]> git.proxmox.com Git - qemu.git/blob - hw/ppc/spapr_pci.c
spapr-pci: fix config space access to support bridges
[qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35
36 #include "hw/pci/pci_bus.h"
37
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN 0
40 #define RTAS_CHANGE_FN 1
41 #define RTAS_RESET_FN 2
42 #define RTAS_CHANGE_MSI_FN 3
43 #define RTAS_CHANGE_MSIX_FN 4
44
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI 1
47 #define RTAS_TYPE_MSIX 2
48
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50 {
51 sPAPRPHBState *sphb;
52
53 QLIST_FOREACH(sphb, &spapr->phbs, list) {
54 if (sphb->buid != buid) {
55 continue;
56 }
57 return sphb;
58 }
59
60 return NULL;
61 }
62
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64 uint32_t config_addr)
65 {
66 sPAPRPHBState *sphb = find_phb(spapr, buid);
67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68 int bus_num = (config_addr >> 16) & 0xFF;
69 int devfn = (config_addr >> 8) & 0xFF;
70
71 if (!phb) {
72 return NULL;
73 }
74
75 return pci_find_device(phb->bus, bus_num, devfn);
76 }
77
78 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
79 {
80 /* This handles the encoding of extended config space addresses */
81 return ((arg >> 20) & 0xf00) | (arg & 0xff);
82 }
83
84 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
85 uint32_t addr, uint32_t size,
86 target_ulong rets)
87 {
88 PCIDevice *pci_dev;
89 uint32_t val;
90
91 if ((size != 1) && (size != 2) && (size != 4)) {
92 /* access must be 1, 2 or 4 bytes */
93 rtas_st(rets, 0, -1);
94 return;
95 }
96
97 pci_dev = find_dev(spapr, buid, addr);
98 addr = rtas_pci_cfgaddr(addr);
99
100 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
101 /* Access must be to a valid device, within bounds and
102 * naturally aligned */
103 rtas_st(rets, 0, -1);
104 return;
105 }
106
107 val = pci_host_config_read_common(pci_dev, addr,
108 pci_config_size(pci_dev), size);
109
110 rtas_st(rets, 0, 0);
111 rtas_st(rets, 1, val);
112 }
113
114 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
115 uint32_t token, uint32_t nargs,
116 target_ulong args,
117 uint32_t nret, target_ulong rets)
118 {
119 uint64_t buid;
120 uint32_t size, addr;
121
122 if ((nargs != 4) || (nret != 2)) {
123 rtas_st(rets, 0, -1);
124 return;
125 }
126
127 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
128 size = rtas_ld(args, 3);
129 addr = rtas_ld(args, 0);
130
131 finish_read_pci_config(spapr, buid, addr, size, rets);
132 }
133
134 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
135 uint32_t token, uint32_t nargs,
136 target_ulong args,
137 uint32_t nret, target_ulong rets)
138 {
139 uint32_t size, addr;
140
141 if ((nargs != 2) || (nret != 2)) {
142 rtas_st(rets, 0, -1);
143 return;
144 }
145
146 size = rtas_ld(args, 1);
147 addr = rtas_ld(args, 0);
148
149 finish_read_pci_config(spapr, 0, addr, size, rets);
150 }
151
152 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
153 uint32_t addr, uint32_t size,
154 uint32_t val, target_ulong rets)
155 {
156 PCIDevice *pci_dev;
157
158 if ((size != 1) && (size != 2) && (size != 4)) {
159 /* access must be 1, 2 or 4 bytes */
160 rtas_st(rets, 0, -1);
161 return;
162 }
163
164 pci_dev = find_dev(spapr, buid, addr);
165 addr = rtas_pci_cfgaddr(addr);
166
167 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
168 /* Access must be to a valid device, within bounds and
169 * naturally aligned */
170 rtas_st(rets, 0, -1);
171 return;
172 }
173
174 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
175 val, size);
176
177 rtas_st(rets, 0, 0);
178 }
179
180 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
181 uint32_t token, uint32_t nargs,
182 target_ulong args,
183 uint32_t nret, target_ulong rets)
184 {
185 uint64_t buid;
186 uint32_t val, size, addr;
187
188 if ((nargs != 5) || (nret != 1)) {
189 rtas_st(rets, 0, -1);
190 return;
191 }
192
193 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
194 val = rtas_ld(args, 4);
195 size = rtas_ld(args, 3);
196 addr = rtas_ld(args, 0);
197
198 finish_write_pci_config(spapr, buid, addr, size, val, rets);
199 }
200
201 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
202 uint32_t token, uint32_t nargs,
203 target_ulong args,
204 uint32_t nret, target_ulong rets)
205 {
206 uint32_t val, size, addr;
207
208 if ((nargs != 3) || (nret != 1)) {
209 rtas_st(rets, 0, -1);
210 return;
211 }
212
213
214 val = rtas_ld(args, 2);
215 size = rtas_ld(args, 1);
216 addr = rtas_ld(args, 0);
217
218 finish_write_pci_config(spapr, 0, addr, size, val, rets);
219 }
220
221 /*
222 * Find an entry with config_addr or returns the empty one if not found AND
223 * alloc_new is set.
