]> git.proxmox.com Git - qemu.git/blob - hw/pflash_cfi02.c
sun4u: implement interrupt clearing registers
[qemu.git] / hw / pflash_cfi02.c
1 /*
2 * CFI parallel flash with AMD command set emulation
3 *
4 * Copyright (c) 2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 /*
21 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22 * Supported commands/modes are:
23 * - flash read
24 * - flash write
25 * - flash ID read
26 * - sector erase
27 * - chip erase
28 * - unlock bypass command
29 * - CFI queries
30 *
31 * It does not support flash interleaving.
32 * It does not implement boot blocs with reduced size
33 * It does not implement software data protection as found in many real chips
34 * It does not implement erase suspend/resume commands
35 * It does not implement multiple sectors erase
36 */
37
38 #include "hw.h"
39 #include "flash.h"
40 #include "qemu-timer.h"
41 #include "block.h"
42 #include "exec-memory.h"
43
44 //#define PFLASH_DEBUG
45 #ifdef PFLASH_DEBUG
46 #define DPRINTF(fmt, ...) \
47 do { \
48 printf("PFLASH: " fmt , ## __VA_ARGS__); \
49 } while (0)
50 #else
51 #define DPRINTF(fmt, ...) do { } while (0)
52 #endif
53
54 #define PFLASH_LAZY_ROMD_THRESHOLD 42
55
56 struct pflash_t {
57 BlockDriverState *bs;
58 target_phys_addr_t base;
59 uint32_t sector_len;
60 uint32_t chip_len;
61 int mappings;
62 int width;
63 int wcycle; /* if 0, the flash is read normally */
64 int bypass;
65 int ro;
66 uint8_t cmd;
67 uint8_t status;
68 uint16_t ident[4];
69 uint16_t unlock_addr[2];
70 uint8_t cfi_len;
71 uint8_t cfi_table[0x52];
72 QEMUTimer *timer;
73 /* The device replicates the flash memory across its memory space. Emulate
74 * that by having a container (.mem) filled with an array of aliases
75 * (.mem_mappings) pointing to the flash memory (.orig_mem).
76 */
77 MemoryRegion mem;
78 MemoryRegion *mem_mappings; /* array; one per mapping */
79 MemoryRegion orig_mem;
80 int rom_mode;
81 int read_counter; /* used for lazy switch-back to rom mode */
82 void *storage;
83 };
84
85 /*
86 * Set up replicated mappings of the same region.
87 */
88 static void pflash_setup_mappings(pflash_t *pfl)
89 {
90 unsigned i;
91 target_phys_addr_t size = memory_region_size(&pfl->orig_mem);
92
93 memory_region_init(&pfl->mem, "pflash", pfl->mappings * size);
94 pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
95 for (i = 0; i < pfl->mappings; ++i) {
96 memory_region_init_alias(&pfl->mem_mappings[i], "pflash-alias",
97 &pfl->orig_mem, 0, size);
98 memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
99 }
100 }
101
102 static void pflash_register_memory(pflash_t *pfl, int rom_mode)
103 {
104 memory_region_rom_device_set_readable(&pfl->orig_mem, rom_mode);
105 pfl->rom_mode = rom_mode;
106 }
107
108 static void pflash_timer (void *opaque)
109 {
110 pflash_t *pfl = opaque;
111
112 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
113 /* Reset flash */
114 pfl->status ^= 0x80;
115 if (pfl->bypass) {
116 pfl->wcycle = 2;
117 } else {
118 pflash_register_memory(pfl, 1);
119 pfl->wcycle = 0;
120 }
121 pfl->cmd = 0;
122 }
123
124 static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
125 int width, int be)
126 {
127 target_phys_addr_t boff;
128 uint32_t ret;
129 uint8_t *p;
130
131 DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
132 ret = -1;
133 /* Lazy reset to ROMD mode after a certain amount of read accesses */
134 if (!pfl->rom_mode && pfl->wcycle == 0 &&
135 ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
136 pflash_register_memory(pfl, 1);
137 }
138 offset &= pfl->chip_len - 1;
139 boff = offset & 0xFF;
140 if (pfl->width == 2)
141 boff = boff >> 1;
142 else if (pfl->width == 4)
143 boff = boff >> 2;
144 switch (pfl->cmd) {
145 default:
146 /* This should never happen : reset state & treat it as a read*/
147 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
148 pfl->wcycle = 0;
149 pfl->cmd = 0;
