]> git.proxmox.com Git - qemu.git/blob - hw/ppc/spapr_pci.c
Merge git://github.com/hw-claudio/qemu-aarch64-queue into tcg-next
[qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35
36 #include "hw/pci/pci_bus.h"
37
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
44
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
48
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50 {
51 sPAPRPHBState *sphb;
52
53 QLIST_FOREACH(sphb, &spapr->phbs, list) {
54 if (sphb->buid != buid) {
55 continue;
56 }
57 return sphb;
58 }
59
60 return NULL;
61 }
62
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64 uint32_t config_addr)
65 {
66 sPAPRPHBState *sphb = find_phb(spapr, buid);
67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68 BusState *bus = BUS(phb->bus);
69 BusChild *kid;
70 int devfn = (config_addr >> 8) & 0xFF;
71
72 if (!phb) {
73 return NULL;
74 }
75
76 QTAILQ_FOREACH(kid, &bus->children, sibling) {
77 PCIDevice *dev = (PCIDevice *)kid->child;
78 if (dev->devfn == devfn) {
79 return dev;
80 }
81 }
82
83 return NULL;
84 }
85
86 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
87 {
88 /* This handles the encoding of extended config space addresses */
89 return ((arg >> 20) & 0xf00) | (arg & 0xff);
90 }
91
92 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
93 uint32_t addr, uint32_t size,
94 target_ulong rets)
95 {
96 PCIDevice *pci_dev;
97 uint32_t val;
98
99 if ((size != 1) && (size != 2) && (size != 4)) {
100 /* access must be 1, 2 or 4 bytes */
101 rtas_st(rets, 0, -1);
102 return;
103 }
104
105 pci_dev = find_dev(spapr, buid, addr);
106 addr = rtas_pci_cfgaddr(addr);
107
108 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
109 /* Access must be to a valid device, within bounds and
110 * naturally aligned */
111 rtas_st(rets, 0, -1);
112 return;
113 }
114
115 val = pci_host_config_read_common(pci_dev, addr,
116 pci_config_size(pci_dev), size);
117
118 rtas_st(rets, 0, 0);
119 rtas_st(rets, 1, val);
120 }
121
122 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
123 uint32_t token, uint32_t nargs,
124 target_ulong args,
125 uint32_t nret, target_ulong rets)
126 {
127 uint64_t buid;
128 uint32_t size, addr;
129
130 if ((nargs != 4) || (nret != 2)) {
131 rtas_st(rets, 0, -1);
132 return;
133 }
134
135 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
136 size = rtas_ld(args, 3);
137 addr = rtas_ld(args, 0);
138
139 finish_read_pci_config(spapr, buid, addr, size, rets);
140 }
141
142 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
143 uint32_t token, uint32_t nargs,
144 target_ulong args,
145 uint32_t nret, target_ulong rets)
146 {
147 uint32_t size, addr;
148
149 if ((nargs != 2) || (nret != 2)) {
150 rtas_st(rets, 0, -1);
151 return;
152 }
153
154 size = rtas_ld(args, 1);
155 addr = rtas_ld(args, 0);
156
157 finish_read_pci_config(spapr, 0, addr, size, rets);
158 }
159
160 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
161 uint32_t addr, uint32_t size,
162 uint32_t val, target_ulong rets)
163 {
164 PCIDevice *pci_dev;
165
166 if ((size != 1) && (size != 2) && (size != 4)) {
167 /* access must be 1, 2 or 4 bytes */
168 rtas_st(rets, 0, -1);
169 return;
170 }
171
172 pci_dev = find_dev(spapr, buid, addr);
173 addr = rtas_pci_cfgaddr(addr);
174
175 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
176 /* Access must be to a valid device, within bounds and
177 * naturally aligned */
178 rtas_st(rets, 0, -1);
179 return;
180 }
181
182 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
183 val, size);
184
185 rtas_st(rets, 0, 0);
186 }
187
188 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
189 uint32_t token, uint32_t nargs,
190 target_ulong args,
191 uint32_t nret, target_ulong rets)
192 {
193 uint64_t buid;
194 uint32_t val, size, addr;
195
196 if ((nargs != 5) || (nret != 1)) {
197 rtas_st(rets, 0, -1);
198 return;
199 }
200
201 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
202 val = rtas_ld(args, 4);
203 size = rtas_ld(args, 3);
204 addr = rtas_ld(args, 0);
205
206 finish_write_pci_config(spapr, buid, addr, size, val, rets);
207 }
208
209 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
210 uint32_t token, uint32_t nargs,
211 target_ulong args,
212 uint32_t nret, target_ulong rets)
213 {
214 uint32_t val, size, addr;
215
216 if ((nargs != 3) || (nret != 1)) {
217 rtas_st(rets, 0, -1);
218 return;
219 }
220
221
222 val = rtas_ld(args, 2);
223 size = rtas_ld(args, 1);
224 addr = rtas_ld(args, 0);
225
226 finish_write_pci_config(spapr, 0, addr, size, val, rets);
227 }
228
229 /*
230 * Find an entry with config_addr or returns the empty one if not found AND
231 * alloc_new is set.