224 * At the moment the msi_table entries are never released so there is
225 * no point to look till the end of the list if we need to find the free entry.
226 */
227 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
228 bool alloc_new)
229 {
230 int i;
231
232 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
233 if (!phb->msi_table[i].nvec) {
234 break;
235 }
236 if (phb->msi_table[i].config_addr == config_addr) {
237 return i;
238 }
239 }
240 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
241 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
242 return i;
243 }
244
245 return -1;
246 }
247
248 /*
249 * Set MSI/MSIX message data.
250 * This is required for msi_notify()/msix_notify() which
251 * will write at the addresses via spapr_msi_write().
252 */
253 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
254 bool msix, unsigned req_num)
255 {
256 unsigned i;
257 MSIMessage msg = { .address = addr, .data = 0 };
258
259 if (!msix) {
260 msi_set_message(pdev, msg);
261 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
262 return;
263 }
264
265 for (i = 0; i < req_num; ++i) {
266 msg.address = addr | (i << 2);
267 msix_set_message(pdev, i, msg);
268 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
269 }
270 }
271
272 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
273 uint32_t token, uint32_t nargs,
274 target_ulong args, uint32_t nret,
275 target_ulong rets)
276 {
277 uint32_t config_addr = rtas_ld(args, 0);
278 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
279 unsigned int func = rtas_ld(args, 3);
280 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
281 unsigned int seq_num = rtas_ld(args, 5);
282 unsigned int ret_intr_type;
283 int ndev, irq;
284 sPAPRPHBState *phb = NULL;
285 PCIDevice *pdev = NULL;
286
287 switch (func) {
288 case RTAS_CHANGE_MSI_FN:
289 case RTAS_CHANGE_FN:
290 ret_intr_type = RTAS_TYPE_MSI;
291 break;
292 case RTAS_CHANGE_MSIX_FN:
293 ret_intr_type = RTAS_TYPE_MSIX;
294 break;
295 default:
296 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
297 rtas_st(rets, 0, -3); /* Parameter error */
298 return;
299 }
300
301 /* Fins sPAPRPHBState */
302 phb = find_phb(spapr, buid);
303 if (phb) {
304 pdev = find_dev(spapr, buid, config_addr);
305 }
306 if (!phb || !pdev) {
307 rtas_st(rets, 0, -3); /* Parameter error */
308 return;
309 }
310
311 /* Releasing MSIs */
312 if (!req_num) {
313 ndev = spapr_msicfg_find(phb, config_addr, false);
314 if (ndev < 0) {
315 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
316 rtas_st(rets, 0, -1); /* Hardware error */
317 return;
318 }
319 trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
320 rtas_st(rets, 0, 0);
321 rtas_st(rets, 1, 0);
322 return;
323 }
324
325 /* Enabling MSI */
326
327 /* Find a device number in the map to add or reuse the existing one */
328 ndev = spapr_msicfg_find(phb, config_addr, true);
329 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
330 fprintf(stderr, "No free entry for a new MSI device\n");
331 rtas_st(rets, 0, -1); /* Hardware error */
332 return;
333 }
334 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
335
336 /* Check if there is an old config and MSI number has not changed */
337 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
338 /* Unexpected behaviour */
339 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
340 rtas_st(rets, 0, -1); /* Hardware error */
341 return;
342 }
343
344 /* There is no cached config, allocate MSIs */
345 if (!phb->msi_table[ndev].nvec) {
346 irq = spapr_allocate_irq_block(req_num, false);
347 if (irq < 0) {
348 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
349 rtas_st(rets, 0, -1); /* Hardware error */
350 return;
351 }
352 phb->msi_table[ndev].irq = irq;
353 phb->msi_table[ndev].nvec = req_num;
354 phb->msi_table[ndev].config_addr = config_addr;
355 }
356
357 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
358 spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
359 ret_intr_type == RTAS_TYPE_MSIX, req_num);
360
361 rtas_st(rets, 0, 0);
362 rtas_st(rets, 1, req_num);
363 rtas_st(rets, 2, ++seq_num);
364 rtas_st(rets, 3, ret_intr_type);
365
366 trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
367 }
368
369 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
370 sPAPREnvironment *spapr,
371 uint32_t token,
372 uint32_t nargs,
373 target_ulong args,
374 uint32_t nret,
375 target_ulong rets)
376 {
377 uint32_t config_addr = rtas_ld(args, 0);
378 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
379 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
380 int ndev;
381 sPAPRPHBState *phb = NULL;
382
383 /* Fins sPAPRPHBState */
384 phb = find_phb(spapr, buid);
385 if (!phb) {
386 rtas_st(rets, 0, -3); /* Parameter error */
387 return;
388 }
389
390 /* Find device descriptor and start IRQ */
391 ndev = spapr_msicfg_find(phb, config_addr, false);
392 if (ndev < 0) {
393 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
394 rtas_st(rets, 0, -1); /* Hardware error */
395 return;
396 }
397
