]> git.proxmox.com Git - qemu.git/blob - hw/pflash_cfi02.c
cfi02: Fix lazy ROMD switching - once again
[qemu.git] / hw / pflash_cfi02.c
1 /*
2 * CFI parallel flash with AMD command set emulation
3 *
4 * Copyright (c) 2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 /*
21 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22 * Supported commands/modes are:
23 * - flash read
24 * - flash write
25 * - flash ID read
26 * - sector erase
27 * - chip erase
28 * - unlock bypass command
29 * - CFI queries
30 *
31 * It does not support flash interleaving.
32 * It does not implement boot blocs with reduced size
33 * It does not implement software data protection as found in many real chips
34 * It does not implement erase suspend/resume commands
35 * It does not implement multiple sectors erase
36 */
37
38 #include "hw.h"
39 #include "flash.h"
40 #include "qemu-timer.h"
41 #include "block.h"
42 #include "exec-memory.h"
43
44 //#define PFLASH_DEBUG
45 #ifdef PFLASH_DEBUG
46 #define DPRINTF(fmt, ...) \
47 do { \
48 printf("PFLASH: " fmt , ## __VA_ARGS__); \
49 } while (0)
50 #else
51 #define DPRINTF(fmt, ...) do { } while (0)
52 #endif
53
54 #define PFLASH_LAZY_ROMD_THRESHOLD 42
55
56 struct pflash_t {
57 BlockDriverState *bs;
58 target_phys_addr_t base;
59 uint32_t sector_len;
60 uint32_t chip_len;
61 int mappings;
62 int width;
63 int wcycle; /* if 0, the flash is read normally */
64 int bypass;
65 int ro;
66 uint8_t cmd;
67 uint8_t status;
68 uint16_t ident[4];
69 uint16_t unlock_addr[2];
70 uint8_t cfi_len;
71 uint8_t cfi_table[0x52];
72 QEMUTimer *timer;
73 /* The device replicates the flash memory across its memory space. Emulate
74 * that by having a container (.mem) filled with an array of aliases
75 * (.mem_mappings) pointing to the flash memory (.orig_mem).
76 */
77 MemoryRegion mem;
78 MemoryRegion *mem_mappings; /* array; one per mapping */
79 MemoryRegion orig_mem;
80 int rom_mode;
81 int read_counter; /* used for lazy switch-back to rom mode */
82 void *storage;
83 };
84
85 /*
86 * Set up replicated mappings of the same region.
87 */
88 static void pflash_setup_mappings(pflash_t *pfl)
89 {
90 unsigned i;
91 target_phys_addr_t size = memory_region_size(&pfl->orig_mem);
92
93 memory_region_init(&pfl->mem, "pflash", pfl->mappings * size);
94 pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
95 for (i = 0; i < pfl->mappings; ++i) {
96 memory_region_init_alias(&pfl->mem_mappings[i], "pflash-alias",
97 &pfl->orig_mem, 0, size);
98 memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
99 }
100 }
101
102 static void pflash_register_memory(pflash_t *pfl, int rom_mode)
103 {
104 memory_region_rom_device_set_readable(&pfl->orig_mem, rom_mode);
105 pfl->rom_mode = rom_mode;
106 }
107
108 static void pflash_timer (void *opaque)
109 {
110 pflash_t *pfl = opaque;
111
112 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
113 /* Reset flash */
114 pfl->status ^= 0x80;
115 if (pfl->bypass) {
116 pfl->wcycle = 2;
117 } else {
118 pflash_register_memory(pfl, 1);
119 pfl->wcycle = 0;
120 }
121 pfl->cmd = 0;
122 }
123
124 static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
125 int width, int be)
126 {
127 target_phys_addr_t boff;
128 uint32_t ret;
129 uint8_t *p;
130
131 DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
132 ret = -1;
133 /* Lazy reset to ROMD mode after a certain amount of read accesses */
134 if (!pfl->rom_mode && pfl->wcycle == 0 &&
135 ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
136 pflash_register_memory(pfl, 1);
137 }
138 offset &= pfl->chip_len - 1;
139 boff = offset & 0xFF;
140 if (pfl->width == 2)
141 boff = boff >> 1;
142 else if (pfl->width == 4)
143 boff = boff >> 2;
144 switch (pfl->cmd) {
145 default:
146 /* This should never happen : reset state & treat it as a read*/
147 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
148 pfl->wcycle = 0;
149 pfl->cmd = 0;
150 case 0x80:
151 /* We accept reads during second unlock sequence... */
152 case 0x00:
153 flash_read:
154 /* Flash area read */
155 p = pfl->storage;
156 switch (width) {
157 case 1:
158 ret = p[offset];
