]> git.proxmox.com Git - qemu.git/blob - hw/ppc/spapr.c
hw: move boards and other isolated files to hw/ARCH
[qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44 #include "hw/pci/msi.h"
45
46 #include "sysemu/kvm.h"
47 #include "kvm_ppc.h"
48 #include "hw/pci/pci.h"
49
50 #include "exec/address-spaces.h"
51 #include "hw/usb.h"
52 #include "qemu/config-file.h"
53
54 #include <libfdt.h>
55
56 /* SLOF memory layout:
57 *
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
60 *
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
62 * and more
63 *
64 * We load our kernel at 4M, leaving space for SLOF initial image
65 */
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
72
73 #define MIN_RMA_SLOF 128UL
74
75 #define TIMEBASE_FREQ 512000000ULL
76
77 #define MAX_CPUS 256
78 #define XICS_IRQS 1024
79
80 #define PHANDLE_XICP 0x00001111
81
82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
83
84 sPAPREnvironment *spapr;
85
86 int spapr_allocate_irq(int hint, bool lsi)
87 {
88 int irq;
89
90 if (hint) {
91 irq = hint;
92 /* FIXME: we should probably check for collisions somehow */
93 } else {
94 irq = spapr->next_irq++;
95 }
96
97 /* Configure irq type */
98 if (!xics_get_qirq(spapr->icp, irq)) {
99 return 0;
100 }
101
102 xics_set_irq_type(spapr->icp, irq, lsi);
103
104 return irq;
105 }
106
107 /* Allocate block of consequtive IRQs, returns a number of the first */
108 int spapr_allocate_irq_block(int num, bool lsi)
109 {
110 int first = -1;
111 int i;
112
113 for (i = 0; i < num; ++i) {
114 int irq;
115
116 irq = spapr_allocate_irq(0, lsi);
117 if (!irq) {
118 return -1;
119 }
120
121 if (0 == i) {
122 first = irq;
123 }
124
125 /* If the above doesn't create a consecutive block then that's
126 * an internal bug */
127 assert(irq == (first + i));
128 }
129
130 return first;
131 }
132
133 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
134 {
135 int ret = 0, offset;
136 CPUPPCState *env;
137 CPUState *cpu;
138 char cpu_model[32];
139 int smt = kvmppc_smt_threads();
140 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
141
142 assert(spapr->cpu_model);
143
144 for (env = first_cpu; env != NULL; env = env->next_cpu) {
145 cpu = CPU(ppc_env_get_cpu(env));
146 uint32_t associativity[] = {cpu_to_be32(0x5),
147 cpu_to_be32(0x0),
148 cpu_to_be32(0x0),
149 cpu_to_be32(0x0),
150 cpu_to_be32(cpu->numa_node),
151 cpu_to_be32(cpu->cpu_index)};
152
153 if ((cpu->cpu_index % smt) != 0) {
154 continue;
155 }
156
157 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
158 cpu->cpu_index);
159
160 offset = fdt_path_offset(fdt, cpu_model);
161 if (offset < 0) {
162 return offset;
163 }
164
165 if (nb_numa_nodes > 1) {
166 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
167 sizeof(associativity));
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
174 pft_size_prop, sizeof(pft_size_prop));
175 if (ret < 0) {
176 return ret;
177 }
178 }
179 return ret;
180 }
181
182
183 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
184 size_t maxsize)
185 {
186 size_t maxcells = maxsize / sizeof(uint32_t);
187 int i, j, count;
188 uint32_t *p = prop;
189
190 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
191 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
192
193 if (!sps->page_shift) {
194 break;
195 }
196 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
197 if (sps->enc[count].page_shift == 0) {
198 break;
199 }
200 }
201 if ((p - prop) >= (maxcells - 3 - count * 2)) {
202 break;
203 }
204 *(p++) = cpu_to_be32(sps->page_shift);
205 *(p++) = cpu_to_be32(sps->slb_enc);
206 *(p++) = cpu_to_be32(count);
207 for (j = 0; j < count; j++) {
208 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
209 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
210 }
211 }
212
213 return (p - prop) * sizeof(uint32_t);
214 }
215
216 #define _FDT(exp) \
217 do { \
218 int ret = (exp); \
219 if (ret < 0) { \
220 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
221 #exp, fdt_strerror(ret)); \
222 exit(1); \
223 } \
224 } while (0)
225
226
227 static void *spapr_create_fdt_skel(const char *cpu_model,
228 hwaddr initrd_base,
229 hwaddr initrd_size,
230 hwaddr kernel_size,
231 const char *boot_device,
232 const char *kernel_cmdline,
233 uint32_t epow_irq)
234 {