150 case 0x80:
151 /* We accept reads during second unlock sequence... */
152 case 0x00:
153 flash_read:
154 /* Flash area read */
155 p = pfl->storage;
156 switch (width) {
157 case 1:
158 ret = p[offset];
159 // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
160 break;
161 case 2:
162 if (be) {
163 ret = p[offset] << 8;
164 ret |= p[offset + 1];
165 } else {
166 ret = p[offset];
167 ret |= p[offset + 1] << 8;
168 }
169 // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
170 break;
171 case 4:
172 if (be) {
173 ret = p[offset] << 24;
174 ret |= p[offset + 1] << 16;
175 ret |= p[offset + 2] << 8;
176 ret |= p[offset + 3];
177 } else {
178 ret = p[offset];
179 ret |= p[offset + 1] << 8;
180 ret |= p[offset + 2] << 16;
181 ret |= p[offset + 3] << 24;
182 }
183 // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
184 break;
185 }
186 break;
187 case 0x90:
188 /* flash ID read */
189 switch (boff) {
190 case 0x00:
191 case 0x01:
192 ret = pfl->ident[boff & 0x01];
193 break;
194 case 0x02:
195 ret = 0x00; /* Pretend all sectors are unprotected */
196 break;
197 case 0x0E:
198 case 0x0F:
199 if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
200 goto flash_read;
201 ret = pfl->ident[2 + (boff & 0x01)];
202 break;
203 default:
204 goto flash_read;
205 }
206 DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret);
207 break;
208 case 0xA0:
209 case 0x10:
210 case 0x30:
211 /* Status register read */
212 ret = pfl->status;
213 DPRINTF("%s: status %x\n", __func__, ret);
214 /* Toggle bit 6 */
215 pfl->status ^= 0x40;
216 break;
217 case 0x98:
218 /* CFI query mode */
219 if (boff > pfl->cfi_len)
220 ret = 0;
221 else
222 ret = pfl->cfi_table[boff];
223 break;
224 }
225
226 return ret;
227 }
228
229 /* update flash content on disk */
230 static void pflash_update(pflash_t *pfl, int offset,
231 int size)
232 {
233 int offset_end;
234 if (pfl->bs) {
235 offset_end = offset + size;
236 /* round to sectors */
237 offset = offset >> 9;
238 offset_end = (offset_end + 511) >> 9;
239 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
240 offset_end - offset);
241 }
242 }
243
244 static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
245 uint32_t value, int width, int be)
246 {
247 target_phys_addr_t boff;
248 uint8_t *p;
249 uint8_t cmd;
250
251 cmd = value;
252 if (pfl->cmd != 0xA0 && cmd == 0xF0) {
253 #if 0
254 DPRINTF("%s: flash reset asked (%02x %02x)\n",
255 __func__, pfl->cmd, cmd);
256 #endif
257 goto reset_flash;
258 }
259 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
260 offset, value, width, pfl->wcycle);
261 offset &= pfl->chip_len - 1;
262
263 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
264 offset, value, width);
265 boff = offset & (pfl->sector_len - 1);
266 if (pfl->width == 2)
267 boff = boff >> 1;
268 else if (pfl->width == 4)
269 boff = boff >> 2;
270 switch (pfl->wcycle) {
271 case 0:
272 /* Set the device in I/O access mode if required */
273 if (pfl->rom_mode)
274 pflash_register_memory(pfl, 0);
275 pfl->read_counter = 0;
276 /* We're in read mode */
277 check_unlock0:
278 if (boff == 0x55 && cmd == 0x98) {
279 enter_CFI_mode:
280 /* Enter CFI query mode */
281 pfl->wcycle = 7;
282 pfl->cmd = 0x98;
283 return;
284 }
285 if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
286 DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
287 __func__, boff, cmd, pfl->unlock_addr[0]);
288 goto reset_flash;
289 }
290 DPRINTF("%s: unlock sequence started\n", __func__);
291 break;
292 case 1:
293 /* We started an unlock sequence */
294 check_unlock1:
295 if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
296 DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
297 boff, cmd);
298 goto reset_flash;
299 }
300 DPRINTF("%s: unlock sequence done\n", __func__);
301 break;
302 case 2:
303 /* We finished an unlock sequence */
304 if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