398 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
399 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
400 intr_src_num);
401
402 rtas_st(rets, 0, 0);
403 rtas_st(rets, 1, intr_src_num);
404 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
405 }
406
407 static int pci_spapr_swizzle(int slot, int pin)
408 {
409 return (slot + pin) % PCI_NUM_PINS;
410 }
411
412 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
413 {
414 /*
415 * Here we need to convert pci_dev + irq_num to some unique value
416 * which is less than number of IRQs on the specific bus (4). We
417 * use standard PCI swizzling, that is (slot number + pin number)
418 * % 4.
419 */
420 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
421 }
422
423 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
424 {
425 /*
426 * Here we use the number returned by pci_spapr_map_irq to find a
427 * corresponding qemu_irq.
428 */
429 sPAPRPHBState *phb = opaque;
430
431 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
432 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
433 }
434
435 /*
436 * MSI/MSIX memory region implementation.
437 * The handler handles both MSI and MSIX.
438 * For MSI-X, the vector number is encoded as a part of the address,
439 * data is set to 0.
440 * For MSI, the vector number is encoded in least bits in data.
441 */
442 static void spapr_msi_write(void *opaque, hwaddr addr,
443 uint64_t data, unsigned size)
444 {
445 sPAPRPHBState *phb = opaque;
446 int ndev = addr >> 16;
447 int vec = ((addr & 0xFFFF) >> 2) | data;
448 uint32_t irq = phb->msi_table[ndev].irq + vec;
449
450 trace_spapr_pci_msi_write(addr, data, irq);
451
452 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
453 }
454
455 static const MemoryRegionOps spapr_msi_ops = {
456 /* There is no .read as the read result is undefined by PCI spec */
457 .read = NULL,
458 .write = spapr_msi_write,
459 .endianness = DEVICE_LITTLE_ENDIAN
460 };
461
462 /*
463 * PHB PCI device
464 */
465 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
466 {
467 sPAPRPHBState *phb = opaque;
468
469 return &phb->iommu_as;
470 }
471
472 static int spapr_phb_init(SysBusDevice *s)
473 {
474 DeviceState *dev = DEVICE(s);
475 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
476 PCIHostState *phb = PCI_HOST_BRIDGE(s);
477 const char *busname;
478 char *namebuf;
479 int i;
480 PCIBus *bus;
481
482 if (sphb->index != -1) {
483 hwaddr windows_base;
484
485 if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
486 || (sphb->mem_win_addr != -1)
487 || (sphb->io_win_addr != -1)
488 || (sphb->msi_win_addr != -1)) {
489 fprintf(stderr, "Either \"index\" or other parameters must"
490 " be specified for PAPR PHB, not both\n");
491 return -1;
492 }
493
494 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
495 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
496
497 windows_base = SPAPR_PCI_WINDOW_BASE
498 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
499 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
500 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
501 sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF;
502 }
503
504 if (sphb->buid == -1) {
505 fprintf(stderr, "BUID not specified for PHB\n");
506 return -1;
507 }
508
509 if (sphb->dma_liobn == -1) {
510 fprintf(stderr, "LIOBN not specified for PHB\n");
511 return -1;
512 }
513
514 if (sphb->mem_win_addr == -1) {
515 fprintf(stderr, "Memory window address not specified for PHB\n");
516 return -1;
517 }
518
519 if (sphb->io_win_addr == -1) {
520 fprintf(stderr, "IO window address not specified for PHB\n");
521 return -1;
522 }
523
524 if (sphb->msi_win_addr == -1) {
525 fprintf(stderr, "MSI window address not specified for PHB\n");
526 return -1;
527 }
528
529 if (find_phb(spapr, sphb->buid)) {
530 fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
531 return -1;
532 }
533
534 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
535
536 namebuf = alloca(strlen(sphb->dtbusname) + 32);
537
538 /* Initialize memory regions */
539 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
540 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, INT64_MAX);
541
542 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
543 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
544 namebuf, &sphb->memspace,
545 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
546 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
547 &sphb->memwindow);
548
549 /* On ppc, we only have MMIO no specific IO space from the CPU
550 * perspective. In theory we ought to be able to embed the PCI IO
551 * memory region direction in the system memory space. However,
552 * if any of the IO BAR subregions use the old_portio mechanism,
553 * that won't be processed properly unless accessed from the
554 * system io address space. This hack to bounce things via
555 * system_io works around the problem until all the users of
556 * old_portion are updated */
557 sprintf(namebuf, "%s.io", sphb->dtbusname);
558 memory_region_init(&sphb->iospace, OBJECT(sphb),