232 * At the moment the msi_table entries are never released so there is
233 * no point to look till the end of the list if we need to find the free entry.
234 */
235 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
236 bool alloc_new)
237 {
238 int i;
239
240 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
241 if (!phb->msi_table[i].nvec) {
242 break;
243 }
244 if (phb->msi_table[i].config_addr == config_addr) {
245 return i;
246 }
247 }
248 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
249 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
250 return i;
251 }
252
253 return -1;
254 }
255
256 /*
257 * Set MSI/MSIX message data.
258 * This is required for msi_notify()/msix_notify() which
259 * will write at the addresses via spapr_msi_write().
260 */
261 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
262 bool msix, unsigned req_num)
263 {
264 unsigned i;
265 MSIMessage msg = { .address = addr, .data = 0 };
266
267 if (!msix) {
268 msi_set_message(pdev, msg);
269 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
270 return;
271 }
272
273 for (i = 0; i < req_num; ++i) {
274 msg.address = addr | (i << 2);
275 msix_set_message(pdev, i, msg);
276 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
277 }
278 }
279
280 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
281 uint32_t token, uint32_t nargs,
282 target_ulong args, uint32_t nret,
283 target_ulong rets)
284 {
285 uint32_t config_addr = rtas_ld(args, 0);
286 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
287 unsigned int func = rtas_ld(args, 3);
288 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
289 unsigned int seq_num = rtas_ld(args, 5);
290 unsigned int ret_intr_type;
291 int ndev, irq;
292 sPAPRPHBState *phb = NULL;
293 PCIDevice *pdev = NULL;
294
295 switch (func) {
296 case RTAS_CHANGE_MSI_FN:
297 case RTAS_CHANGE_FN:
298 ret_intr_type = RTAS_TYPE_MSI;
299 break;
300 case RTAS_CHANGE_MSIX_FN:
301 ret_intr_type = RTAS_TYPE_MSIX;
302 break;
303 default:
304 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
305 rtas_st(rets, 0, -3); /* Parameter error */
306 return;
307 }
308
309 /* Fins sPAPRPHBState */
310 phb = find_phb(spapr, buid);
311 if (phb) {
312 pdev = find_dev(spapr, buid, config_addr);
313 }
314 if (!phb || !pdev) {
315 rtas_st(rets, 0, -3); /* Parameter error */
316 return;
317 }
318
319 /* Releasing MSIs */
320 if (!req_num) {
321 ndev = spapr_msicfg_find(phb, config_addr, false);
322 if (ndev < 0) {
323 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
324 rtas_st(rets, 0, -1); /* Hardware error */
325 return;
326 }
327 trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
328 rtas_st(rets, 0, 0);
329 rtas_st(rets, 1, 0);
330 return;
331 }
332
333 /* Enabling MSI */
334
335 /* Find a device number in the map to add or reuse the existing one */
336 ndev = spapr_msicfg_find(phb, config_addr, true);
337 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
338 fprintf(stderr, "No free entry for a new MSI device\n");
339 rtas_st(rets, 0, -1); /* Hardware error */
340 return;
341 }
342 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
343
344 /* Check if there is an old config and MSI number has not changed */
345 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
346 /* Unexpected behaviour */
347 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
348 rtas_st(rets, 0, -1); /* Hardware error */
349 return;
350 }
351
352 /* There is no cached config, allocate MSIs */
353 if (!phb->msi_table[ndev].nvec) {
354 irq = spapr_allocate_irq_block(req_num, false);
355 if (irq < 0) {
356 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
357 rtas_st(rets, 0, -1); /* Hardware error */
358 return;
359 }
360 phb->msi_table[ndev].irq = irq;
361 phb->msi_table[ndev].nvec = req_num;
362 phb->msi_table[ndev].config_addr = config_addr;
363 }
364
365 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
366 spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
367 ret_intr_type == RTAS_TYPE_MSIX, req_num);
368
369 rtas_st(rets, 0, 0);
370 rtas_st(rets, 1, req_num);
371 rtas_st(rets, 2, ++seq_num);