305 DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
306 boff, cmd);
307 goto reset_flash;
308 }
309 switch (cmd) {
310 case 0x20:
311 pfl->bypass = 1;
312 goto do_bypass;
313 case 0x80:
314 case 0x90:
315 case 0xA0:
316 pfl->cmd = cmd;
317 DPRINTF("%s: starting command %02x\n", __func__, cmd);
318 break;
319 default:
320 DPRINTF("%s: unknown command %02x\n", __func__, cmd);
321 goto reset_flash;
322 }
323 break;
324 case 3:
325 switch (pfl->cmd) {
326 case 0x80:
327 /* We need another unlock sequence */
328 goto check_unlock0;
329 case 0xA0:
330 DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
331 __func__, offset, value, width);
332 p = pfl->storage;
333 if (!pfl->ro) {
334 switch (width) {
335 case 1:
336 p[offset] &= value;
337 pflash_update(pfl, offset, 1);
338 break;
339 case 2:
340 if (be) {
341 p[offset] &= value >> 8;
342 p[offset + 1] &= value;
343 } else {
344 p[offset] &= value;
345 p[offset + 1] &= value >> 8;
346 }
347 pflash_update(pfl, offset, 2);
348 break;
349 case 4:
350 if (be) {
351 p[offset] &= value >> 24;
352 p[offset + 1] &= value >> 16;
353 p[offset + 2] &= value >> 8;
354 p[offset + 3] &= value;
355 } else {
356 p[offset] &= value;
357 p[offset + 1] &= value >> 8;
358 p[offset + 2] &= value >> 16;
359 p[offset + 3] &= value >> 24;
360 }
361 pflash_update(pfl, offset, 4);
362 break;
363 }
364 }
365 pfl->status = 0x00 | ~(value & 0x80);
366 /* Let's pretend write is immediate */
367 if (pfl->bypass)
368 goto do_bypass;
369 goto reset_flash;
370 case 0x90:
371 if (pfl->bypass && cmd == 0x00) {
372 /* Unlock bypass reset */
373 goto reset_flash;
374 }
375 /* We can enter CFI query mode from autoselect mode */
376 if (boff == 0x55 && cmd == 0x98)
377 goto enter_CFI_mode;
378 /* No break here */
379 default:
380 DPRINTF("%s: invalid write for command %02x\n",
381 __func__, pfl->cmd);
382 goto reset_flash;
383 }
384 case 4:
385 switch (pfl->cmd) {
386 case 0xA0:
387 /* Ignore writes while flash data write is occurring */
388 /* As we suppose write is immediate, this should never happen */
389 return;
390 case 0x80:
391 goto check_unlock1;
392 default:
393 /* Should never happen */
394 DPRINTF("%s: invalid command state %02x (wc 4)\n",
395 __func__, pfl->cmd);
396 goto reset_flash;
397 }
398 break;
399 case 5:
400 switch (cmd) {
401 case 0x10:
402 if (boff != pfl->unlock_addr[0]) {
403 DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
404 __func__, offset);
405 goto reset_flash;
406 }
407 /* Chip erase */
408 DPRINTF("%s: start chip erase\n", __func__);
409 if (!pfl->ro) {
410 memset(pfl->storage, 0xFF, pfl->chip_len);
411 pflash_update(pfl, 0, pfl->chip_len);
412 }
413 pfl->status = 0x00;
414 /* Let's wait 5 seconds before chip erase is done */
415 qemu_mod_timer(pfl->timer,
416 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5));
417 break;
418 case 0x30:
419 /* Sector erase */
420 p = pfl->storage;
421 offset &= ~(pfl->sector_len - 1);
422 DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
423 offset);
424 if (!pfl->ro) {
425 memset(p + offset, 0xFF, pfl->sector_len);
426 pflash_update(pfl, offset, pfl->sector_len);
427 }
428 pfl->status = 0x00;
429 /* Let's wait 1/2 second before sector erase is done */
430 qemu_mod_timer(pfl->timer,
431 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2));
432 break;
433 default:
434 DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
435 goto reset_flash;
436 }
437 pfl->cmd = cmd;
438 break;
439 case 6:
440 switch (pfl->cmd) {
441 case 0x10:
442 /* Ignore writes during chip erase */
443 return;
444 case 0x30:
445 /* Ignore writes during sector erase */
446 return;
447 default:
448 /* Should never happen */
449 DPRINTF("%s: invalid command state %02x (wc 6)\n",
450 __func__, pfl->cmd);
451 goto reset_flash;
452 }
453 break;
454 case 7: /* Special value for CFI queries */
455 DPRINTF("%s: invalid write in CFI query mode\n", __func__);