235 void *fdt;
236 CPUPPCState *env;
237 uint32_t start_prop = cpu_to_be32(initrd_base);
238 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
239 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
240 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
241 char qemu_hypertas_prop[] = "hcall-memop1";
242 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
243 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
244 char *modelname;
245 int i, smt = kvmppc_smt_threads();
246 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
247
248 fdt = g_malloc0(FDT_MAX_SIZE);
249 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
250
251 if (kernel_size) {
252 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
253 }
254 if (initrd_size) {
255 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
256 }
257 _FDT((fdt_finish_reservemap(fdt)));
258
259 /* Root node */
260 _FDT((fdt_begin_node(fdt, "")));
261 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
262 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
263
264 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
265 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
266
267 /* /chosen */
268 _FDT((fdt_begin_node(fdt, "chosen")));
269
270 /* Set Form1_affinity */
271 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
272
273 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
274 _FDT((fdt_property(fdt, "linux,initrd-start",
275 &start_prop, sizeof(start_prop))));
276 _FDT((fdt_property(fdt, "linux,initrd-end",
277 &end_prop, sizeof(end_prop))));
278 if (kernel_size) {
279 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
280 cpu_to_be64(kernel_size) };
281
282 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
283 }
284 if (boot_device) {
285 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
286 }
287 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
290
291 _FDT((fdt_end_node(fdt)));
292
293 /* cpus */
294 _FDT((fdt_begin_node(fdt, "cpus")));
295
296 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
297 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
298
299 modelname = g_strdup(cpu_model);
300
301 for (i = 0; i < strlen(modelname); i++) {
302 modelname[i] = toupper(modelname[i]);
303 }
304
305 /* This is needed during FDT finalization */
306 spapr->cpu_model = g_strdup(modelname);
307
308 for (env = first_cpu; env != NULL; env = env->next_cpu) {
309 CPUState *cpu = CPU(ppc_env_get_cpu(env));
310 int index = cpu->cpu_index;
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
313 char *nodename;
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
320
321 if ((index % smt) != 0) {
322 continue;
323 }
324
325 nodename = g_strdup_printf("%s@%x", modelname, index);
326
327 _FDT((fdt_begin_node(fdt, nodename)));
328
329 g_free(nodename);
330
331 _FDT((fdt_property_cell(fdt, "reg", index)));
332 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
333
334 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
335 _FDT((fdt_property_cell(fdt, "dcache-block-size",
336 env->dcache_line_size)));
337 _FDT((fdt_property_cell(fdt, "icache-block-size",
338 env->icache_line_size)));
339 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
340 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
341 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
342 _FDT((fdt_property_string(fdt, "status", "okay")));
343 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
344
345 /* Build interrupt servers and gservers properties */
346 for (i = 0; i < smp_threads; i++) {
347 servers_prop[i] = cpu_to_be32(index + i);
348 /* Hack, direct the group queues back to cpu 0 */
349 gservers_prop[i*2] = cpu_to_be32(index + i);
350 gservers_prop[i*2 + 1] = 0;
351 }
352 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
353 servers_prop, sizeof(servers_prop))));
354 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
355 gservers_prop, sizeof(gservers_prop))));
356
357 if (env->mmu_model & POWERPC_MMU_1TSEG) {
358 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
359 segs, sizeof(segs))));
360 }
361
362 /* Advertise VMX/VSX (vector extensions) if available
363 * 0 / no property == no vector extensions
364 * 1 == VMX / Altivec available
365 * 2 == VSX available */
366 if (env->insns_flags & PPC_ALTIVEC) {