559 namebuf, SPAPR_PCI_IO_WIN_SIZE);
560 /* FIXME: fix to support multiple PHBs */
561 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
562
563 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
564 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
565 get_system_io(), 0, SPAPR_PCI_IO_WIN_SIZE);
566 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
567 &sphb->iowindow);
568
569 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
570 * we need to allocate some memory to catch those writes coming
571 * from msi_notify()/msix_notify() */
572 if (msi_supported) {
573 sprintf(namebuf, "%s.msi", sphb->dtbusname);
574 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, sphb,
575 namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
576 memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
577 &sphb->msiwindow);
578 }
579
580 /*
581 * Selecting a busname is more complex than you'd think, due to
582 * interacting constraints. If the user has specified an id
583 * explicitly for the phb , then we want to use the qdev default
584 * of naming the bus based on the bridge device (so the user can
585 * then assign devices to it in the way they expect). For the
586 * first / default PCI bus (index=0) we want to use just "pci"
587 * because libvirt expects there to be a bus called, simply,
588 * "pci". Otherwise, we use the same name as in the device tree,
589 * since it's unique by construction, and makes the guest visible
590 * BUID clear.
591 */
592 if (dev->id) {
593 busname = NULL;
594 } else if (sphb->index == 0) {
595 busname = "pci";
596 } else {
597 busname = sphb->dtbusname;
598 }
599 bus = pci_register_bus(dev, busname,
600 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
601 &sphb->memspace, &sphb->iospace,
602 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
603 phb->bus = bus;
604
605 sphb->dma_window_start = 0;
606 sphb->dma_window_size = 0x40000000;
607 sphb->tcet = spapr_tce_new_table(dev, sphb->dma_liobn,
608 sphb->dma_window_size);
609 if (!sphb->tcet) {
610 fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
611 return -1;
612 }
613 address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
614 sphb->dtbusname);
615
616 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
617
618 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
619
620 /* Initialize the LSI table */
621 for (i = 0; i < PCI_NUM_PINS; i++) {
622 uint32_t irq;
623
624 irq = spapr_allocate_lsi(0);
625 if (!irq) {
626 return -1;
627 }
628
629 sphb->lsi_table[i].irq = irq;
630 }
631
632 return 0;
633 }
634
635 static void spapr_phb_reset(DeviceState *qdev)
636 {
637 SysBusDevice *s = SYS_BUS_DEVICE(qdev);
638 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
639
640 /* Reset the IOMMU state */
641 device_reset(DEVICE(sphb->tcet));
642 }
643
644 static Property spapr_phb_properties[] = {
645 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
646 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
647 DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
648 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
649 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
650 SPAPR_PCI_MMIO_WIN_SIZE),
651 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
652 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
653 SPAPR_PCI_IO_WIN_SIZE),
654 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1),
655 DEFINE_PROP_END_OF_LIST(),
656 };
657
658 static const VMStateDescription vmstate_spapr_pci_lsi = {
659 .name = "spapr_pci/lsi",
660 .version_id = 1,
661 .minimum_version_id = 1,
662 .minimum_version_id_old = 1,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
665
666 VMSTATE_END_OF_LIST()
667 },
668 };
669
670 static const VMStateDescription vmstate_spapr_pci_msi = {
671 .name = "spapr_pci/lsi",
672 .version_id = 1,
673 .minimum_version_id = 1,
674 .minimum_version_id_old = 1,
675 .fields = (VMStateField []) {
676 VMSTATE_UINT32(config_addr, struct spapr_pci_msi),
677 VMSTATE_UINT32(irq, struct spapr_pci_msi),
678 VMSTATE_UINT32(nvec, struct spapr_pci_msi),
679
680 VMSTATE_END_OF_LIST()
681 },
682 };
683
684 static const VMStateDescription vmstate_spapr_pci = {
685 .name = "spapr_pci",
686 .version_id = 1,
687 .minimum_version_id = 1,
688 .minimum_version_id_old = 1,
689 .fields = (VMStateField []) {
690 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
691 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
692 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
693 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
694 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
695 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
696 VMSTATE_UINT64_EQUAL(msi_win_addr, sPAPRPHBState),
697 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
698 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
699 VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0,
700 vmstate_spapr_pci_msi, struct spapr_pci_msi),
701
702 VMSTATE_END_OF_LIST()
703 },
704 };
705
706 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