372 rtas_st(rets, 3, ret_intr_type);
373
374 trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
375 }
376
377 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
378 sPAPREnvironment *spapr,
379 uint32_t token,
380 uint32_t nargs,
381 target_ulong args,
382 uint32_t nret,
383 target_ulong rets)
384 {
385 uint32_t config_addr = rtas_ld(args, 0);
386 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
387 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
388 int ndev;
389 sPAPRPHBState *phb = NULL;
390
391 /* Fins sPAPRPHBState */
392 phb = find_phb(spapr, buid);
393 if (!phb) {
394 rtas_st(rets, 0, -3); /* Parameter error */
395 return;
396 }
397
398 /* Find device descriptor and start IRQ */
399 ndev = spapr_msicfg_find(phb, config_addr, false);
400 if (ndev < 0) {
401 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
402 rtas_st(rets, 0, -1); /* Hardware error */
403 return;
404 }
405
406 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
407 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
408 intr_src_num);
409
410 rtas_st(rets, 0, 0);
411 rtas_st(rets, 1, intr_src_num);
412 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
413 }
414
415 static int pci_spapr_swizzle(int slot, int pin)
416 {
417 return (slot + pin) % PCI_NUM_PINS;
418 }
419
420 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
421 {
422 /*
423 * Here we need to convert pci_dev + irq_num to some unique value
424 * which is less than number of IRQs on the specific bus (4). We
425 * use standard PCI swizzling, that is (slot number + pin number)
426 * % 4.
427 */
428 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
429 }
430
431 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
432 {
433 /*
434 * Here we use the number returned by pci_spapr_map_irq to find a
435 * corresponding qemu_irq.
436 */
437 sPAPRPHBState *phb = opaque;
438
439 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
440 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
441 }
442
443 static uint64_t spapr_io_read(void *opaque, hwaddr addr,
444 unsigned size)
445 {
446 switch (size) {
447 case 1:
448 return cpu_inb(addr);
449 case 2:
450 return cpu_inw(addr);
451 case 4:
452 return cpu_inl(addr);
453 }
454 g_assert_not_reached();
455 }
456
457 static void spapr_io_write(void *opaque, hwaddr addr,
458 uint64_t data, unsigned size)
459 {
460 switch (size) {
461 case 1:
462 cpu_outb(addr, data);
463 return;
464 case 2:
465 cpu_outw(addr, data);
466 return;
467 case 4:
468 cpu_outl(addr, data);
469 return;
470 }
471 g_assert_not_reached();
472 }
473
474 static const MemoryRegionOps spapr_io_ops = {
475 .endianness = DEVICE_LITTLE_ENDIAN,
476 .read = spapr_io_read,
477 .write = spapr_io_write
478 };
479
480 /*
481 * MSI/MSIX memory region implementation.
482 * The handler handles both MSI and MSIX.
483 * For MSI-X, the vector number is encoded as a part of the address,
484 * data is set to 0.
485 * For MSI, the vector number is encoded in least bits in data.
486 */
487 static void spapr_msi_write(void *opaque, hwaddr addr,
488 uint64_t data, unsigned size)
489 {
490 sPAPRPHBState *phb = opaque;
491 int ndev = addr >> 16;
492 int vec = ((addr & 0xFFFF) >> 2) | data;
493 uint32_t irq = phb->msi_table[ndev].irq + vec;
494
495 trace_spapr_pci_msi_write(addr, data, irq);
496
497 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
498 }
499
500 static const MemoryRegionOps spapr_msi_ops = {
501 /* There is no .read as the read result is undefined by PCI spec */
502 .read = NULL,
503 .write = spapr_msi_write,
504 .endianness = DEVICE_LITTLE_ENDIAN
505 };
506
507 /*
508 * PHB PCI device
509 */
510 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
511 {
512 sPAPRPHBState *phb = opaque;
513
514 return &phb->iommu_as;
515 }
516
517 static int spapr_phb_init(SysBusDevice *s)
518 {
519 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
520 PCIHostState *phb = PCI_HOST_BRIDGE(s);
521 const char *busname;
522 char *namebuf;
523 int i;
524 PCIBus *bus;
525
526 if (sphb->index != -1) {
527 hwaddr windows_base;
528