367 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
368
369 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
370 }
371
372 /* Advertise DFP (Decimal Floating Point) if available
373 * 0 / no property == no DFP
374 * 1 == DFP available */
375 if (env->insns_flags2 & PPC2_DFP) {
376 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
377 }
378
379 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
380 sizeof(page_sizes_prop));
381 if (page_sizes_prop_size) {
382 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
383 page_sizes_prop, page_sizes_prop_size)));
384 }
385
386 _FDT((fdt_end_node(fdt)));
387 }
388
389 g_free(modelname);
390
391 _FDT((fdt_end_node(fdt)));
392
393 /* RTAS */
394 _FDT((fdt_begin_node(fdt, "rtas")));
395
396 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
397 sizeof(hypertas_prop))));
398 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
399 sizeof(qemu_hypertas_prop))));
400
401 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
402 refpoints, sizeof(refpoints))));
403
404 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
405
406 _FDT((fdt_end_node(fdt)));
407
408 /* interrupt controller */
409 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
410
411 _FDT((fdt_property_string(fdt, "device_type",
412 "PowerPC-External-Interrupt-Presentation")));
413 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
414 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
415 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
416 interrupt_server_ranges_prop,
417 sizeof(interrupt_server_ranges_prop))));
418 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
419 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
420 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
421
422 _FDT((fdt_end_node(fdt)));
423
424 /* vdevice */
425 _FDT((fdt_begin_node(fdt, "vdevice")));
426
427 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
428 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
429 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
432 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
433
434 _FDT((fdt_end_node(fdt)));
435
436 /* event-sources */
437 spapr_events_fdt_skel(fdt, epow_irq);
438
439 _FDT((fdt_end_node(fdt))); /* close root node */
440 _FDT((fdt_finish(fdt)));
441
442 return fdt;
443 }
444
445 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
446 {
447 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
448 cpu_to_be32(0x0), cpu_to_be32(0x0),
449 cpu_to_be32(0x0)};
450 char mem_name[32];
451 hwaddr node0_size, mem_start;
452 uint64_t mem_reg_property[2];
453 int i, off;
454
455 /* memory node(s) */
456 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
457 if (spapr->rma_size > node0_size) {
458 spapr->rma_size = node0_size;
459 }
460
461 /* RMA */
462 mem_reg_property[0] = 0;
463 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
464 off = fdt_add_subnode(fdt, 0, "memory@0");
465 _FDT(off);
466 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
467 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
468 sizeof(mem_reg_property))));
469 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
470 sizeof(associativity))));
471
472 /* RAM: Node 0 */
473 if (node0_size > spapr->rma_size) {
474 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
475 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
476
477 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
478 off = fdt_add_subnode(fdt, 0, mem_name);
479 _FDT(off);
480 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
481 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
482 sizeof(mem_reg_property))));
483 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
484 sizeof(associativity))));
485 }
486
487 /* RAM: Node 1 and beyond */
488 mem_start = node0_size;
489 for (i = 1; i < nb_numa_nodes; i++) {
490 mem_reg_property[0] = cpu_to_be64(mem_start);
491 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
492 associativity[3] = associativity[4] = cpu_to_be32(i);
493 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
494 off = fdt_add_subnode(fdt, 0, mem_name);
495 _FDT(off);
496 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
497 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