456 goto reset_flash;
457 default:
458 /* Should never happen */
459 DPRINTF("%s: invalid write state (wc 7)\n", __func__);
460 goto reset_flash;
461 }
462 pfl->wcycle++;
463
464 return;
465
466 /* Reset flash */
467 reset_flash:
468 pfl->bypass = 0;
469 pfl->wcycle = 0;
470 pfl->cmd = 0;
471 return;
472
473 do_bypass:
474 pfl->wcycle = 2;
475 pfl->cmd = 0;
476 return;
477 }
478
479
480 static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
481 {
482 return pflash_read(opaque, addr, 1, 1);
483 }
484
485 static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
486 {
487 return pflash_read(opaque, addr, 1, 0);
488 }
489
490 static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
491 {
492 pflash_t *pfl = opaque;
493
494 return pflash_read(pfl, addr, 2, 1);
495 }
496
497 static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
498 {
499 pflash_t *pfl = opaque;
500
501 return pflash_read(pfl, addr, 2, 0);
502 }
503
504 static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
505 {
506 pflash_t *pfl = opaque;
507
508 return pflash_read(pfl, addr, 4, 1);
509 }
510
511 static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
512 {
513 pflash_t *pfl = opaque;
514
515 return pflash_read(pfl, addr, 4, 0);
516 }
517
518 static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
519 uint32_t value)
520 {
521 pflash_write(opaque, addr, value, 1, 1);
522 }
523
524 static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
525 uint32_t value)
526 {
527 pflash_write(opaque, addr, value, 1, 0);
528 }
529
530 static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
531 uint32_t value)
532 {
533 pflash_t *pfl = opaque;
534
535 pflash_write(pfl, addr, value, 2, 1);
536 }
537
538 static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
539 uint32_t value)
540 {
541 pflash_t *pfl = opaque;
542
543 pflash_write(pfl, addr, value, 2, 0);
544 }
545
546 static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
547 uint32_t value)
548 {
549 pflash_t *pfl = opaque;
550
551 pflash_write(pfl, addr, value, 4, 1);
552 }
553
554 static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
555 uint32_t value)
556 {
557 pflash_t *pfl = opaque;
558
559 pflash_write(pfl, addr, value, 4, 0);
560 }
561
562 static const MemoryRegionOps pflash_cfi02_ops_be = {
563 .old_mmio = {
564 .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
565 .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
566 },
567 .endianness = DEVICE_NATIVE_ENDIAN,
568 };
569
570 static const MemoryRegionOps pflash_cfi02_ops_le = {
571 .old_mmio = {
572 .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
573 .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
574 },
575 .endianness = DEVICE_NATIVE_ENDIAN,
576 };
577
578 /* Count trailing zeroes of a 32 bits quantity */
579 static int ctz32 (uint32_t n)
580 {
581 int ret;
582
583 ret = 0;
584 if (!(n & 0xFFFF)) {
585 ret += 16;
586 n = n >> 16;
587 }
588 if (!(n & 0xFF)) {
589 ret += 8;
590 n = n >> 8;
591 }
592 if (!(n & 0xF)) {
593 ret += 4;
594 n = n >> 4;
595 }
596 if (!(n & 0x3)) {
597 ret += 2;
598 n = n >> 2;
599 }
600 if (!(n & 0x1)) {
601 ret++;
602 #if 0 /* This is not necessary as n is never 0 */
603 n = n >> 1;
604 #endif
605 }
606 #if 0 /* This is not necessary as n is never 0 */
607 if (!n)
608 ret++;
609 #endif
610
611 return ret;
612 }
613
614 pflash_t *pflash_cfi02_register(target_phys_addr_t base,
615 DeviceState *qdev, const char *name,
616 target_phys_addr_t size,
617 BlockDriverState *bs, uint32_t sector_len,
618 int nb_blocs, int nb_mappings, int width,
619 uint16_t id0, uint16_t id1,
620 uint16_t id2, uint16_t id3,
621 uint16_t unlock_addr0, uint16_t unlock_addr1,
622 int be)
623 {
624 pflash_t *pfl;
625 int32_t chip_len;
626 int ret;
627
628 chip_len = sector_len * nb_blocs;
629 /* XXX: to be fixed */
630 #if 0
631 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
