0x211] |= 0x80; /* CAN_USE_HEAP */
854 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
855 }
856
857 /* load initrd */
858 if (initrd_filename) {
859 if (protocol < 0x200) {
860 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
861 exit(1);
862 }
863
864 initrd_size = get_image_size(initrd_filename);
865 initrd_addr = (initrd_max-initrd_size) & ~4095;
866
867 initrd_data = qemu_malloc(initrd_size);
868 load_image(initrd_filename, initrd_data);
869
870 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
871 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
872 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
873
874 stl_p(header+0x218, initrd_addr);
875 stl_p(header+0x21c, initrd_size);
876 }
877
878 /* load kernel and setup */
879 setup_size = header[0x1f1];
880 if (setup_size == 0)
881 setup_size = 4;
882 setup_size = (setup_size+1)*512;
883 kernel_size -= setup_size;
884
885 setup = qemu_malloc(setup_size);
886 kernel = qemu_malloc(kernel_size);
887 fseek(f, 0, SEEK_SET);
888 fread(setup, 1, setup_size, f);
889 fread(kernel, 1, kernel_size, f);
890 fclose(f);
891 memcpy(setup, header, MIN(sizeof(header), setup_size));
892
893 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
894 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
895 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
896
897 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
898 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
899 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
900
901 option_rom[nb_option_roms] = "linuxboot.bin";
902 nb_option_roms++;
903 }
904
905 static const int ide_iobase[2] = { 0x1f0, 0x170 };
906 static const int ide_iobase2[2] = { 0x3f6, 0x376 };
907 static const int ide_irq[2] = { 14, 15 };
908
909 #define NE2000_NB_MAX 6
910
911 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
912 0x280, 0x380 };
913 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
914
915 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
916 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
917
918 #ifdef HAS_AUDIO
919 static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
920 {
921 struct soundhw *c;
922
923 for (c = soundhw; c->name; ++c) {
924 if (c->enabled) {
925 if (c->isa) {
926 c->init.init_isa(pic);
927 } else {
928 if (pci_bus) {
929 c->init.init_pci(pci_bus);
930 }
931 }
932 }
933 }
934 }
935 #endif
936
937 static void pc_init_ne2k_isa(NICInfo *nd)
938 {
939 static int nb_ne2k = 0;
940
941 if (nb_ne2k == NE2000_NB_MAX)
942 return;
943 isa_ne2000_init(ne2000_io[nb_ne2k],
944 ne2000_irq[nb_ne2k], nd);
945 nb_ne2k++;
946 }
947
948 int cpu_is_bsp(CPUState *env)
949 {
950 return env->cpuid_apic_id == 0;
951 }
952
953 static CPUState *pc_new_cpu(const char *cpu_model)
954 {
955 CPUState *env;
956
957 env = cpu_init(cpu_model);
958 if (!env) {
959 fprintf(stderr, "Unable to find x86 CPU definition\n");
960 exit(1);
961 }
962 if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
963 env->cpuid_apic_id = env->cpu_index;
964 /* APIC reset callback resets cpu */
965 apic_init(env);
966 } else {
967 qemu_register_reset((QEMUResetHandler*)cpu_reset, env);
968 }
969 return env;
970 }
971
972 /* PC hardware initialisation */
973 static void pc_init1(ram_addr_t ram_size,
974 const char *boot_device,
975 const char *kernel_filename,
976 const char *kernel_cmdline,
977 const char *initrd_filename,
978 const char *cpu_model,
979 int pci_enabled)
980 {
981 char *filename;
982 int ret, linux_boot, i;
983 ram_addr_t ram_addr, bios_offset, option_rom_offset;
984 ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
985 int bios_size, isa_bios_size;
986 PCIBus *pci_bus;
987 ISADevice *isa_dev;
988 int piix3_devfn = -1;
989 CPUState *env;
990 qemu_irq *cpu_irq;
991 qemu_irq *isa_irq;
992 qemu_irq *i8259;
993 IsaIrqState *isa_irq_state;
994 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
995 DriveInfo *fd[MAX_FD];
996 void *fw_cfg;
997
998 if (ram_size >= 0xe0000000 ) {
999 above_4g_mem_size = ram_size - 0xe0000000;
1000 below_4g_mem_size = 0xe0000000;
1001 } else {
1002 below_4g_mem_size = ram_size;
1003 }
1004
1005 linux_boot = (kernel_filename != NULL);
1006
1007 /* init CPUs */
1008 if (cpu_model == NULL) {
1009 #ifdef TARGET_X86_64
1010 cpu_model = "qemu64";
1011 #else
1012 cpu_model = "qemu32";
1013 #endif
1014 }
1015
1016 for (i = 0; i < smp_cpus; i++) {
1017 env = pc_new_cpu(cpu_model);
1018 }
1019