498 sizeof(mem_reg_property))));
499 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
500 sizeof(associativity))));
501 mem_start += node_mem[i];
502 }
503
504 return 0;
505 }
506
507 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
508 hwaddr fdt_addr,
509 hwaddr rtas_addr,
510 hwaddr rtas_size)
511 {
512 int ret;
513 void *fdt;
514 sPAPRPHBState *phb;
515
516 fdt = g_malloc(FDT_MAX_SIZE);
517
518 /* open out the base tree into a temp buffer for the final tweaks */
519 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
520
521 ret = spapr_populate_memory(spapr, fdt);
522 if (ret < 0) {
523 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
524 exit(1);
525 }
526
527 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
528 if (ret < 0) {
529 fprintf(stderr, "couldn't setup vio devices in fdt\n");
530 exit(1);
531 }
532
533 QLIST_FOREACH(phb, &spapr->phbs, list) {
534 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
535 }
536
537 if (ret < 0) {
538 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
539 exit(1);
540 }
541
542 /* RTAS */
543 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
544 if (ret < 0) {
545 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
546 }
547
548 /* Advertise NUMA via ibm,associativity */
549 ret = spapr_fixup_cpu_dt(fdt, spapr);
550 if (ret < 0) {
551 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
552 }
553
554 if (!spapr->has_graphics) {
555 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
556 }
557
558 _FDT((fdt_pack(fdt)));
559
560 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
561 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
562 fdt_totalsize(fdt), FDT_MAX_SIZE);
563 exit(1);
564 }
565
566 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
567
568 g_free(fdt);
569 }
570
571 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
572 {
573 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
574 }
575
576 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
577 {
578 CPUPPCState *env = &cpu->env;
579
580 if (msr_pr) {
581 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
582 env->gpr[3] = H_PRIVILEGE;
583 } else {
584 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
585 }
586 }
587
588 static void spapr_reset_htab(sPAPREnvironment *spapr)
589 {
590 long shift;
591
592 /* allocate hash page table. For now we always make this 16mb,
593 * later we should probably make it scale to the size of guest
594 * RAM */
595
596 shift = kvmppc_reset_htab(spapr->htab_shift);
597
598 if (shift > 0) {
599 /* Kernel handles htab, we don't need to allocate one */
600 spapr->htab_shift = shift;
601 } else {
602 if (!spapr->htab) {
603 /* Allocate an htab if we don't yet have one */
604 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
605 }
606
607 /* And clear it */
608 memset(spapr->htab, 0, HTAB_SIZE(spapr));
609 }
610
611 /* Update the RMA size if necessary */
612 if (spapr->vrma_adjust) {
613 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
614 }
615 }
616
617 static void ppc_spapr_reset(void)
618 {
619 /* Reset the hash table & recalc the RMA */
620 spapr_reset_htab(spapr);
621
622 qemu_devices_reset();
623
624 /* Load the fdt */
625 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
626 spapr->rtas_size);
627
628 /* Set up the entry state */
629 first_cpu->gpr[3] = spapr->fdt_addr;
630 first_cpu->gpr[5] = 0;
631 first_cpu->halted = 0;
632 first_cpu->nip = spapr->entry_point;
633
634 }
635
636 static void spapr_cpu_reset(void *opaque)
637 {
638 PowerPCCPU *cpu = opaque;
639 CPUPPCState *env = &cpu->env;
640
641 cpu_reset(CPU(cpu));
642
643 /* All CPUs start halted. CPU0 is unhalted from the machine level
644 * reset code and the rest are explicitly started up by the guest
645 * using an RTAS call */
646 env->halted = 1;
647
648 env->spr[SPR_HIOR] = 0;
649
650 env->external_htab = spapr->htab;
651 env->htab_base = -1;
652 env->htab_mask = HTAB_SIZE(spapr) - 1;
653 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
654 (spapr->htab_shift - 18);
655 }
656
657 static void spapr_create_nvram(sPAPREnvironment *spapr)
658 {
659 QemuOpts *machine_opts;
660 DeviceState *dev;
661
662 dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
663
664 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