707 PCIBus *rootbus)
708 {
709 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
710
711 return sphb->dtbusname;
712 }
713
714 static void spapr_phb_class_init(ObjectClass *klass, void *data)
715 {
716 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
717 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
718 DeviceClass *dc = DEVICE_CLASS(klass);
719
720 hc->root_bus_path = spapr_phb_root_bus_path;
721 sdc->init = spapr_phb_init;
722 dc->props = spapr_phb_properties;
723 dc->reset = spapr_phb_reset;
724 dc->vmsd = &vmstate_spapr_pci;
725 }
726
727 static const TypeInfo spapr_phb_info = {
728 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
729 .parent = TYPE_PCI_HOST_BRIDGE,
730 .instance_size = sizeof(sPAPRPHBState),
731 .class_init = spapr_phb_class_init,
732 };
733
734 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
735 {
736 DeviceState *dev;
737
738 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
739 qdev_prop_set_uint32(dev, "index", index);
740 qdev_init_nofail(dev);
741
742 return PCI_HOST_BRIDGE(dev);
743 }
744
745 /* Macros to operate with address in OF binding to PCI */
746 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
747 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
748 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
749 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
750 #define b_ss(x) b_x((x), 24, 2) /* the space code */
751 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
752 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
753 #define b_fff(x) b_x((x), 8, 3) /* function number */
754 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
755
756 int spapr_populate_pci_dt(sPAPRPHBState *phb,
757 uint32_t xics_phandle,
758 void *fdt)
759 {
760 int bus_off, i, j;
761 char nodename[256];
762 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
763 struct {
764 uint32_t hi;
765 uint64_t child;
766 uint64_t parent;
767 uint64_t size;
768 } QEMU_PACKED ranges[] = {
769 {
770 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
771 cpu_to_be64(phb->io_win_addr),
772 cpu_to_be64(memory_region_size(&phb->iospace)),
773 },
774 {
775 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
776 cpu_to_be64(phb->mem_win_addr),
777 cpu_to_be64(memory_region_size(&phb->memwindow)),
778 },
779 };
780 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
781 uint32_t interrupt_map_mask[] = {
782 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
783 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
784
785 /* Start populating the FDT */
786 sprintf(nodename, "pci@%" PRIx64, phb->buid);
787 bus_off = fdt_add_subnode(fdt, 0, nodename);
788 if (bus_off < 0) {
789 return bus_off;
790 }
791
792 #define _FDT(exp) \
793 do { \
794 int ret = (exp); \
795 if (ret < 0) { \
796 return ret; \
797 } \
798 } while (0)
799
800 /* Write PHB properties */
801 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
802 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
803 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
804 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
805 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
806 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
807 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
808 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
809 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
810 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
811
812 /* Build the interrupt-map, this must matches what is done
813 * in pci_spapr_map_irq
814 */
815 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
816 &interrupt_map_mask, sizeof(interrupt_map_mask)));
817 for (i = 0; i < PCI_SLOT_MAX; i++) {
818 for (j = 0; j < PCI_NUM_PINS; j++) {
819 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
820 int lsi_num = pci_spapr_swizzle(i, j);
821
822 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
823 irqmap[1] = 0;
824 irqmap[2] = 0;
825 irqmap[3] = cpu_to_be32(j+1);
826 irqmap[4] = cpu_to_be32(xics_phandle);
827 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
828 irqmap[6] = cpu_to_be32(0x8);
829 }
830 }
831 /* Write interrupt map */
832 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
833 sizeof(interrupt_map)));
834
835 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
836 phb->dma_liobn, phb->dma_window_start,
837 phb->dma_window_size);
838
839 return 0;
840 }
841
842 void spapr_pci_rtas_init(void)
843 {
844 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
845 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
846 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
847 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
848 if (msi_supported) {
849 spapr_rtas_register("ibm,query-interrupt-source-number",
850 rtas_ibm_query_interrupt_source_number);
851 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
852 }
853 }
854
855 static void spapr_pci_register_types(void)
856 {
857 type_register_static(&spapr_phb_info);
858 }
859
860 type_init(spapr_pci_register_types)