632 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
633 return NULL;
634 #endif
635 pfl = g_malloc0(sizeof(pflash_t));
636 memory_region_init_rom_device(
637 &pfl->orig_mem, be ? &pflash_cfi02_ops_be : &pflash_cfi02_ops_le, pfl,
638 name, size);
639 vmstate_register_ram(&pfl->orig_mem, qdev);
640 pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
641 pfl->base = base;
642 pfl->chip_len = chip_len;
643 pfl->mappings = nb_mappings;
644 pfl->bs = bs;
645 if (pfl->bs) {
646 /* read the initial flash content */
647 ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
648 if (ret < 0) {
649 g_free(pfl);
650 return NULL;
651 }
652 bdrv_attach_dev_nofail(pfl->bs, pfl);
653 }
654
655 pflash_setup_mappings(pfl);
656 pfl->rom_mode = 1;
657 memory_region_add_subregion(get_system_memory(), pfl->base, &pfl->mem);
658
659 if (pfl->bs) {
660 pfl->ro = bdrv_is_read_only(pfl->bs);
661 } else {
662 pfl->ro = 0;
663 }
664
665 pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl);
666 pfl->sector_len = sector_len;
667 pfl->width = width;
668 pfl->wcycle = 0;
669 pfl->cmd = 0;
670 pfl->status = 0;
671 pfl->ident[0] = id0;
672 pfl->ident[1] = id1;
673 pfl->ident[2] = id2;
674 pfl->ident[3] = id3;
675 pfl->unlock_addr[0] = unlock_addr0;
676 pfl->unlock_addr[1] = unlock_addr1;
677 /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
678 pfl->cfi_len = 0x52;
679 /* Standard "QRY" string */
680 pfl->cfi_table[0x10] = 'Q';
681 pfl->cfi_table[0x11] = 'R';
682 pfl->cfi_table[0x12] = 'Y';
683 /* Command set (AMD/Fujitsu) */
684 pfl->cfi_table[0x13] = 0x02;
685 pfl->cfi_table[0x14] = 0x00;
686 /* Primary extended table address */
687 pfl->cfi_table[0x15] = 0x31;
688 pfl->cfi_table[0x16] = 0x00;
689 /* Alternate command set (none) */
690 pfl->cfi_table[0x17] = 0x00;
691 pfl->cfi_table[0x18] = 0x00;
692 /* Alternate extended table (none) */
693 pfl->cfi_table[0x19] = 0x00;
694 pfl->cfi_table[0x1A] = 0x00;
695 /* Vcc min */
696 pfl->cfi_table[0x1B] = 0x27;
697 /* Vcc max */
698 pfl->cfi_table[0x1C] = 0x36;
699 /* Vpp min (no Vpp pin) */
700 pfl->cfi_table[0x1D] = 0x00;
701 /* Vpp max (no Vpp pin) */
702 pfl->cfi_table[0x1E] = 0x00;
703 /* Reserved */
704 pfl->cfi_table[0x1F] = 0x07;
705 /* Timeout for min size buffer write (NA) */
706 pfl->cfi_table[0x20] = 0x00;
707 /* Typical timeout for block erase (512 ms) */
708 pfl->cfi_table[0x21] = 0x09;
709 /* Typical timeout for full chip erase (4096 ms) */
710 pfl->cfi_table[0x22] = 0x0C;
711 /* Reserved */
712 pfl->cfi_table[0x23] = 0x01;
713 /* Max timeout for buffer write (NA) */
714 pfl->cfi_table[0x24] = 0x00;
715 /* Max timeout for block erase */
716 pfl->cfi_table[0x25] = 0x0A;
717 /* Max timeout for chip erase */
718 pfl->cfi_table[0x26] = 0x0D;
719 /* Device size */
720 pfl->cfi_table[0x27] = ctz32(chip_len);
721 /* Flash device interface (8 & 16 bits) */
722 pfl->cfi_table[0x28] = 0x02;
723 pfl->cfi_table[0x29] = 0x00;
724 /* Max number of bytes in multi-bytes write */
725 /* XXX: disable buffered write as it's not supported */
726 // pfl->cfi_table[0x2A] = 0x05;
727 pfl->cfi_table[0x2A] = 0x00;
728 pfl->cfi_table[0x2B] = 0x00;
729 /* Number of erase block regions (uniform) */
730 pfl->cfi_table[0x2C] = 0x01;
731 /* Erase block region 1 */
732 pfl->cfi_table[0x2D] = nb_blocs - 1;
733 pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
734 pfl->cfi_table[0x2F] = sector_len >> 8;
735 pfl->cfi_table[0x30] = sector_len >> 16;
736
737 /* Extended */
738 pfl->cfi_table[0x31] = 'P';
739 pfl->cfi_table[0x32] = 'R';
740 pfl->cfi_table[0x33] = 'I';
741
742 pfl->cfi_table[0x34] = '1';
743 pfl->cfi_table[0x35] = '0';
744
745 pfl->cfi_table[0x36] = 0x00;
746 pfl->cfi_table[0x37] = 0x00;
747 pfl->cfi_table[0x38] = 0x00;
748 pfl->cfi_table[0x39] = 0x00;
749
750 pfl->cfi_table[0x3a] = 0x00;
751
752 pfl->cfi_table[0x3b] = 0x00;
753 pfl->cfi_table[0x3c] = 0x00;
754
755 return pfl;
756 }