159 // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
160 break;
161 case 2:
162 if (be) {
163 ret = p[offset] << 8;
164 ret |= p[offset + 1];
165 } else {
166 ret = p[offset];
167 ret |= p[offset + 1] << 8;
168 }
169 // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
170 break;
171 case 4:
172 if (be) {
173 ret = p[offset] << 24;
174 ret |= p[offset + 1] << 16;
175 ret |= p[offset + 2] << 8;
176 ret |= p[offset + 3];
177 } else {
178 ret = p[offset];
179 ret |= p[offset + 1] << 8;
180 ret |= p[offset + 2] << 16;
181 ret |= p[offset + 3] << 24;
182 }
183 // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
184 break;
185 }
186 break;
187 case 0x90:
188 /* flash ID read */
189 switch (boff) {
190 case 0x00:
191 case 0x01:
192 ret = pfl->ident[boff & 0x01];
193 break;
194 case 0x02:
195 ret = 0x00; /* Pretend all sectors are unprotected */
196 break;
197 case 0x0E:
198 case 0x0F:
199 if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
200 goto flash_read;
201 ret = pfl->ident[2 + (boff & 0x01)];
202 break;
203 default:
204 goto flash_read;
205 }
206 DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret);
207 break;
208 case 0xA0:
209 case 0x10:
210 case 0x30:
211 /* Status register read */
212 ret = pfl->status;
213 DPRINTF("%s: status %x\n", __func__, ret);
214 /* Toggle bit 6 */
215 pfl->status ^= 0x40;
216 break;
217 case 0x98:
218 /* CFI query mode */
219 if (boff > pfl->cfi_len)
220 ret = 0;
221 else
222 ret = pfl->cfi_table[boff];
223 break;
224 }
225
226 return ret;
227 }
228
229 /* update flash content on disk */
230 static void pflash_update(pflash_t *pfl, int offset,
231 int size)
232 {
233 int offset_end;
234 if (pfl->bs) {
235 offset_end = offset + size;
236 /* round to sectors */
237 offset = offset >> 9;
238 offset_end = (offset_end + 511) >> 9;
239 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
240 offset_end - offset);
241 }
242 }
243
244 static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
245 uint32_t value, int width, int be)
246 {
247 target_phys_addr_t boff;
248 uint8_t *p;
249 uint8_t cmd;
250
251 cmd = value;
252 if (pfl->cmd != 0xA0 && cmd == 0xF0) {
253 #if 0
254 DPRINTF("%s: flash reset asked (%02x %02x)\n",
255 __func__, pfl->cmd, cmd);
256 #endif
257 goto reset_flash;
258 }
259 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
260 offset, value, width, pfl->wcycle);
261 offset &= pfl->chip_len - 1;
262
263 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
264 offset, value, width);
265 boff = offset & (pfl->sector_len - 1);
266 if (pfl->width == 2)
267 boff = boff >> 1;
268 else if (pfl->width == 4)
269 boff = boff >> 2;
270 switch (pfl->wcycle) {
271 case 0:
272 /* Set the device in I/O access mode if required */
273 if (pfl->rom_mode)
274 pflash_register_memory(pfl, 0);
275 pfl->read_counter = 0;
276 /* We're in read mode */
277 check_unlock0:
278 if (boff == 0x55 && cmd == 0x98) {
279 enter_CFI_mode:
280 /* Enter CFI query mode */
281 pfl->wcycle = 7;
282 pfl->cmd = 0x98;
283 return;
284 }
285 if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
286 DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
287 __func__, boff, cmd, pfl->unlock_addr[0]);
288 goto reset_flash;
289 }
290 DPRINTF("%s: unlock sequence started\n", __func__);
291 break;
292 case 1:
293 /* We started an unlock sequence */
294 check_unlock1:
295 if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
296 DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
297 boff, cmd);
298 goto reset_flash;
299 }
300 DPRINTF("%s: unlock sequence done\n", __func__);
301 break;
302 case 2:
303 /* We finished an unlock sequence */
304 if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
305 DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
306 boff, cmd);
307 goto reset_flash;
308 }
309 switch (cmd) {
310 case 0x20:
311 pfl->bypass = 1;
312 goto do_bypass;
313 case 0x80:
314 case 0x90:
315 case 0xA0:
316 pfl->cmd = cmd;
317 DPRINTF("%s: starting command %02x\n", __func__, cmd);
318 break;
319 default:
320 DPRINTF("%s: unknown command %02x\n", __func__, cmd);
321 goto reset_flash;
322 }
323 break;