1020 vmport_init();
1021
1022 /* allocate RAM */
1023 ram_addr = qemu_ram_alloc(0xa0000);
1024 cpu_register_physical_memory(0, 0xa0000, ram_addr);
1025
1026 /* Allocate, even though we won't register, so we don't break the
1027 * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
1028 * and some bios areas, which will be registered later
1029 */
1030 ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
1031 ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
1032 cpu_register_physical_memory(0x100000,
1033 below_4g_mem_size - 0x100000,
1034 ram_addr);
1035
1036 /* above 4giga memory allocation */
1037 if (above_4g_mem_size > 0) {
1038 #if TARGET_PHYS_ADDR_BITS == 32
1039 hw_error("To much RAM for 32-bit physical address");
1040 #else
1041 ram_addr = qemu_ram_alloc(above_4g_mem_size);
1042 cpu_register_physical_memory(0x100000000ULL,
1043 above_4g_mem_size,
1044 ram_addr);
1045 #endif
1046 }
1047
1048
1049 /* BIOS load */
1050 if (bios_name == NULL)
1051 bios_name = BIOS_FILENAME;
1052 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1053 if (filename) {
1054 bios_size = get_image_size(filename);
1055 } else {
1056 bios_size = -1;
1057 }
1058 if (bios_size <= 0 ||
1059 (bios_size % 65536) != 0) {
1060 goto bios_error;
1061 }
1062 bios_offset = qemu_ram_alloc(bios_size);
1063 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size));
1064 if (ret != 0) {
1065 bios_error:
1066 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1067 exit(1);
1068 }
1069 if (filename) {
1070 qemu_free(filename);
1071 }
1072 /* map the last 128KB of the BIOS in ISA space */
1073 isa_bios_size = bios_size;
1074 if (isa_bios_size > (128 * 1024))
1075 isa_bios_size = 128 * 1024;
1076 cpu_register_physical_memory(0x100000 - isa_bios_size,
1077 isa_bios_size,
1078 (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
1079
1080
1081
1082 rom_enable_driver_roms = 1;
1083 option_rom_offset = qemu_ram_alloc(PC_ROM_SIZE);
1084 cpu_register_physical_memory(PC_ROM_MIN_VGA, PC_ROM_SIZE, option_rom_offset);
1085
1086 /* map all the bios at the top of memory */
1087 cpu_register_physical_memory((uint32_t)(-bios_size),
1088 bios_size, bios_offset | IO_MEM_ROM);
1089
1090 fw_cfg = bochs_bios_init();
1091
1092 if (linux_boot) {
1093 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
1094 }
1095
1096 for (i = 0; i < nb_option_roms; i++) {
1097 rom_add_option(option_rom[i]);
1098 }
1099
1100 cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
1101 i8259 = i8259_init(cpu_irq[0]);
1102 isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
1103 isa_irq_state->i8259 = i8259;
1104 isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);
1105
1106 if (pci_enabled) {
1107 pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, isa_irq);
1108 } else {
1109 pci_bus = NULL;
1110 isa_bus_new(NULL);
1111 }
1112 isa_bus_irqs(isa_irq);
1113
1114 ferr_irq = isa_reserve_irq(13);
1115
1116 /* init basic PC hardware */
1117 register_ioport_write(0x80, 1, 1, ioport80_write, NULL);
1118
1119 register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL);
1120
1121 if (cirrus_vga_enabled) {
1122 if (pci_enabled) {
1123 pci_cirrus_vga_init(pci_bus);
1124 } else {
1125 isa_cirrus_vga_init();
1126 }
1127 } else if (vmsvga_enabled) {
1128 if (pci_enabled)
1129 pci_vmsvga_init(pci_bus);
1130 else
1131 fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
1132 } else if (std_vga_enabled) {
1133 if (pci_enabled) {
1134 pci_vga_init(pci_bus, 0, 0);
1135 } else {
1136 isa_vga_init();
1137 }
1138 }
1139
1140 rtc_state = rtc_init(2000);
1141
1142 qemu_register_boot_set(pc_boot_set, rtc_state);
1143
1144 register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
1145 register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
1146
1147 if (pci_enabled) {
1148 isa_irq_state->ioapic = ioapic_init();
1149 }
1150 pit = pit_init(0x40, isa_reserve_irq(0));
1151 pcspk_init(pit);
1152 if (!no_hpet) {
1153 hpet_init(isa_irq);
1154 }
1155
1156 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1157 if (serial_hds[i]) {
1158 serial_isa_init(i, serial_hds[i]);
1159 }
1160 }
1161
1162 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1163 if (parallel_hds[i]) {
1164 parallel_init(i, parallel_hds[i]);
1165 }
1166 }
1167
1168 for(i = 0; i < nb_nics; i++) {
1169 NICInfo *nd = &nd_table[i];
1170
1171 if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
1172 pc_init_ne2k_isa(nd);
1173 else