529 if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
530 || (sphb->mem_win_addr != -1)
531 || (sphb->io_win_addr != -1)
532 || (sphb->msi_win_addr != -1)) {
533 fprintf(stderr, "Either \"index\" or other parameters must"
534 " be specified for PAPR PHB, not both\n");
535 return -1;
536 }
537
538 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
539 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
540
541 windows_base = SPAPR_PCI_WINDOW_BASE
542 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
543 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
544 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
545 sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF;
546 }
547
548 if (sphb->buid == -1) {
549 fprintf(stderr, "BUID not specified for PHB\n");
550 return -1;
551 }
552
553 if (sphb->dma_liobn == -1) {
554 fprintf(stderr, "LIOBN not specified for PHB\n");
555 return -1;
556 }
557
558 if (sphb->mem_win_addr == -1) {
559 fprintf(stderr, "Memory window address not specified for PHB\n");
560 return -1;
561 }
562
563 if (sphb->io_win_addr == -1) {
564 fprintf(stderr, "IO window address not specified for PHB\n");
565 return -1;
566 }
567
568 if (sphb->msi_win_addr == -1) {
569 fprintf(stderr, "MSI window address not specified for PHB\n");
570 return -1;
571 }
572
573 if (find_phb(spapr, sphb->buid)) {
574 fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
575 return -1;
576 }
577
578 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
579
580 namebuf = alloca(strlen(sphb->dtbusname) + 32);
581
582 /* Initialize memory regions */
583 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
584 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, INT64_MAX);
585
586 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
587 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
588 namebuf, &sphb->memspace,
589 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
590 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
591 &sphb->memwindow);
592
593 /* On ppc, we only have MMIO no specific IO space from the CPU
594 * perspective. In theory we ought to be able to embed the PCI IO
595 * memory region direction in the system memory space. However,
596 * if any of the IO BAR subregions use the old_portio mechanism,
597 * that won't be processed properly unless accessed from the
598 * system io address space. This hack to bounce things via
599 * system_io works around the problem until all the users of
600 * old_portion are updated */
601 sprintf(namebuf, "%s.io", sphb->dtbusname);
602 memory_region_init(&sphb->iospace, OBJECT(sphb),
603 namebuf, SPAPR_PCI_IO_WIN_SIZE);
604 /* FIXME: fix to support multiple PHBs */
605 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
606
607 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
608 memory_region_init_io(&sphb->iowindow, OBJECT(sphb), &spapr_io_ops, sphb,
609 namebuf, SPAPR_PCI_IO_WIN_SIZE);
610 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
611 &sphb->iowindow);
612
613 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
614 * we need to allocate some memory to catch those writes coming
615 * from msi_notify()/msix_notify() */
616 if (msi_supported) {
617 sprintf(namebuf, "%s.msi", sphb->dtbusname);
618 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, sphb,
619 namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
620 memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
621 &sphb->msiwindow);
622 }
623
624 /*
625 * Selecting a busname is more complex than you'd think, due to
626 * interacting constraints. If the user has specified an id
627 * explicitly for the phb , then we want to use the qdev default
628 * of naming the bus based on the bridge device (so the user can
629 * then assign devices to it in the way they expect). For the
630 * first / default PCI bus (index=0) we want to use just "pci"
631 * because libvirt expects there to be a bus called, simply,
632 * "pci". Otherwise, we use the same name as in the device tree,
633 * since it's unique by construction, and makes the guest visible
634 * BUID clear.