324 case 3:
325 switch (pfl->cmd) {
326 case 0x80:
327 /* We need another unlock sequence */
328 goto check_unlock0;
329 case 0xA0:
330 DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
331 __func__, offset, value, width);
332 p = pfl->storage;
333 switch (width) {
334 case 1:
335 p[offset] &= value;
336 pflash_update(pfl, offset, 1);
337 break;
338 case 2:
339 if (be) {
340 p[offset] &= value >> 8;
341 p[offset + 1] &= value;
342 } else {
343 p[offset] &= value;
344 p[offset + 1] &= value >> 8;
345 }
346 pflash_update(pfl, offset, 2);
347 break;
348 case 4:
349 if (be) {
350 p[offset] &= value >> 24;
351 p[offset + 1] &= value >> 16;
352 p[offset + 2] &= value >> 8;
353 p[offset + 3] &= value;
354 } else {
355 p[offset] &= value;
356 p[offset + 1] &= value >> 8;
357 p[offset + 2] &= value >> 16;
358 p[offset + 3] &= value >> 24;
359 }
360 pflash_update(pfl, offset, 4);
361 break;
362 }
363 pfl->status = 0x00 | ~(value & 0x80);
364 /* Let's pretend write is immediate */
365 if (pfl->bypass)
366 goto do_bypass;
367 goto reset_flash;
368 case 0x90:
369 if (pfl->bypass && cmd == 0x00) {
370 /* Unlock bypass reset */
371 goto reset_flash;
372 }
373 /* We can enter CFI query mode from autoselect mode */
374 if (boff == 0x55 && cmd == 0x98)
375 goto enter_CFI_mode;
376 /* No break here */
377 default:
378 DPRINTF("%s: invalid write for command %02x\n",
379 __func__, pfl->cmd);
380 goto reset_flash;
381 }
382 case 4:
383 switch (pfl->cmd) {
384 case 0xA0:
385 /* Ignore writes while flash data write is occurring */
386 /* As we suppose write is immediate, this should never happen */
387 return;
388 case 0x80:
389 goto check_unlock1;
390 default:
391 /* Should never happen */
392 DPRINTF("%s: invalid command state %02x (wc 4)\n",
393 __func__, pfl->cmd);
394 goto reset_flash;
395 }
396 break;
397 case 5:
398 switch (cmd) {
399 case 0x10:
400 if (boff != pfl->unlock_addr[0]) {
401 DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
402 __func__, offset);
403 goto reset_flash;
404 }
405 /* Chip erase */
406 DPRINTF("%s: start chip erase\n", __func__);
407 memset(pfl->storage, 0xFF, pfl->chip_len);
408 pfl->status = 0x00;
409 pflash_update(pfl, 0, pfl->chip_len);
410 /* Let's wait 5 seconds before chip erase is done */
411 qemu_mod_timer(pfl->timer,
412 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5));
413 break;
414 case 0x30:
415 /* Sector erase */
416 p = pfl->storage;
417 offset &= ~(pfl->sector_len - 1);
418 DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
419 offset);
420 memset(p + offset, 0xFF, pfl->sector_len);
421 pflash_update(pfl, offset, pfl->sector_len);
422 pfl->status = 0x00;
423 /* Let's wait 1/2 second before sector erase is done */
424 qemu_mod_timer(pfl->timer,
425 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2));
426 break;
427 default:
428 DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
429 goto reset_flash;
430 }
431 pfl->cmd = cmd;
432 break;
433 case 6:
434 switch (pfl->cmd) {
435 case 0x10:
436 /* Ignore writes during chip erase */
437 return;
438 case 0x30:
439 /* Ignore writes during sector erase */
440 return;
441 default:
442 /* Should never happen */
443 DPRINTF("%s: invalid command state %02x (wc 6)\n",
444 __func__, pfl->cmd);
445 goto reset_flash;
446 }
447 break;
448 case 7: /* Special value for CFI queries */
449 DPRINTF("%s: invalid write in CFI query mode\n", __func__);
450 goto reset_flash;
451 default:
452 /* Should never happen */
453 DPRINTF("%s: invalid write state (wc 7)\n", __func__);
454 goto reset_flash;
455 }
456 pfl->wcycle++;
457
458 return;
459
460 /* Reset flash */
461 reset_flash:
462 pfl->bypass = 0;
463 pfl->wcycle = 0;
464 pfl->cmd = 0;
465 return;
466
467 do_bypass:
468 pfl->wcycle = 2;
469 pfl->cmd = 0;
470 return;
471 }
472
473
474 static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
475 {
476 return pflash_read(opaque, addr, 1, 1);
477 }
478
479 static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
480 {
481 return pflash_read(opaque, addr, 1, 0);
482 }
483
484 static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
485 {