665 if (machine_opts) {
666 const char *drivename;
667
668 drivename = qemu_opt_get(machine_opts, "nvram");
669 if (drivename) {
670 BlockDriverState *bs;
671
672 bs = bdrv_find(drivename);
673 if (!bs) {
674 fprintf(stderr, "No such block device \"%s\" for nvram\n",
675 drivename);
676 exit(1);
677 }
678 qdev_prop_set_drive_nofail(dev, "drive", bs);
679 }
680 }
681
682 qdev_init_nofail(dev);
683
684 spapr->nvram = (struct sPAPRNVRAM *)dev;
685 }
686
687 /* Returns whether we want to use VGA or not */
688 static int spapr_vga_init(PCIBus *pci_bus)
689 {
690 switch (vga_interface_type) {
691 case VGA_NONE:
692 case VGA_STD:
693 return pci_vga_init(pci_bus) != NULL;
694 default:
695 fprintf(stderr, "This vga model is not supported,"
696 "currently it only supports -vga std\n");
697 exit(0);
698 break;
699 }
700 }
701
702 /* pSeries LPAR / sPAPR hardware init */
703 static void ppc_spapr_init(QEMUMachineInitArgs *args)
704 {
705 ram_addr_t ram_size = args->ram_size;
706 const char *cpu_model = args->cpu_model;
707 const char *kernel_filename = args->kernel_filename;
708 const char *kernel_cmdline = args->kernel_cmdline;
709 const char *initrd_filename = args->initrd_filename;
710 const char *boot_device = args->boot_device;
711 PowerPCCPU *cpu;
712 CPUPPCState *env;
713 PCIHostState *phb;
714 int i;
715 MemoryRegion *sysmem = get_system_memory();
716 MemoryRegion *ram = g_new(MemoryRegion, 1);
717 hwaddr rma_alloc_size;
718 uint32_t initrd_base = 0;
719 long kernel_size = 0, initrd_size = 0;
720 long load_limit, rtas_limit, fw_size;
721 char *filename;
722
723 msi_supported = true;
724
725 spapr = g_malloc0(sizeof(*spapr));
726 QLIST_INIT(&spapr->phbs);
727
728 cpu_ppc_hypercall = emulate_spapr_hypercall;
729
730 /* Allocate RMA if necessary */
731 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
732
733 if (rma_alloc_size == -1) {
734 hw_error("qemu: Unable to create RMA\n");
735 exit(1);
736 }
737
738 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
739 spapr->rma_size = rma_alloc_size;
740 } else {
741 spapr->rma_size = ram_size;
742
743 /* With KVM, we don't actually know whether KVM supports an
744 * unbounded RMA (PR KVM) or is limited by the hash table size
745 * (HV KVM using VRMA), so we always assume the latter
746 *
747 * In that case, we also limit the initial allocations for RTAS
748 * etc... to 256M since we have no way to know what the VRMA size
749 * is going to be as it depends on the size of the hash table
750 * isn't determined yet.
751 */
752 if (kvm_enabled()) {
753 spapr->vrma_adjust = 1;
754 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
755 }
756 }
757
758 /* We place the device tree and RTAS just below either the top of the RMA,
759 * or just below 2GB, whichever is lowere, so that it can be
760 * processed with 32-bit real mode code if necessary */
761 rtas_limit = MIN(spapr->rma_size, 0x80000000);
762 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
763 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
764 load_limit = spapr->fdt_addr - FW_OVERHEAD;
765
766 /* We aim for a hash table of size 1/128 the size of RAM. The
767 * normal rule of thumb is 1/64 the size of RAM, but that's much
768 * more than needed for the Linux guests we support. */
769 spapr->htab_shift = 18; /* Minimum architected size */
770 while (spapr->htab_shift <= 46) {
771 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
772 break;
773 }
774 spapr->htab_shift++;
775 }
776
777 /* init CPUs */
778 if (cpu_model == NULL) {
779 cpu_model = kvm_enabled() ? "host" : "POWER7";
780 }
781 for (i = 0; i < smp_cpus; i++) {
782 cpu = cpu_ppc_init(cpu_model);
783 if (cpu == NULL) {
784 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
785 exit(1);
786 }
787 env = &cpu->env;
788
789 /* Set time-base frequency to 512 MHz */
790 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
791
792 /* PAPR always has exception vectors in RAM not ROM */
793 env->hreset_excp_prefix = 0;
794
795 /* Tell KVM that we're in PAPR mode */
796 if (kvm_enabled()) {
797 kvmppc_set_papr(cpu);
798 }
799
800 qemu_register_reset(spapr_cpu_reset, cpu);
801 }
802
803 /* allocate RAM */
804 spapr->ram_limit = ram_size;
805 if (spapr->ram_limit > rma_alloc_size) {