635 */
636 if (s->qdev.id) {
637 busname = NULL;
638 } else if (sphb->index == 0) {
639 busname = "pci";
640 } else {
641 busname = sphb->dtbusname;
642 }
643 bus = pci_register_bus(DEVICE(s), busname,
644 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
645 &sphb->memspace, &sphb->iospace,
646 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
647 phb->bus = bus;
648
649 sphb->dma_window_start = 0;
650 sphb->dma_window_size = 0x40000000;
651 sphb->tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
652 sphb->dma_window_size);
653 if (!sphb->tcet) {
654 fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
655 return -1;
656 }
657 address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
658 sphb->dtbusname);
659
660 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
661
662 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
663
664 /* Initialize the LSI table */
665 for (i = 0; i < PCI_NUM_PINS; i++) {
666 uint32_t irq;
667
668 irq = spapr_allocate_lsi(0);
669 if (!irq) {
670 return -1;
671 }
672
673 sphb->lsi_table[i].irq = irq;
674 }
675
676 return 0;
677 }
678
679 static void spapr_phb_reset(DeviceState *qdev)
680 {
681 SysBusDevice *s = SYS_BUS_DEVICE(qdev);
682 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
683
684 /* Reset the IOMMU state */
685 spapr_tce_reset(sphb->tcet);
686 }
687
688 static Property spapr_phb_properties[] = {
689 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
690 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
691 DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
692 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
693 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
694 SPAPR_PCI_MMIO_WIN_SIZE),
695 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
696 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
697 SPAPR_PCI_IO_WIN_SIZE),
698 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1),
699 DEFINE_PROP_END_OF_LIST(),
700 };
701
702 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
703 PCIBus *rootbus)
704 {
705 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
706
707 return sphb->dtbusname;
708 }
709
710 static void spapr_phb_class_init(ObjectClass *klass, void *data)
711 {
712 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
713 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
714 DeviceClass *dc = DEVICE_CLASS(klass);
715
716 hc->root_bus_path = spapr_phb_root_bus_path;
717 sdc->init = spapr_phb_init;
718 dc->props = spapr_phb_properties;
719 dc->reset = spapr_phb_reset;
720 }
721
722 static const TypeInfo spapr_phb_info = {
723 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
724 .parent = TYPE_PCI_HOST_BRIDGE,
725 .instance_size = sizeof(sPAPRPHBState),
726 .class_init = spapr_phb_class_init,
727 };
728
729 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
730 {
731 DeviceState *dev;
732
733 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
734 qdev_prop_set_uint32(dev, "index", index);
735 qdev_init_nofail(dev);
736
737 return PCI_HOST_BRIDGE(dev);
738 }
739
740 /* Macros to operate with address in OF binding to PCI */
741 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
742 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
743 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
744 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
745 #define b_ss(x) b_x((x), 24, 2) /* the space code */
746 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
747 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
748 #define b_fff(x) b_x((x), 8, 3) /* function number */
749 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
750
751 int spapr_populate_pci_dt(sPAPRPHBState *phb,
752 uint32_t xics_phandle,
753 void *fdt)
754 {
755 int bus_off, i, j;
756 char nodename[256];
757 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
758 struct {
759 uint32_t hi;
760 uint64_t child;
761 uint64_t parent;
762 uint64_t size;
763 } QEMU_PACKED ranges[] = {
764 {
765 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
766 cpu_to_be64(phb->io_win_addr),
767 cpu_to_be64(memory_region_size(&phb->iospace)),
768 },
769 {
770 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
771 cpu_to_be64(phb->mem_win_addr),
772 cpu_to_be64(memory_region_size(&phb->memwindow)),
773 },
774 };
775 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
776 uint32_t interrupt_map_mask[] = {
777 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
778 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
779
780 /* Start populating the FDT */
781 sprintf(nodename, "pci@%" PRIx64, phb->buid);
782 bus_off = fdt_add_subnode(fdt, 0, nodename);
783 if (bus_off < 0) {
784 return bus_off;
785 }
786
787 #define _FDT(exp) \
788 do { \
789 int ret = (exp); \
790 if (ret < 0) { \
791 return ret; \
792 } \
793 } while (0)
794
795 /* Write PHB properties */
796 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
797 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
798 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
799 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
800 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
801 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
802 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
803 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
804 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
805 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
806
807 /* Build the interrupt-map, this must matches what is done
808 * in pci_spapr_map_irq
809 */
810 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
811 &interrupt_map_mask, sizeof(interrupt_map_mask)));
812 for (i = 0; i < PCI_SLOT_MAX; i++) {
813 for (j = 0; j < PCI_NUM_PINS; j++) {
814 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
815 int lsi_num = pci_spapr_swizzle(i, j);
816
817 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
818 irqmap[1] = 0;
819 irqmap[2] = 0;
820 irqmap[3] = cpu_to_be32(j+1);
821 irqmap[4] = cpu_to_be32(xics_phandle);
822 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
823 irqmap[6] = cpu_to_be32(0x8);
824 }
825 }
826 /* Write interrupt map */
827 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
828 sizeof(interrupt_map)));
829
830 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
831 phb->dma_liobn, phb->dma_window_start,
832 phb->dma_window_size);
833
834 return 0;
835 }
836
837 void spapr_pci_rtas_init(void)
838 {
839 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
840 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
841 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
842 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
843 if (msi_supported) {
844 spapr_rtas_register("ibm,query-interrupt-source-number",
845 rtas_ibm_query_interrupt_source_number);
846 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
847 }
848 }
849
850 static void spapr_pci_register_types(void)
851 {
852 type_register_static(&spapr_phb_info);
853 }
854
855 type_init(spapr_pci_register_types)