486 pflash_t *pfl = opaque;
487
488 return pflash_read(pfl, addr, 2, 1);
489 }
490
491 static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
492 {
493 pflash_t *pfl = opaque;
494
495 return pflash_read(pfl, addr, 2, 0);
496 }
497
498 static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
499 {
500 pflash_t *pfl = opaque;
501
502 return pflash_read(pfl, addr, 4, 1);
503 }
504
505 static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
506 {
507 pflash_t *pfl = opaque;
508
509 return pflash_read(pfl, addr, 4, 0);
510 }
511
512 static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
513 uint32_t value)
514 {
515 pflash_write(opaque, addr, value, 1, 1);
516 }
517
518 static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
519 uint32_t value)
520 {
521 pflash_write(opaque, addr, value, 1, 0);
522 }
523
524 static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
525 uint32_t value)
526 {
527 pflash_t *pfl = opaque;
528
529 pflash_write(pfl, addr, value, 2, 1);
530 }
531
532 static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
533 uint32_t value)
534 {
535 pflash_t *pfl = opaque;
536
537 pflash_write(pfl, addr, value, 2, 0);
538 }
539
540 static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
541 uint32_t value)
542 {
543 pflash_t *pfl = opaque;
544
545 pflash_write(pfl, addr, value, 4, 1);
546 }
547
548 static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
549 uint32_t value)
550 {
551 pflash_t *pfl = opaque;
552
553 pflash_write(pfl, addr, value, 4, 0);
554 }
555
556 static const MemoryRegionOps pflash_cfi02_ops_be = {
557 .old_mmio = {
558 .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
559 .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
560 },
561 .endianness = DEVICE_NATIVE_ENDIAN,
562 };
563
564 static const MemoryRegionOps pflash_cfi02_ops_le = {
565 .old_mmio = {
566 .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
567 .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
568 },
569 .endianness = DEVICE_NATIVE_ENDIAN,
570 };
571
572 /* Count trailing zeroes of a 32 bits quantity */
573 static int ctz32 (uint32_t n)
574 {
575 int ret;
576
577 ret = 0;
578 if (!(n & 0xFFFF)) {
579 ret += 16;
580 n = n >> 16;
581 }
582 if (!(n & 0xFF)) {
583 ret += 8;
584 n = n >> 8;
585 }
586 if (!(n & 0xF)) {
587 ret += 4;
588 n = n >> 4;
589 }
590 if (!(n & 0x3)) {
591 ret += 2;
592 n = n >> 2;
593 }
594 if (!(n & 0x1)) {
595 ret++;
596 #if 0 /* This is not necessary as n is never 0 */
597 n = n >> 1;
598 #endif
599 }
600 #if 0 /* This is not necessary as n is never 0 */
601 if (!n)
602 ret++;
603 #endif
604
605 return ret;
606 }
607
608 pflash_t *pflash_cfi02_register(target_phys_addr_t base,
609 DeviceState *qdev, const char *name,
610 target_phys_addr_t size,
611 BlockDriverState *bs, uint32_t sector_len,
612 int nb_blocs, int nb_mappings, int width,
613 uint16_t id0, uint16_t id1,
614 uint16_t id2, uint16_t id3,
615 uint16_t unlock_addr0, uint16_t unlock_addr1,
616 int be)
617 {
618 pflash_t *pfl;
619 int32_t chip_len;
620 int ret;
621
622 chip_len = sector_len * nb_blocs;
623 /* XXX: to be fixed */
624 #if 0
625 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
626 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
627 return NULL;
628 #endif
629 pfl = g_malloc0(sizeof(pflash_t));
630 memory_region_init_rom_device(
631 &pfl->orig_mem, be ? &pflash_cfi02_ops_be : &pflash_cfi02_ops_le, pfl,
632 name, size);
633 vmstate_register_ram(&pfl->orig_mem, qdev);
634 pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
635 pfl->base = base;
636 pfl->chip_len = chip_len;
637 pfl->mappings = nb_mappings;
638 pfl->bs = bs;
639 if (pfl->bs) {
640 /* read the initial flash content */
641 ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
642 if (ret < 0) {
643 g_free(pfl);
644 return NULL;
645 }
646 bdrv_attach_dev_nofail(pfl->bs, pfl);
647 }
648 pflash_setup_mappings(pfl);
649 pfl->rom_mode = 1;
650 memory_region_add_subregion(get_system_memory(), pfl->base, &pfl->mem);
651 #if 0 /* XXX: there should be a bit to set up read-only,
652 * the same way the hardware does (with WP pin).