806 ram_addr_t nonrma_base = rma_alloc_size;
807 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
808
809 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
810 vmstate_register_ram_global(ram);
811 memory_region_add_subregion(sysmem, nonrma_base, ram);
812 }
813
814 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
815 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
816 rtas_limit - spapr->rtas_addr);
817 if (spapr->rtas_size < 0) {
818 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
819 exit(1);
820 }
821 if (spapr->rtas_size > RTAS_MAX_SIZE) {
822 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
823 spapr->rtas_size, RTAS_MAX_SIZE);
824 exit(1);
825 }
826 g_free(filename);
827
828
829 /* Set up Interrupt Controller */
830 spapr->icp = xics_system_init(XICS_IRQS);
831 spapr->next_irq = XICS_IRQ_BASE;
832
833 /* Set up EPOW events infrastructure */
834 spapr_events_init(spapr);
835
836 /* Set up IOMMU */
837 spapr_iommu_init();
838
839 /* Set up VIO bus */
840 spapr->vio_bus = spapr_vio_bus_init();
841
842 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
843 if (serial_hds[i]) {
844 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
845 }
846 }
847
848 /* We always have at least the nvram device on VIO */
849 spapr_create_nvram(spapr);
850
851 /* Set up PCI */
852 spapr_pci_rtas_init();
853
854 phb = spapr_create_phb(spapr, 0, "pci");
855
856 for (i = 0; i < nb_nics; i++) {
857 NICInfo *nd = &nd_table[i];
858
859 if (!nd->model) {
860 nd->model = g_strdup("ibmveth");
861 }
862
863 if (strcmp(nd->model, "ibmveth") == 0) {
864 spapr_vlan_create(spapr->vio_bus, nd);
865 } else {
866 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
867 }
868 }
869
870 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
871 spapr_vscsi_create(spapr->vio_bus);
872 }
873
874 /* Graphics */
875 if (spapr_vga_init(phb->bus)) {
876 spapr->has_graphics = true;
877 }
878
879 if (usb_enabled(spapr->has_graphics)) {
880 pci_create_simple(phb->bus, -1, "pci-ohci");
881 if (spapr->has_graphics) {
882 usbdevice_create("keyboard");
883 usbdevice_create("mouse");
884 }
885 }
886
887 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
888 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
889 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
890 exit(1);
891 }
892
893 if (kernel_filename) {
894 uint64_t lowaddr = 0;
895
896 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
897 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
898 if (kernel_size < 0) {
899 kernel_size = load_image_targphys(kernel_filename,
900 KERNEL_LOAD_ADDR,
901 load_limit - KERNEL_LOAD_ADDR);
902 }
903 if (kernel_size < 0) {
904 fprintf(stderr, "qemu: could not load kernel '%s'\n",
905 kernel_filename);
906 exit(1);
907 }
908
909 /* load initrd */
910 if (initrd_filename) {
911 /* Try to locate the initrd in the gap between the kernel
912 * and the firmware. Add a bit of space just in case
913 */
914 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
915 initrd_size = load_image_targphys(initrd_filename, initrd_base,
916 load_limit - initrd_base);
917 if (initrd_size < 0) {
918 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
919 initrd_filename);
920 exit(1);
921 }
922 } else {
923 initrd_base = 0;
924 initrd_size = 0;
925 }
926 }
927
928 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
929 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
930 if (fw_size < 0) {
931 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
932 exit(1);
933 }
934 g_free(filename);
935
936 spapr->entry_point = 0x100;
937
938 /* Prepare the device tree */
939 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
940 initrd_base, initrd_size,
941 kernel_size,
942 boot_device, kernel_cmdline,
943 spapr->epow_irq);
944 assert(spapr->fdt_skel != NULL);
945 }
946
947 static QEMUMachine spapr_machine = {
948 .name = "pseries",
949 .desc = "pSeries Logical Partition (PAPR compliant)",
950 .init = ppc_spapr_init,
951 .reset = ppc_spapr_reset,
952 .block_default_type = IF_SCSI,
953 .max_cpus = MAX_CPUS,
954 .no_parallel = 1,
955 .boot_order = NULL,
956 };
957
958 static void spapr_machine_init(void)
959 {
960 qemu_register_machine(&spapr_machine);
961 }
962
963 machine_init(spapr_machine_init);