1174 pci_nic_init_nofail(nd, "e1000", NULL);
1175 }
1176
1177 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
1178 fprintf(stderr, "qemu: too many IDE bus\n");
1179 exit(1);
1180 }
1181
1182 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
1183 hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
1184 }
1185
1186 if (pci_enabled) {
1187 pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
1188 } else {
1189 for(i = 0; i < MAX_IDE_BUS; i++) {
1190 isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
1191 hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
1192 }
1193 }
1194
1195 isa_dev = isa_create_simple("i8042");
1196 DMA_init(0);
1197 #ifdef HAS_AUDIO
1198 audio_init(pci_enabled ? pci_bus : NULL, isa_irq);
1199 #endif
1200
1201 for(i = 0; i < MAX_FD; i++) {
1202 fd[i] = drive_get(IF_FLOPPY, 0, i);
1203 }
1204 floppy_controller = fdctrl_init_isa(fd);
1205
1206 cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
1207
1208 if (pci_enabled && usb_enabled) {
1209 usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
1210 }
1211
1212 if (pci_enabled && acpi_enabled) {
1213 uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
1214 i2c_bus *smbus;
1215
1216 /* TODO: Populate SPD eeprom data. */
1217 smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
1218 isa_reserve_irq(9));
1219 for (i = 0; i < 8; i++) {
1220 DeviceState *eeprom;
1221 eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
1222 qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
1223 qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
1224 qdev_init_nofail(eeprom);
1225 }
1226 piix4_acpi_system_hot_add_init(pci_bus);
1227 }
1228
1229 if (i440fx_state) {
1230 i440fx_init_memory_mappings(i440fx_state);
1231 }
1232
1233 if (pci_enabled) {
1234 int max_bus;
1235 int bus;
1236
1237 max_bus = drive_get_max_bus(IF_SCSI);
1238 for (bus = 0; bus <= max_bus; bus++) {
1239 pci_create_simple(pci_bus, -1, "lsi53c895a");
1240 }
1241 }
1242
1243 /* Add virtio console devices */
1244 if (pci_enabled) {
1245 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
1246 if (virtcon_hds[i]) {
1247 pci_create_simple(pci_bus, -1, "virtio-console-pci");
1248 }
1249 }
1250 }
1251 }
1252
1253 static void pc_init_pci(ram_addr_t ram_size,
1254 const char *boot_device,
1255 const char *kernel_filename,
1256 const char *kernel_cmdline,
1257 const char *initrd_filename,
1258 const char *cpu_model)
1259 {
1260 pc_init1(ram_size, boot_device,
1261 kernel_filename, kernel_cmdline,
1262 initrd_filename, cpu_model, 1);
1263 }
1264
1265 static void pc_init_isa(ram_addr_t ram_size,
1266 const char *boot_device,
1267 const char *kernel_filename,
1268 const char *kernel_cmdline,
1269 const char *initrd_filename,
1270 const char *cpu_model)
1271 {
1272 if (cpu_model == NULL)
1273 cpu_model = "486";
1274 pc_init1(ram_size, boot_device,
1275 kernel_filename, kernel_cmdline,
1276 initrd_filename, cpu_model, 0);
1277 }
1278
1279 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
1280 BIOS will read it and start S3 resume at POST Entry */
1281 void cmos_set_s3_resume(void)
1282 {
1283 if (rtc_state)
1284 rtc_set_memory(rtc_state, 0xF, 0xFE);
1285 }
1286
1287 static QEMUMachine pc_machine = {
1288 .name = "pc-0.11",
1289 .alias = "pc",
1290 .desc = "Standard PC",
1291 .init = pc_init_pci,
1292 .max_cpus = 255,
1293 .is_default = 1,
1294 };
1295
1296 static QEMUMachine pc_machine_v0_10 = {
1297 .name = "pc-0.10",
1298 .desc = "Standard PC, qemu 0.10",
1299 .init = pc_init_pci,
1300 .max_cpus = 255,
1301 .compat_props = (CompatProperty[]) {
1302 {
1303 .driver = "virtio-blk-pci",
1304 .property = "class",
1305 .value = stringify(PCI_CLASS_STORAGE_OTHER),
1306 },{
1307 .driver = "virtio-console-pci",
1308 .property = "class",
1309 .value = stringify(PCI_CLASS_DISPLAY_OTHER),
1310 },{
1311 .driver = "virtio-net-pci",
1312 .property = "vectors",
1313 .value = stringify(0),
1314 },{
1315 .driver = "virtio-blk-pci",
1316 .property = "vectors",
1317 .value = stringify(0),
1318 },
1319 { /* end of list */ }
1320 },
1321 };
1322
1323 static QEMUMachine isapc_machine = {
1324 .name = "isapc",
1325 .desc = "ISA-only PC",
1326 .init = pc_init_isa,
1327 .max_cpus = 1,
1328 };
1329
1330 static void pc_machine_init(void)
1331 {
1332 qemu_register_machine(&pc_machine);
1333 qemu_register_machine(&pc_machine_v0_10);
1334 qemu_register_machine(&isapc_machine);
1335 }
1336
1337 machine_init(pc_machine_init);