653 */
654 pfl->ro = 1;
655 #else
656 pfl->ro = 0;
657 #endif
658 pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl);
659 pfl->sector_len = sector_len;
660 pfl->width = width;
661 pfl->wcycle = 0;
662 pfl->cmd = 0;
663 pfl->status = 0;
664 pfl->ident[0] = id0;
665 pfl->ident[1] = id1;
666 pfl->ident[2] = id2;
667 pfl->ident[3] = id3;
668 pfl->unlock_addr[0] = unlock_addr0;
669 pfl->unlock_addr[1] = unlock_addr1;
670 /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
671 pfl->cfi_len = 0x52;
672 /* Standard "QRY" string */
673 pfl->cfi_table[0x10] = 'Q';
674 pfl->cfi_table[0x11] = 'R';
675 pfl->cfi_table[0x12] = 'Y';
676 /* Command set (AMD/Fujitsu) */
677 pfl->cfi_table[0x13] = 0x02;
678 pfl->cfi_table[0x14] = 0x00;
679 /* Primary extended table address */
680 pfl->cfi_table[0x15] = 0x31;
681 pfl->cfi_table[0x16] = 0x00;
682 /* Alternate command set (none) */
683 pfl->cfi_table[0x17] = 0x00;
684 pfl->cfi_table[0x18] = 0x00;
685 /* Alternate extended table (none) */
686 pfl->cfi_table[0x19] = 0x00;
687 pfl->cfi_table[0x1A] = 0x00;
688 /* Vcc min */
689 pfl->cfi_table[0x1B] = 0x27;
690 /* Vcc max */
691 pfl->cfi_table[0x1C] = 0x36;
692 /* Vpp min (no Vpp pin) */
693 pfl->cfi_table[0x1D] = 0x00;
694 /* Vpp max (no Vpp pin) */
695 pfl->cfi_table[0x1E] = 0x00;
696 /* Reserved */
697 pfl->cfi_table[0x1F] = 0x07;
698 /* Timeout for min size buffer write (NA) */
699 pfl->cfi_table[0x20] = 0x00;
700 /* Typical timeout for block erase (512 ms) */
701 pfl->cfi_table[0x21] = 0x09;
702 /* Typical timeout for full chip erase (4096 ms) */
703 pfl->cfi_table[0x22] = 0x0C;
704 /* Reserved */
705 pfl->cfi_table[0x23] = 0x01;
706 /* Max timeout for buffer write (NA) */
707 pfl->cfi_table[0x24] = 0x00;
708 /* Max timeout for block erase */
709 pfl->cfi_table[0x25] = 0x0A;
710 /* Max timeout for chip erase */
711 pfl->cfi_table[0x26] = 0x0D;
712 /* Device size */
713 pfl->cfi_table[0x27] = ctz32(chip_len);
714 /* Flash device interface (8 & 16 bits) */
715 pfl->cfi_table[0x28] = 0x02;
716 pfl->cfi_table[0x29] = 0x00;
717 /* Max number of bytes in multi-bytes write */
718 /* XXX: disable buffered write as it's not supported */
719 // pfl->cfi_table[0x2A] = 0x05;
720 pfl->cfi_table[0x2A] = 0x00;
721 pfl->cfi_table[0x2B] = 0x00;
722 /* Number of erase block regions (uniform) */
723 pfl->cfi_table[0x2C] = 0x01;
724 /* Erase block region 1 */
725 pfl->cfi_table[0x2D] = nb_blocs - 1;
726 pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
727 pfl->cfi_table[0x2F] = sector_len >> 8;
728 pfl->cfi_table[0x30] = sector_len >> 16;
729
730 /* Extended */
731 pfl->cfi_table[0x31] = 'P';
732 pfl->cfi_table[0x32] = 'R';
733 pfl->cfi_table[0x33] = 'I';
734
735 pfl->cfi_table[0x34] = '1';
736 pfl->cfi_table[0x35] = '0';
737
738 pfl->cfi_table[0x36] = 0x00;
739 pfl->cfi_table[0x37] = 0x00;
740 pfl->cfi_table[0x38] = 0x00;
741 pfl->cfi_table[0x39] = 0x00;
742
743 pfl->cfi_table[0x3a] = 0x00;
744
745 pfl->cfi_table[0x3b] = 0x00;
746 pfl->cfi_table[0x3c] = 0x00;
747
748 return pfl;
749 }